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Abstract: Multi-block multivariate statistical methods have been developed to extract useful
information from process and quality data in the era of big data, where process variables are
partitioned into several meaningful blocks. However, most of these methods did not consider
cross-correlations among divided blocks, which leads to inferior monitoring performance. In
this article, a block-aware factorization machine (BAFM) algorithm is proposed to exploit
information from process and quality data. In BAFM, quality data are first classified into normal
and abnormal labels with principal component analysis based quality monitoring framework.
Afterwards, a block number is attached to each process variable, and the interactions among
different variables (both within and cross blocks) are learned through latent variables, which
is supervised by the classified quality labels. Apart from the variable relation within the same
block, BAFM also incorporates the block information; thus, both inner and cross correlations
are constructed. The monitoring framework based on BAFM is developed, and its effectiveness
and superiority are demonstrated through the Tennessee Eastman process.

Keywords: Quality-relevant monitoring, block-aware factorization machine, supervised
learning, multi-block processes

1. INTRODUCTION

Process monitoring based on multivariate statistical meth-
ods is widely studied in both academia and industry to
detect anomalies in process and quality data. Among
them, principal component analysis (PCA), partial least
squares (PLS) and canonical correlation analysis (CCA)
are three popular algorithms (Qin (2012); Wise and Gal-
lagher (1996)), where PCA can be applied for pure process
monitoring or quality monitoring, while PLS and CCA are
utilized for quality-relevant monitoring (Liu et al. (2018)).
These algorithms and their variants have achieved vary-
ing degrees of success in medicine, economics, computer
science, materials science, and other engineering fields.

With the advent of Industry 4.0, when collected data
volumes increase explosively, it poses a large challenge on
existing methods in terms of scalability and computation
efficiency. Traditional PCA, PLS and CCA are not scalable
for voluminous data, since the whole dataset needs to be
fed into the models to extract latent structures. Therefore,
their distributed or multi-block counterparts are developed
to handle issues brought by big data (Ge (2017); Jiang
et al. (2019)). In multi-block models, process variables are
decomposed into different blocks based on prior knowledge
or algorithms such as mutual information (Jiang and Yan
(2014)). Then PCA, PLS and CCA are performed on
each block to capture inner-correlations among variables
inside the same blocks. Multi-block models work well to
alleviate the burden of large volumes of data. However,
cross-correlations remain untouched in these models.

In this article, a block-aware factorization machine (BAFM)
algorithm is proposed to extract both inner and cross
correlation from a new perspective, which is inspired by
the idea of field-aware factorization machine (FFM) (Juan
et al. (2016)). FFM plays an important role to predict
click-through rate in advertising industry, where the con-
cept of field is attached to features from advertisement and
user sides to denote sources of these features. However,
FFM cannot be applied directly in chemical processes,
since in these processes (1) both process and quality vari-
ables are sampled continuously and with various sampling
frequencies; (2) the number of blocks is usually larger than
two; and (3) the samples are not sparse (Ranzato et al.
(2008)). Instead, these issues will be addressed in BAFM.

In BAFM, quality variables are transformed to indica-
tors or labels ({0, 1}) by performing PCA-based quality
monitoring on them, where 0 stands for normal samples
while 1 is for abnormal ones. Simultaneously, each process
variable is attached with a block number based on prior
knowledge. Then in BAFM, relations between process
variables and classified quality labels are built through
latent variables for each block. The cross-block information
is also extracted by modeling the interactions of latent
variables with different block numbers. The monitoring
scheme is also established for BAFM, which is verified
through the Tennessee Eastman process (TEP). It is noted
that the application of BAFM is not limited to multi-block
processes; it can be applied wherever sources of variables
can provide extra information into the system modeling.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11434



The remaining sections of the article are organized as
follows. Section 2 reviews quality monitoring scheme based
on PCA and describes how it is employed to convert
quality variables into labels. In Section 3, details of BAFM
algorithm are presented, including its motivation, model-
ing objective, solution derivation, optimization strategies,
and monitoring scheme. TEP is employed to demonstrate
the effectiveness of the proposed algorithm and its cor-
responding monitoring framework in Section 4. Finally,
conclusions are drawn in the last section.

2. QUALITY MONITORING WITH PCA

Zhu and Qin (2019) classified monitoring schemes into
three scenarios: inferential monitoring, quality-irrelevant
process monitoring, and quality monitoring. Inferential
monitoring, also referred to as quality-relevant monitor-
ing, infers quality faults from process variables. Quality-
irrelevant process monitoring detects anomalies in process
variables that have no impact on quality data. Quality
monitoring performs latent variable regression methods on
quality data to monitor variations in quality spaces, which
is an unsupervised monitoring scheme.

In BAFM, quality data need to be transformed into labels
for further processing, where labels are defined as discrete
integers attached to each sample. In this article, we use
label 1 to denote abnormal samples, while using label 0
for normal scenarios, and quality monitoring with PCA is
employed to categorize original quality data into labels.

2.1 Principal Component Analysis

Assuming that a data matrix Y ∈ Rn×p is composed by
n samples and each sample has p variables, PCA can be
applied on Y to extract its latent structure. Its objective is
to maximize the variance of the extracted variables, which
is represented as

max
p

p>Y>Yp

s.t. ||p|| = 1
(1)

where p ∈ Rp is the loading vector. Lagrange multipliers
or nonlinear iterative partial least squares (NIPALS) algo-
rithm can be used to derive the solution of Eq. (1) (Wold
et al. (1987)).

After performing PCA, Y is projected onto a lower-
dimensional space defined by a small number of latent
variables (t1, . . . , tl), where l is the number of principal
components. The mean-centered Y can be formulated as

Y = TP> + E (2)

where T = [t1, . . . , tl] and P = [p1, . . . ,pl] are score
matrix and loading matrix respectively, and E is the
residual. TP> comprises principal component subspace,
which retains most information in the original data, while
E mainly contains noises.

For a new sample y, the predicted and residual parts can
be calculated by

t = P>y

ŷ = Pt = PP>y

ỹ = (I−PP>)y

(3)

Table 1. Monitoring statistics and control lim-
its for PCA

Statistics Calculation Control limit

T 2 t>Λ−1t l(n2−1)
n(n−l) Fl,n−l;α

Q ỹ>ỹ gχ2
h;α

ŷ and ỹ reflect the variations in principal component and
residual subspaces respectively.

2.2 Classification of Quality Data

In the literature, Hotelling’s T 2 and Q statistics (Jackson
(2005); Joe Qin (2003); Nomikos and MacGregor (1995))
are widely used to monitor variations in principal com-
ponent and residual subspaces in PCA, which can be
formulated as

T 2 = t>Λ−1t
Q = ỹ>ỹ

(4)

where Λ = diag(λ1, λ2, . . . , λl) contains nonzero eigenval-
ues of Y>Y, and λ1 ≥ λ2 ≥ . . . ≥ λl > 0.

Assuming that the data are sampled from processes with
a multivariate normal distribution or the collected data
volumes are large enough, control limit of T 2 can be
obtained by an F -distribution, and control limit for Q
is gained by a χ2-distribution (Nomikos and MacGregor
(1995)). The monitoring indices and their corresponding
control limits are summarized in Table 1. It is noted that
α is the confidence interval, and the calculations of g and
h can be found in MacGregor et al. (1994).

In BAFM, the aforementioned PCA-based quality moni-
toring scheme is utilized to classify quality data as follows.

1. If T 2 exceeds the control limit, then an anomaly is
detected in the principal component subspace, which
affects Y and is classified as a fault. In this scenario,
the sample is labeled as y = 1.

2. If Q exceeds the control limit, a potentially quality
fault is detected with (1−α)×100%. Since the original
relation among quality variables may be broken, the
sample is also labeled as y = 1 in this scenario.

3. If both T 2 and Q are within their control limits, then
the sample is regarded as normal, and its label y is 0.

The quality labels are denoted as yl ∈ Rn, and they are
used to supervise the training of BAFM described in the
following section.

3. BLOCK-AWARE FACTORIZATION MACHINE

Logistic regression (LR) was employed in Jin et al. (2007)
for quality prediction and control, and the optimization
problem is formulated as

min
w,b

−
n∑
i=1

{yi log σ(g(xi)) + (1− yi) log [1− σ(g(xi))]}

(5)

where yi and xi are ith classified quality label and process
variables in yl and X ∈ Rn×m respectively. n is total
number of samples, m is number of process variables, and
g(x) is a linear model for LR, which is defined as

gLR(x) = w>x + b (6)
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Fig. 1. Sigmoid function

where w ∈ Rm and b ∈ R are weights and bias for logistic
regression respectively. σ is the sigmoid function,

σ(a) =
1

1 + e−a
(7)

which is depicted in Fig. 1. It is observed that the output
ranges of sigmoid function are [0, 1].

In Eq. (5), LR can be applied in large-scale industrial pro-
cesses, since the samples can be trained sequentially. The
weight vector w is learned for each process variable in Eq.
(6). However, the sources of variables are not incorporated
into Eq. (6), which might lead to sub-optimal performance.
The same issue occurs in some other classification models
such as factorization machines (Rendle (2010)). In order to
extract valuable information from sources of process vari-
ables, block-aware factorization machine (BAFM) method
is proposed in this section, which is adapted from FFM in
advertising industry (Juan et al. (2016)).

3.1 BAFM Objective

Different from Eq. (6), BAFM assigns a block number to
each process variable, and instead of a weight for each
process variable, the weight is trained for each (block,
process variable) pair. BAFM model can be expressed as

gBAFM(x) =

m∑
i1=1

m∑
i2=i1+1

(wi1,f2 ·wi2,f1)xi1,f1xi2,f2 + b

(8)

where m is number of process variables, wi,f ∈ Rk is the
weight or latent variable for ith variable in field f , b is the
bias term, k is the length of latent variables, and xi,f is the
value of ith variable in x, which belongs to block f . In Eq.
(8), cross-block correlation is incorporated by learning the
interaction weights (wi1,f2 ·wi2,f1) when process variables
are from different blocks (f1 6= f2), and the inner-block
correlation is extracted when xi1,f1 and xi2,f2 are from
the same block.

The objective function of BAFM can be derived by sub-
stituting Eq. (8) into Eq. (5). Additionally, to prevent ill-
conditioned solutions, a regularization term is also consid-
ered. Therefore, the optimization problem of BAFM can
be represented as

min
w,b

E = −
n∑
i=1

{yi log σ(gBAFM(xi))

+(1− yi) log [1− σ(gBAFM(xi))]}+ λ||w||2
(9)

where λ is regularized parameter, and it can also mitigate
overfitting issues. Eq. (9) is also referred to as loss or cost
function of BAFM.

3.2 Derivation of BAFM

Similar to LR, gradient descent can be employed to derive
the solution of BAFM (Menard (2002)), where w and b
are calculated iteratively. Taking derivative with respect
to wi1,f2 , wi2,f1 and b in Eq. (9) leads to

gwi1,f2
=

n∑
j=1

(σj − yj) wi2,f1xi1,f1xi2,f2 + λwi1,f2 (10)

gwi2,f1
=

n∑
j=1

(σj − yj) wi1,f2xi1,f1xi2,f2 + λwi2,f1 (11)

gb =

n∑
j=1

(σj − yj) (12)

where gwi1,f2
≡ ∂E

∂wi1,f2
, gwi2,f1

≡ ∂E
∂wi2,f1

, gb ≡ ∂E
∂b , and

σj stands for σ(gBAFM(xj)). Therefore, wi1,f2 , wi2,f1 and
b can be updated by following the negative gradient to
minimize the loss function in Eq. (9).

w
(t+1)
i1,f2

← w
(t)
i1,f2
− ηwgwi1,f2

(13)

w
(t+1)
i2,f1

← w
(t)
i2,f1
− ηwgwi2,f1

(14)

b(t+1) ← b(t) − ηbgb (15)

where ηw and ηb are learning rates for weights and bias,
respectively.

3.3 Adaptive Gradient Algorithm

It is noted that in Eqs. (10) - (15), the gradients of weights
wi1,f2 and wi2,f1 and bias b need to be calculated over the
whole dataset for a single round, which is quite inefficient
for large volumes. Therefore, stochastic gradient methods
(Bottou (2010)) are preferable instead for voluminous
samples, where only a sample is employed to update wi1,f2 ,
wi2,f1 and b each time in Eqs. (10) - (12) as follows.

gwi1,f2
= (σj − yj) wi2,f1xi1,f1xi2,f2 + λwi1,f2 (16)

gwi2,f1
= (σj − yj) wi1,f2xi1,f1xi2,f2 + λwi2,f1 (17)

gb = σj − yj (18)

Additionally, selection of learning rates is important: if ηw
and ηb are too small, it will take longer time to converge; if
their values are too large, the algorithms tend to diverge.
We adopt the adaptive gradient method AdaGrad (Duchi
et al. (2011)) in BAFM to mitigate the sensitivity of the
algorithm to various learning rates. In AdaGrad, the values
of learning rates decrease with the number of considered
samples, where the squared of gradients are accumulated
as follows.

G(t+1)
wi1,f2

← G(t)
wi1,f2

+ g(t)
wi1,f2

· g(t)
wi1,f2

(19)

G(t+1)
wi2,f1

← G(t)
wi2,f1

+ g(t)
wi2,f1

· g(t)
wi2,f1

(20)

B(t+1) ← B(t) + g
(t)
b · g

(t)
b (21)

Then the weights and bias are updated by

w
(t+1)
i1,f2

← w
(t)
i1,f2
− ηw0√

G
(t+1)
i1,f2

gwi1,f2
(22)

w
(t+1)
i2,f1

← w
(t)
i2,f1
− ηw0√

G
(t+1)
i2,f1

gwi2,f1
(23)
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Algorithm 1 Block-Aware Factorization Machine

1. Scale X and Y to zero mean and unit variance.
2. Transform Y to quality labels yl with PCA-based

quality monitoring.
2. Choose the parameters: initial learning rates ηw0 and
ηb0, regularized parameter λ, dimension of latent
variables k, and iterations I.

3. Initialize
· G(0) ∈ Rm×f with each element equal to 1;
· B(0) = 1;
· w(0) ∈ Rm×f×k, where each element follows the

uniform distribution U(0, 1√
k

);

· b(0) follows uniform distribution U(0, 1).
where m is total number of process variables, and f
is total number of blocks.

4. For each pair of variables (xi1,f1 , xi2,f2) in sample x
and its corresponding quality label y,
· Calculate gradients gwi1,f2

, gwi2,f1
and gb with

Eqs. (16) - (18);

· Accumulate sum of squared gradients G
(t+1)
wi1,f2

,

G
(t+1)
wi2,f1

and B(t+1) with Eqs. (19) - (21);
· Update weights and bias with Eqs. (22) - (24).

Repeat the above steps for each sample in collected
process data X and classified quality labels yl.

5. Repeat Step 4 for I iterations or until both w and b
converge.

b(t+1) ← b(t) − ηb0√
B(t+1)

gb (24)

where ηw0 and ηb0 are initial learning rates. Since G
(t+1)
wi1,f2

,

G
(t+1)
wi2,f1

and B(t+1) are monotonically increasing, the ac-
tual learning rates ηw0√

G
(t+1)

i1,f2

, ηw0√
G

(t+1)

i2,f1

and ηb0√
B(t+1)

are

decreasing with the number of processed samples. Thus, in
the later training stage, the learning rates are close to zero,
which is beneficial for the convergence of the algorithm.

3.4 BAFM Algorithm

BAFM algorithm is summarized in Algorithm 1. The
following are several notes regarding to the parameter
initialization in Algorithm 1.

1. The initial values of elements in G(0) and B(0) are
set to 1 to improve the robustness of BAFM when∑
t g

(t)
wi,f · g

(t)
wi,f or

∑
t g

(t)
b · g

(t)
b is close to zero.

2. The parameters ηw0, ηb0 and λ is selected through
cross validation (Zhu et al. (2017)), and the dimension
of latent variables k is determined by the data volume.

As shown in Algorithm 1, BAFM can capture both inner-
block and cross-block correlations: when xi1,f1 and xi2,f2
come from the same block, where f1 = f2, then Eqs. (22) -
(23) update latent variables belonging to the same block.
When xi1,f1 and xi2,f2 are from different blocks (f1 6= f2),
wi1,f2 and wi2,f1 are updated respectively. Additionally,
since the sample (x, y) is trained sequentially, BAFM is
capable to process large volumes of datasets.

3.5 Monitoring Scheme

In Algorithm 1, latent variables w and b are learned for
BAFM. Given a new sample x, the predicted quality data

Table 2. Blocks of process variables

Blocks XMEAS XMV
1 1, 2, 3, 4 1, 2, 3, 4
2 5, 6, 7, 8, 9, 21 10, 11
3 10, 11, 12, 13, 14, 20, 22 5, 6, 7
4 15, 16, 17, 18, 19 8, 9

is obtained as follows.

ŷ ≡ σ(gBAFM(x))

= σ

[
m∑
i1=1

m∑
i2=i1+1

(wi1,f2 ·wi2,f1)xi1,f1xi2,f2 + b

]
(25)

where ŷ ∈ [0, 1] as shown in Fig. 1.

For quality-relevant monitoring scheme based on BAFM,
a threshold 0.5 is set: when ŷ is larger than or equal to 0.5,
then the sample x is classified as a quality-relevant fault;
otherwise, the process is regarded as normal.

4. TENNESSEE EASTMAN PROCESS

Tennessee Eastman process (TEP) is a benchmark pro-
cess in process systems engineering to demonstrate the
effectiveness of control schemes and multivariate statis-
tical analysis algorithms (Downs and Vogel (1993)). TEP
produces G and H as main products, and F as byproduct,
from reactants A, C, D and E. There are five main com-
ponents in the process (i.e., reactor, condenser, stripper,
compressor and separator), and two sets of variables are
collected: manipulated variables (XMV(1-12)) and process
measurements (XMEAS(1-41)). The detailed description
of these variables can be found in Downs and Vogel (1993).

In this case study, XMEAS(1-22) and XMV(1-11) are
selected as process variables, and XMEAS(35-36) are for
quality variables. Prior knowledge is used to partition the
process variables into sub-blocks in this article, which is
summarized in Table 2. It is noted that variables in Block
1 are from input feed streams, Block 2 is for reactor and
condenser, Block 3 is for separator and compressor, and
Block 4 is for Stripper.

Downs and Vogel (1993) simulates one normal scenario
(IDV(0)) and 15 known disturbances (IDV(1-15)), and
each scenario has training and test datasets. In order to re-
alize full potentials of BAFM, it is better to have balanced
normal and abnormal samples in the training dataset.
Therefore, the following training strategy is proposed.

i. Pre-process TEP data to remove samples without
corresponding quality values due to inconsistent sam-
pling rates (Zhu et al. (2016)).

ii. Perform PCA on normal quality data from IDV(0)
to construct quality monitoring framework, including
PCA model structure and control limits.

iii. Employ the monitoring scheme to classify quality
data from all training samples in IDV(0-15).

iv. Conduct BAFM on the classified quality labels and
their corresponding process variables from IDV(0-15).

In this section, multi-block PLS (MBPLS) (Choi and Lee
(2005)), LR and BAFM based monitoring schemes are
performed on the selected process and quality variables to
compare their monitoring performance. Their parameters
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Fig. 2. Quality variations and quality monitoring results
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Fig. 4. Monitoring results with LR in IDV(1)
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Fig. 5. Monitoring results with BAFM in IDV(1)

are selected with cross-validation: In MBPLS, the number
of principal components l = 2; In LR, η = 0.39 and
λ = 0.0001; In BAFM, ηw0 = 0.44, ηb0 = 0.07, λ = 0.0001,
f = 4 (total number of blocks) and k = 4. In LR and
BAFM, the number of iteration is set to 100. IDV(1) and
IDV(14) are utilized to illustrate their performance.

IDV(1) - a step change in A/C feed ratio: In IDV(1), a
step change occurs in A/C feed ratio while B composition
is constant. The variations of quality variables and quality

Table 3. FDR and FAR of MBPLS, LR and
BAFM (%)

IDV(1) IDV(14)
FDR FAR FDR FAR

MBPLS 100.00 79.64 71.43 69.98
LR 64.86 20.44 14.29 6.98

BAFM 80.81 4.18 0.00 0.21

monitoring results are presented in Fig. 2, which indicates
that the disturbance in IDV(1) affects quality variables
transiently. Figs. 3 - 5 show the monitoring performance
of MBPLS, LR and BAFM, respectively, and Table 3
summarizes their fault detection rates (FDR) and false
alarm rates (FAR). In Figs. 3 and 4, both MBPLS and
LR fail to present the transient disturbance and keep
raising the false alarms after Sample 200, which can also be
observed from their high false alarm rates in Table 3. In
contrast, BAFM successfully captures the trend: alarms
are raised only for Samples 90 - 200, while others are
classified as normal. In BAFM, the blocks of each variable
provides extra information about the process, and thus it
achieves the best performance with high fault detection
rates and the lowest false alarm rates.

IDV(14) - sticking in reactor cooling water valve: The
reactor cooling water valve is sticking in IDV(14), and as
shown in Fig. 6, the disturbance does not affect quality
variables. However, in Fig. 7, the T 2 monitoring index of
MBPLS exceeds its control limit incorrectly with a high
false alarm rate 69.98%. In contrast, both LR and BAFM
have lower false alarm rates with BAFM performs the best
as shown in Figs. 8 - 9 and Table 3. It is noted that in this
scenario the fault detection rates of LR and BAFM are
very low, which is expected due to the quality-irrelevant
nature of the disturbance.

5. CONCLUSIONS

In this article, a block-aware factorization machine based
monitoring scheme is proposed for supervised learning and
quality-relevant monitoring. In BAFM, continuous quality
variables are classified into two categories (normal and ab-
normal ones) with PCA-based quality monitoring method.
Process variables are attached with a block number to
indicate their sources. Then interactions between classi-
fied quality labels and process variables are extracted,
including both inner-block and cross-block relations. The
case study with Tennessee Eastman process demonstrates
the superiority of BAFM-based monitoring method over
multi-block partial least squares and logistic regression
algorithms.
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