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Abstract: Fuel consumption of heavy-duty vehicles such as tractors, bulldozers etc. is
comparably high due to their scope of operation. The operation settings are usually fixed and
not tuned to the environmental factors, such as ground conditions. Yet exactly the ground-to-
propelling-unit properties are decisive in energy efficiency. Optimizing the latter would require
a means of identifying those properties. This is the central matter of the current study. More
specifically, the goal is to estimate the ground conditions from the available measurements, such
as drive train signals, and to establish a map of those. The ground condition parameters are
estimated using an adaptive unscented Kalman filter. A case study is provided with the actual
and estimated ground condition maps. Such a mapping can be seen as a crucial milestone in
optimal operation control of heavy-duty vehicles.

Keywords: Traction control, Identification algorithms, Data storage, Kalman filters, Dynamic
modelling, Vehicle Dynamics

1. INTRODUCTION

Increasing fuel costs due to progressing depletion of fossil
resources put ever stronger requirements on the productiv-
ity, energy efficiency and related characteristics of heavy-
duty vehicles. Optimization of the vehicle operation may
be realized by various factors, such as implement position-
ing, tire pressure adjustment, traction and engine control.
But one thing is common: determination of an optimal set
point has to account for the properties of the ground-to-
propelling-unit properties.

Primarily, the ground conditions influence the traction
dynamics. These can be characterized by two factors –
the energy efficiency and the adhesion coefficient, which
equals the propulsion force normalized by the vehicle’s
weight. Both can be considered as functions of the wheel
slip ratio (see Fig. 1 for some adhesion-slip-curve examples
on different soils). A detailed description of traction-
slip characteristics may be found in Söhne (1964). High
operation performance requires balancing the propulsion
and the energy efficiency. This is complicated precisely due
to the lack of online knowledge of the adhesion-slip curve.

So far, the methods of operation optimization, which ac-
count for the adhesion-slip relation, are mostly offline. The
techniques of the so-called traction prediction (Schreiber
et al., 2008; Battiato and Diserens, 2017) rely on certain
empirical parameters of the propelling unit, chassis, type
of soil etc. The user can thereby calculate an operation
set point for a particular situation and adjust the settings
accordingly, in a way similar to a look-up table. An imme-
diate disadvantage of these methods is their offline nature,
i. e., they do not account for changing ground conditions.
On the other hand, the online methods do not use iden-
tification of the adhesion-slip characteristic. In particular,
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Fig. 1. Typical µ(s)-characteristics on different soils.

Reichensdörfer et al. (2018) proposed a nonlinear control
design based on input-output linearizion that takes oscil-
latory behavior of the powertrain into account. Ishikawa
et al. (2012) suggested usage of GPS antennae to measure
speed, calculate the slip ratio and adjust the implement
position when the slip ratio exceeds a given threshold. It
should be noted that the problems of traction control are
also relevant in railway vehicles (Novak and Vašak, 2018).
Neither of the above use identification of ground properties
to adapt the control parameters.

However, some empirical indices, such as the one based
on the Brixius model (Brixius, 1987), started to find ap-
plications. For instance, Kim and Lee (2018) used it in
a slip controller. Alexander et al. (2018) proposed using
a data buffer coupled with an parameter optimization
algorithm for traction parameter identification. Pentos
and Pieczarka (2017) used an artificial neural network
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to predict the influence of the soil texture, soil moisture
and compaction etc. on the propulsion force and traction
efficiency. Rajamani et al. (2012) developed observers to
estimate friction coefficients of individual wheels during
operation from various measurements, e. g., engine torque,
brake torque and GPS measurements. Similarly Wang
et al. (2004) developed a real-time tire-road friction coef-
ficient measurement system which uses a differential GPS
and a nonlinear longitudinal tire force model. Turnip and
Fakhrurroja (2013) used an identification approach based
on the extended Kalman filter (EKF), whereas Hamann
et al. (2014) suggested to use a superior variant of the EKF
– the unscented Kalman filter (UKF). The UKF (Wan and
Van Der Merwe, 2000; Van Der Merwe et al., 2004) will
also be used in this work.
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Fig. 2. General flowchart of the ground condition identifi-
cation and mapping.

It can be observed from the literature, that the problem
of ground condition identification is an actively researched
topic and there are many open questions. The goal of
this work is to develop means of online identification and
mapping of those condition parameters. It continues the
methodology developed in Osinenko et al. (2014, 2016);
Osinenko and Streif (2017). An adaptive UKF is used for
the identification of the ground-to-propelling-unit proper-
ties, namely, the adhesion and the rolling resistance coef-
ficients. The slip-adhesion characteristic, or simply µ(s)-
characteristic, is estimated from a single operating point.
The way this is done is to use the model suggested in
Osinenko and Streif (2017), and to reduce the number of
its free parameters to a single one (see details in Sections
3 and 4). The traction parameters, as well as the said
parameter characterizing the slip-adhesion relation, are
mapped into a look-up table using GPS data recorded dur-
ing operation. Data are extrapolated/interpolated using a
distance–based weighing algorithm. Fig. 2 shows a general
framework. To elaborate it, first the modeling matters are
discussed in the next Section 2.

2. TRACTION DYNAMICS

Consider the wheel force diagram of Fig. 3. There, the
vertical, or normal, force Fz is the sum of axle load Fz,axle

and wheel weight plus any vertical acceleration, see (3).
The motor causes a driving torque Md which exerts a
horizontal force Fh at the wheel. The dynamical rolling
radius rd is defined to describe the deformed wheel’s

Fig. 3. Diagram depicts forces and torque at the wheel.

distance between its center and bottom. Due to the tire
and soil deformation the point of application of the soil
reaction forces is shifted by ∆lz. By convention the term
∆lzFz is assumed to be equal rdFt, where Ft = ρtFz,
i.e. the tire-deformation rolling resistance. The revolution
speed of the wheel ω̇w can now be calculated using a
torque balance approach, see (2). The reaction of the
vehicle body Fx,axle is exerted in the opposite direction
of Fh. The rolling resistance is divided in the internal
rolling resistance Ft with its coefficient ρt caused by the
deformation of the tire and the external rolling resistance
Fs with its coefficient ρs caused by the deformation of the
soil. The force and and torque balance yields:

mwv̇w = Fh − Fx,axle − ρsFz, (1)

Jwω̇w = Md − rdFh − rdρtFz, (2)

mwaz = Fz −mwg − Fz,axle, (3)

where mw is the wheel mass, vw is the ground speed, Jw is
the wheels inertia, az is the vertical acceleration and g is
the gravitation. The total rolling resistance is dominated
by the soil-deformation resistance Fs and significantly
influences the energy efficiency.

The adhesion coefficient µ characterizes the relation be-
tween the horizontal and vertical force as follows:

Fh = µFz. (4)

The part of the horizontal force that actually drives the
wheel forward is called net traction ratio κ

κ = µ− ρs. (5)

The following definition of slip is used:

s = 1− |v|
rd|ωw| , if |v| ≤ rd|ωw|,

s = −1 + rd|ωw|
|v| , if |v| > rd|ωw|.

(6)

It ranges from -1 (locked wheel) to 1 (spinning on the
spot). The energy efficiency η is defined by the formula:

η =
κ

κ+ ρ
(1− s). (7)

Note that κ, µ and η are functions of slip s.

The soil deformation rolling resistance is summarized into
Fs =

∑4
i=1 Fsi = ρsmg. The vehicle dynamics in driving

direction now are

mv̇ =

4∑
i=1

Fhi − Fdx − ρsmg, (8)
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where m is the vehicle mass, Fdx is the horizontal part of
the drawbar pull, i.e. the implement resistance and i is the
wheel index.

The tire deformation resistance ρt mainly depends on tire
type and inflation pressure and can therefore be estimated
prior to operation. A value of ρt = 0.015, as suggested
by Schreiber and Kutzbach (2007), is used for simulation
studies in this work. The soil deformation resistance ρs
and µ will be estimated using a state observer, i.e. Kalman
filter, see Section 3. The dynamical rolling radius

rd = r0 −∆r, (9)

where r0 is the unloaded wheel radius and ∆r is the
tire deformation, can be approximated from vertical forces
using the empirical formula suggested by (Guskov et al.,
1988, p.40):

∆r =
Fz

2π · 105 · pt
√

bt
2 r0

, (10)

with pt the tire air pressure and bt the tire section width.

The parameters Jw, mw, m and r0 are assumed known.
For details on estimation of Fz and Md, please refer to
Osinenko et al. (2015b). The state model is required by
the state observer/parameter estimator introduced in the
following Section 3.

3. GROUND CONDITION IDENTIFICATION

This section describes first the method of identifying
the adhesion and rolling resistance coefficients, and then
proceeds to the µ(s)-characteristic.

3.1 Online traction parameter identification

The identification algorithm used in this work bases on
the adaptive UKF suggested in Zhe Jiang et al. (2007).
The details thereof are given for the sake of complete-
ness whereas the core of the method lies with the iden-
tification of the µ(s)-characteristic and mapping of the
ground condition parameters. As mentioned above, the
two parameters that impact the performance of the vehicle
the most are adhesion coefficient µ and soil-deformation
rolling resistance ρs. For their identification, an adaptive
UKF with a fuzzy-logic supervisor (AUKF-FS) is used.
Its purpose is to estimate the state xk from the measured
output yk. The generic model description behind the UKF
reads:

xk = f (xk−1,uk−1) + qk−1,

yk = h (xk) + rk.
(11)

Here, xk ∈ Rn is the state vector, uk ∈ Rp is the input
vector, yk ∈ Rm is the output vector, f (xk−1,uk−1) is the
non–linear state model, h(xk) is the measurement model,
qk ∼ N (0,Q) , rk ∼ N (0,R) are the state and mea-
surement random noises with zero mean and covariance
Q and R respectively, N denotes the normal probability
distribution, k is the time step index, n,m, p ∈ N are
dimensions. The algorithm can be parted into two major
steps, prediction and update. For the prediction part, first
so-called sigma-points have to be calculated. These points
are able to accurately capture the posterior mean and
covariance after propagation through the system (11) up
to the 3rd order (Taylor series expansion, please refer to

Wan and Van Der Merwe (2000) for details). In the second
part of the prediction the UKF computes the estimate
probability distribution (PD) using the sigma-points as
follows:

PD
(
x̂k|k−1

∣∣y1...yk−1
)

:=

N

(
x̂k|k−1

∣∣∣∣ 2n∑
i=0

W(i)
m χ

(i)
k|k−1,Pk|k−1

)
.

(12)

In (12), Pk|k−1 is the a priori estimate covariance, and

χ
(i)
k|k−1 =f

(
χ
(i)
k−1|k−1,uk−1

)
are the sigma–points with the

weights W(i)
c ,W(i)

m , i = 0, ..., 2n. The predicted mean is
computed from the sigma–points by the formula:

x̂k|k−1 =

2n∑
i=0

W(i)
m χ

(i)
k|k−1.

The a priori estimate covariance is calculated as follows:

Pk|k−1 =

2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)
·(

χ
(i)
k|k−1 − x̂k|k−1

)>
+ Q,

(13)

where W(i)
c , i = 0, ..., 2n are weight factors.

The update step involves recalculating the sigma–points
from N

(
x̂k|k−1|Pk|k−1

)
. The mean of the predicted out-

put

ŷk =

2n∑
i=0

W(i)
m h

(
χ
(i)
k|k−1

)
and covariance

Sk =

2n∑
i=0

W(i)
c

(
h
(
χ
(i)
k|k−1

)
− ŷk

)
·(

h
(
χ
(i)
k|k−1

)
− ŷk

)>
+ R,

as well as the state and output covariance,

Ck =

2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂

(i)
k|k−1

)
·
(
h
(
χ
(i)
k|k−1

)
− ŷk

)>
are then used to calculate the Kalman gain Kk = CkS

−1
k .

The last step is to update estimate mean with

x̂k|k = x̂k|k−1 + Kk(yk − ŷk) (14)

and the a posteriori covariance now becomes

Pk|k = Pk|k−1 −KkSkK
>
k . (15)

The choice of the state noise covariance Q is crucial.
An inappropriate choice may result in divergence issues
(Fitzgerald, 1971). It was suggested to introduce an adap-
tation matrix Ak so that the state noise covariance be-
comes effectively AkQ (for an extensive description, please
refer to Osinenko et al. (2014)). The adaptation matrix is
computed by matching the covariance of the true yk and
the estimated output ŷk in the sense of

arg min
Ak

(
Pk|k−1 −KkS̄kK

>
k

)
, (16)
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where the covariance of yk is computed from a sample of
some size M :

S̄k =
1

M − 1

k∑
i=k−M+1

(yi − ŷi)(yi − ŷi)>. (17)

The adaptation of the state noise covariance Q helps avoid
estimate divergence, but it may result in a too noisy
estimate. This is due to the fact that the noise covariance
of the KF defines the tracking strength: the higher Q
is, the more noisy the estimate becomes, but large Q is
needed to avoid divergence. The smaller Q is, the more
smooth the estimate is, but there is a risk of divergence.
To balance these effects, it was suggested to introduce
a fuzzy–logic system (FLS) to additionally supervise the
UKF (Abdelnour et al., 1993). If the vehicle undergoes a
phase of intense dynamics, the FLS adaptation factor is set
high. If the dynamics are steady, the FLS adaptation factor
is small. The adaption of Q aids the user by taking care of
UKF tuning in an automatic manner. The resulting filter
is called AUKF-FS. Such a fuzzy classification of dynamics
was used in electrified mobile machinery in Osinenko et al.
(2015a) and Osinenko and Streif (2017).

According to the vehicle dynamics model of Section 2, the
state vector for the AUKF-FS consists of the wheel speeds,
vehicle ground speed v, adhesion coefficients for each wheel
and the soil deformation rolling resistance coefficient:

x = ( ωw1, . . . ωw4, v, µ1, . . . µ4, ρs )
>
.

The wheel speeds and vehicle ground speed form the
output vector:

y = ( ωw1, . . . , ωw4, v )
>
.

For the mapping of the identified traction parameters it
is assumed that the vehicle has access to GPS, this also
allows, in particular, for speed measurement. Different
means are possible for that sake, e. g., revolution counter
on non-drive wheels, a radar etc.

The input vector includes the drive torques, front vertical
force Fzf and longitudinal component of the drawbar pull:

u = (Md1, . . .Md4, Fzf , Fdx )
>
.

Drive torque can be determined in hydraulic and electrical
drive trains, while for mechanical drive trains the measure-
ment/estimation is more elaborate. Front wheel vertical
force can be measured in the suspension and the rear
wheel vertical force can then be calculated using vehicle
parameters. Draft force measurement Fdx can be obtained
through magnetoelastic sensors or strain gauges installed
in load pins.

The tire deformation rolling resistance coefficients ρt are
assumed as fixed parameters. The dynamical rolling radii
rd1, . . . rd4 are computed using (9) and (10). Propagation
of the sigma points through the model formed by (2)
and (8) is performed using the fourth–order Runge–Kutta
method. The dynamics of unknown parameters and rear
vertical force µ1, . . . µ4, ρs, Fzr are unknown. It is assumed
that they do not change during one integration step so
that their dynamics are neglected. More details are given

in Osinenko et al. (2015b). It can be easily checked that the
overall system is observable. Two variables, ωw and v, are
directly measured. The other two states can be uniquely
calculated at each time step using equations (2) and (8).
The next section focuses specifically on the identification
of the µ(s)-characteristic.

3.2 Adhesion characteristic identification

With the state observer from the previous section the
parameters µ and ρs are estimated, which provides relevant
information of ground conditions. As was stated above, the
adhesion coefficient is a function of slip (Fig. 1). The shape
of the respective curves changes depending on different soil
surfaces. The Pacejka’s empirical models (Pacejka, 2006)
are usually used for the µ(s)-curve. Here, it is modified to
give

µ(s) = a− pa expα1s−a(1− p) expα2s, (18)

where a, p, α1, α2 are the µ-model parameters (refer to (Os-
inenko and Streif, 2017, Fig. 8) for example of parameter
values). For alternative models, refer to Pacejka (2006);
Schreiber and Kutzbach (2007).

UKF
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Measure-
ments
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Fig. 4. Flowchart of identification and mapping.

Fig. 4 illustrates this works identification and mapping
algorithm schematically. In the first step of the µ(s)-
characteristic identification, a set of typical µ-curves,
whose parameters a, p, α1, α2 are known, is generated. It
was observed that for similar kinds of surface, e. g., road
or soil, the three parameters p, α1, α2 may be fix, while
only the parameter a can be varied to cover a spectrum of
ground conditions. This parameter is used in the second
step to generate a set of shape-similar µ(s)-curves with
only one changing parameter a, see Fig. 5.

As mentioned above, the AUKF-FS identifies µ, ρs and
s. With the estimated pair of µ and s and the known
parameters p, α1, α2 the parameter a can be calculated.

Now, as the identification measures are done, proceed to
the mapping of ground condition parameters.

4. MAPPING

The identified parameters are determined at certain dis-
crete instances during the vehicle motion on the working
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Fig. 5. Three similar ground types are displayed. Parame-
ters for (18) are fitted to ”stubble”. The colored curves
are generated by changing one parameter a.

area, e. g., a field. Since soil properties are usually similar
in a vicinity, interpolation is suggested to generate a map
from those discrete estimates. The parameters psoil =
a, p, α1, α2, ρs are known and connected to their respective
coordinates, which can be measured through, e. g., a GPS.
The map is initialized as an empty matrix. The fetched
GPS coordinates are first transformed in such a way that
the origin of the measurement coordinate system aligns
with the first entry in the map-matrix. Depending on
the resolution of measurements and of the map, there
are cases where multiple measurements are available for
the same map entry. In this case, saving the mean value
is a reasonable choice. Since heavy-duty vehicles usually
operate at comparably slow speeds, saving measurements
at a rate of 10 Hz is used in this study. The map-matrix
M has the dimensions w, l, h, where w is width, l is length
and h is the number of parameters in psoil

Mi,j = psoil i,j , (19)

where i and j denote the matrix indices.

The next step involves the interpolation/extrapolation of
the data into the close vicinity of each non-empty map
entry. First, three search thresholds εlow > εmid > εhigh
with weights wlow < wmid < whigh are introduced. The
distance d between two entries in the map-matrix Mi,j

and Me,f is defined as

d = |e− i|+ |f − j|
which is also known as the Manhatten distance. Starting
with Mi,j = M1,1, the mean of all entries with a distance
εlow ≥ d > εmid is calculated and weighted with wlow.
This is repeated for wmid and whigh. The sum of all
weighted mean values is the new extrapolated value for
the particular entry Mi,j . This procedure is repeated for
the whole map and every parameter in psoil.

5. RESULTS AND DISCUSSION

The model equations and algorithms introduced in the
previous sections were implemented in a Matlab/Simulink
environment. Measurement noise is simulated as white
noise. For the case study, a model of an electrified tractor
was used (please refer to Osinenko et al. (2014) for com-
prehensive details). It has 80 kW total drive-train power,
6300 kg unloaded mass including four wheels with 160 kg
each. The ground is chosen as a flat plane with three
different soil types. The vehicle accelerates to a desired

Fig. 6. The brown lines represent the true traction char-
acteristics in the simulation. The blue lines show the
characteristics identified by the AUKF-FS.

speed and then cruises at it. The search thresholds were
set as εlow = 10, εmid = 5, εhigh = 1.5 meter and the
weights were chosen as wlow = 0.1, wmid = 0.5, whigh = 4.

The adhesion coefficient is calculated using (4) and com-
pared to the UKF estimates, see Fig. 6. A visual evaluation
shows a good fit. Whenever the soil’s traction properties
change, the AUKF-FS adapts the estimated values to track
the true physical one. The average absolute estimation
error is within 5%. For every ground condition an average
representative µ(s)-characteristic was calculated from the
UKF-estimates. These representatives were compared to
the true µ(s)-characteristic using R-squared. This gave R-
squared values of R2 = 0.857, R2 = 0.996 and R2 = 0.983
for soil 1, 2 and 3 respectively. Fig. 7 shows the map
generated from the algorithm suggested in this work. The
background and the identified tiles align well, the AUKF-
FS successfully detects changes in soil properties (see the
transition between different soils) and identifies parame-
ters reasonably well.
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Fig. 7. In a simulation a vehicle (black line) drove over
a field (transparent background) and simultaneously
identified traction parameters (opaque tiles).

6. CONCLUSION

This work demonstrated a method of identification of
ground condition parameters combined with their map-
ping. These parameters are crucial in determining opti-
mal set-point for operation of heavy-duty vehicles. A case
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study with a single-wheel drive moving on a field with
three different soil types showed promising capabilities of
the mapping algorithm. The latter may be used, e. g., in
intelligent traction control algorithms or condition moni-
toring systems.
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