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Abstract: Solid-state LIDAR technology has recently emerged, allowing for smaller and more
affordable devices. In the present work, we investigate the possibility of using a vehicle mounted
solid-state LIDAR to estimate the vehicle pitch and heave dynamics. We present and compare
two approaches: a model-based estimation and a data driven algorithm. The algorithms are
tested on an instrumented vehicle. The experimental results show that the data-driven approach
outperforms the model-based estimation in estimating pitch caused both by accelerations and
braking and by road disturbances.
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1. INTRODUCTION

Vehicle state estimation plays a key role in Vehicle Dynam-
ics Control. Both industry and academia have dedicated
considerable effort to vehicle state estimation with contri-
butions on lateral dynamics (i.e. side slip), longitudinal
(i.e. wheel slip) and vertical dynamics (i.e. pitch and
heave). Examples of these systems can be found in Boniolo
et al. (2009); Selmanaj et al. (2017); Busnelli et al. (2017);
Bae et al. (2001); Grip et al. (2008).

Most estimation algorithms are designed to work with
stock sensors: IMU’s (inertial measurement units), wheel
speed sensors. An example can be found in Oh and
Choi (2013) where the vehicle roll and pitch angles are
estimated based on measurements from a low-price six-
dimensional IMU. The method relies on the combination
of the velocity kinematics and the pseudo-integration of
the angle kinematics and includes a cornering-stiffness
adaptation scheme. In Tseng et al. (2007) a similar (IMU)
measurement set-up is used. However, the authors propose
two kinematics-based observer which are proven to be
stable during cornering (i.e., vehicle yaw rate not zero).
With an appropriate modeling, IMU data can be used to
estimate the vehicle overall attitude as shown in Xiong
et al. (2019), which includes pitch, roll, sideslip angles and
vehicle velocity.

Alternative approaches integrate IMU and GPS measure-
ments to improve estimate accuracy, example can be found
in Wu et al. (2013); Bae et al. (2001); Ryu and Gerdes
(2004).

Despite its maturity, the vehicle state estimation research
field is still active and rich of challenges, as reported

in Guo et al. (2018). Among the several, one of the
most interesting is: ”the range of vehicle dynamic state
estimation must be extended towards automated and
connected vehicles”. Indeed, the recent introduction of
advanced driver assistance systems (ADAS) leads to the
addition of environmental sensors to the suite of commonly
available sensors. The most common ones are cameras,
radars and more recently LIDARs. Also these sensors can
be integrated in the estimate. For example, Coulombeau
and Laurgeau (2002); Labayrade and Aubert (2003); Kuyt
and Corno (2018) consider the possibility of using cameras
for vehicle state estimation.

LIDARs are the preferred sensors for autonomous driving
because of their accuracy. They are often employed in
navigation and localization. It is expected that LIDARs
will become more and more common on vehicles as their
cost drops. While they have been introduced for advanced
autonomous localization and navigation purposes, their
accuracy can be exploited also to improve more classical
functionalities as vehicle state estimation.

In this paper, we design two vehicle pitch angle estimation
algorithms. Both are based on LIDAR measurements; the
first algorithm is a model based approach that assumes
an ideal beam focused distance measurement. The second
is black-box. A detailed analysis proves that the black-
box approach yields better results as the beam focuse
measurement hypothesis turns out not to be accurate for
solid state LIDARs.

While not essential for safety systems, pitch angle esti-
mation is useful for many vehicle dynamics control algo-
rithms, for example suspension control. Active, or semi-
active suspensions, along with an accurate knowledge of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 14101



the pitch, can be used to improve ride comfort. Similarly,
an accurate estimation of the pitch angle could be useful
to better adapt vehicle dynamics control to a varying
static load distribution. One should also consider that
estimating pitch angle by integrating the measurements
from commercial grade IMU is not trivial because of the
risk of drift.

The paper is organized as follows. In Section 2, the vehicle
and LIDAR model is described. Section 3 introduces a
white-box methods while Section 4 presents the black-
box one. Section 5 shows the experimental results and the
comparison of the methods. The paper ends with some
concluding remarks.

2. PROBLEM SET UP AND DISCUSSION

This section clarifies the problem and the reference vehicle
setup.

The solid state LIDAR used in this work is a LeddarVu8, a
2D solid state LiDAR by Leddartech. The LeddarVu8 uses
a single fixed beam light source that is diffused over a field
of view of 100 degrees. The total field of view is divided
in detection segments: an array of photo-detectors that
process the light reflected by objects in the field of view.
In this research the device has been mounted vertically
and the FoV (field of view) has been set to 36◦ divided
in 6 segments. It is important to note that based on the
workings of this technology, it is not possible to precisely
pinpoint the direction of the detected object. It may lay
every where in the sector. Despite this fact, we model
each LIDAR segment as a single beam at the center of
each sector. Figure 1 schematically represents the complete
vehicle.

Fig. 1. LIDAR and vehicle model

The vehicle moves along the road at speed Vx, with pitch
angle θ. The LIDAR is rigidly attached to the vehicle
with a relative position with respect to the vehicle CoG
represented by hL and lL. Each continuous line from the
device to the road represents a LIDAR modeled segment.
The i-th segment is measuring the distance di(t) which
varies in time, at the constant angle αi. The latter is
the angle between the modeled segment and the vehicle
longitudinal axis. Quantities si and zr(si) are respectively
the x and z coordinate of the road points measured by the
i-th segment. The figure shows these quantities for segment
6. Quantities xCoG and zCoG are respectively the x and z
coordinate of the vehicle CoG.

Given the above definitions, the absolute LIDAR position
is determined by:{

xL = xCoG + lL cos(θ)− hL sin(θ)

zL = zCoG + lL sin(θ) + hL cos(θ)
(1)

and the x and z coordinates of the measured points are:{
si = xL + di cos(αi − θ)
zr(si) = zL − di sin(αi − θ).

(2)

By substituting (1) into (2), one obtains:{
si =xCoG+lL cos(θ)−hL sin(θ)+di cos(αi−θ)
zr(si)=zCoG+lLsin(θ)+hLcos(θ)−di sin(αi−θ).

From the last equation, an explicit expression for the
measured distance di can be obtained:

di =
zCoG + lL sin(θ) + hL cos(θ)− zr(si)

sin(αi − θ)
. (3)

The parameters hL, lL and αi are constant and depend on
the LIDAR placement.

Equation (3) points out that measured distances depend
on three components: road surface, vehicle heave and
vehicle pitch. In order to estimate vehicle quantities the
following assumption is made. The assumption of driving
on a flat surface yields:

zr(si(t)) = 0 ∀si(t), (4)

and (3) simplifies to:

di =
zCoG + lL sin(θ) + hL cos(θ)

sin(αi − θ)
. (5)

By defining the ratio ri,j as:

ri,j =
di
dj

=
sin(αj − θ)
sin(αi − θ)

(6)

with i 6= j, one obtains an index that is not influenced by
neither heave nor the LIDAR mounting position. In this
case, there is a set of n = 6 elements (segments) which are
combined into couples (k = 2), hence resulting in a total
of nratios = n!

k!·(n−k)! = 15 ratios. Each ratio is denoted as:

ri,j where i = 1, 2, ..., 6 , j = 1, 2, ..., 6 and i < j.
(7)

Since αi are constant and known, (6) represents a relation
between ratios and pitch angle based on which the Pitch-
Ratio Map of Figure 2 is obtained.
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Fig. 2. Theoretical Pitch-Ratio Map as derived by the
model.
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3. WHITE-BOX RATIOS (WBR) ALGORITHM

As already pointed out, the distance ratios are indepen-
dent from heave motions and, being αi constant and
known, are only influenced by pitch ones. Based on these
observations, the following procedure is adopted in order
to estimate the vehicle pitch and heave:

(1) Each ratio ri,j is used to obtain the estimate θ̂i,j
through the Pitch-Ratio Map of Figure 2.

(2) The total estimate θ̂ is obtained as the mean of all

θ̂i,j :

θ̂ =

n−1∑
i=1

n∑
j=i+1

θ̂i,j

nratios
=

5∑
i=1

6∑
j=i+1

θ̂i,j

15
(8)

where n is the number of segments and nratios is the
total number of ratios.

(3) Recalling (5), the estimated pitch θ̂ is used to produce
heave estimates, one for each segment, as:

ẑCoGi = di sin(αi − θ̂)− lL sin(θ̂)− hL cos(θ̂) (9)

(4) The total estimate ẑCoG is obtained as the mean of
all ̂zCoG i:

ẑCoG =

n∑
i=1

ẑCoGi

n
=

6∑
i=1

ẑCoGi

6
(10)

4. BLACK-BOX RATIOS (BBR) ALGORITHM

In this section an alternative to the WBR estimation
algorithm is presented.

In the model, the LIDAR is assumed to measure indi-
vidual beams. In reality, each segment is 6◦ wide, and
measurements are affected by noise and non-idealities. In
order to account for the aforementioned effects a black-box
approach is proposed.

The black-box approach is based on an experimental
identification of the Pitch-Ratio map. Figure 3 plots the
ratios obtained by comparing the LIDAR measurement
against the pitch angle measured by a reference Inertial
Measurement Unit. The figure also shows the modeled
pitch-ratio map obtained by the model and a linear fitting
of the experimental data. The figure mostly validates the
first principle model with two important considerations:

• the identified lines are not exactly the ones predicted
by the model but a linear fitting is nevertheless a good
fitting for small θ.
• The ratios that include measurements from segment

1 appear to have an opposite slope with respect to
what the model would predict. This could be due to
the fact that the measurement does not refer to the
center of the segment as hypothesized but to some
other region of the sector.

Based on the above considerations, we propose the follow-
ing linear black-box model of the pitch-ratio relation (valid
for small θ):

ri,j = mi,j ·θ+qi,j for i = 1, ..., 5, j = 2, ...6, i < j, (11)

where the parameters mi,j and qi,j are identified through
a least squares procedure.
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Fig. 3. Pitch-Ratio Map: black-box (BB) vs white-box
(WB)

4.1 Ratio Informativeness Index - RII

In the ideal case, with perfect LIDAR measures, each ratio
is useful for estimating the pitch angle. It is theoretically
possible to have a perfect estimate of θ using only one
ratio.

In reality noise and other phenomena affect the measures.
The measurement errors affect different ratios differently.
We assess the effect of noise and non idealities on each ratio
with the Ratio Informativeness Index (RII). Recalling
(11), the pitch at time k is estimated as:

θ̂i,j(k) =
ri,j(k)− qi,j

mi,j
(12)

the estimation error is thus:

ei,j(k) = θ̂i,j(k)− θ(k) (13)

and leads to the following Ratio Informativeness Index as:

RIIi,j =
abs(mi,j)

Var(ei,j)
. (14)

The Ratio Informativeness Index RIIi,j gives an idea of
how much information is contained in ratio ri,j , i.e. how

good the respective estimate θ̂i,j potentially is.

The index shows that the higher the slope, the more a
pitch variation is observable from the ratio and therefore
the better the noise and error rejection. In fact, for
the same pitch variation, a higher slope causes a higher
variation in the ratio, making noise and measurement
errors less relevant. The error variance Var(ei,j) is at
the denominator. A large error variance means that the
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identified line is badly fitting the data, therefore producing

low quality estimates θ̂i,j .

Figure 4 shows the RIIi,j for the experimental data used
for identification, where big differences among ratios are
evident. As expected, ratios with almost zero slope (like
r2,3 and r2,4) have a very low RII. On the other hand,
ratios with high slopes (like r1,2 and r1,3) have a very high
RII.
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Fig. 4. RII for identification data

4.2 Black-Box Ratios reduced (BBRr) algorithm

Based on the results of the RII a reduced version of the
BBR algorithm is here proposed, where only a subset of

the θ̂i,j is used to produce the pitch estimate θ̂r:

θ̂r =

∑
(i,j)

θ̂i,j

8
, (15)

where (i, j) are the ratios with the highest RII, i.e.
{(1, 2), (1, 3), (1, 4), (1, 5), (3, 6), (4, 5), (4, 6), (5, 6)}.

5. EXPERIMENTAL RESULTS

The proposed methods are tested on experimental data
and their results are compared.

The experimental set-up consists of a solid-state LIDAR,
mounted on the front bumper of a Peugeot 206, which
points towards the road. The vehicle is equipped with a
high-end Inertial Measurement Unit (IMU) and a Global
Positioning System (GPS) that provides, among other
measures, the benchmark θ. Tests performed involve both
hard accelerations and braking on a road without obstacles
and driving over a speed bump.

The proposed methods are developed under the assump-
tion of flat road profile. During the speed bump test this
assumption is clearly not always true. A few seconds before
the bump is hit the LIDAR will measure an obstacle. The
algorithm needs to be aware of what is casing a variation
in the LIDAR measurement. An IMU could be used to
detect a vertical vehicle motion and activate the pitch

estimation algorithm; in this work we preliminary propose
an algorithm that only uses the LIDAR measurement. To
better understand the basic idea of the logic consider the
scenario of a car driving up to a bump: the LIDAR will
first see the bump and then it will hit it. During the phase
in which the LIDAR is seeing the bump, the bump will
be sequentially observed by each segment whereas during
the bump hitting phase all sector will change at the same
time. This information can be extracted by looking at the
time derivative of the ratios. As each ratio actually con-
siders two different segments, their derivative is expected
to reach higher values when the LIDAR is detecting an
obstacle on the ground. In this work, we set thresholds
on the derivative of the ratio to activate the pitch angle
estimation algorithm. Figure 5 shows the LIDAR distances
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Fig. 5. LIDAR distances and the absolute value of the ratio
time derivatives during a bump test. The vertical lines
indicate the section where the pitch angle algorithm
turns off and on.

and the absolute value of the ratio time derivatives during
a bump test. The vertical lines indicate the section where
the pitch angle algorithm turns off and on.

5.1 Speed bump test

Figure 6 plots the results of the pitch estimate over a
speed bump. The figure plots the results of the three
algorithms. One notices that out of the three algorithms,
the black box using the reduced set of sensors is the one
that provides the best results. The other two approaches
wrongly estimates the amplitude and phase of the oscilla-
tions. To better understand the difference between the two
algorithms, Figure 7 shows the estimated pitch angle for

each ratio. In the WBR case, θ̂1,2, θ̂1,3 and θ̂1,4 present a
significant difference from the benchmark. Looking at the
BBR instead, these components are much closer to θ. An
explanation of this behavior is given by Figure 3a: if the
BB line is considered as the true one (i.e., identified from
data), the WB line has a slope with an opposite sign, this
causing the counter-phase behavior observed in Figure 7.

On the other hand, the BBR case presents some pitch

estimates which are completely wrong: for example θ̂3,4
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Fig. 6. Experimental test over a speed bump.

which at 1.8 s is estimating around −10◦, or at θ̂2,3 which
exceeds ±15◦. This behaviour is expected, as these ratios
are the ones with the lowest RII (Figure 4). Since the
pitch-rate slopes related to these ratios are nearly zero,
noise and measurements error have a big influence. This is
confirmed by the superior performance obtained with the
BBRr algorithm.

5.2 Acceleration and braking test

Figure 8 plots the results during acceleration and braking.
The results confirm the performance of the algorithm as
analyzed during the speed bump test. The BBRr is the
best algorithm among the proposed while the WBR is not
shown due to its poor performance. Table 1 summarizes
the estimation performance in terms of root mean square

error (RMSE) of θ̂ with respect to the benchmark pitch θ.

5.3 Heave estimation

The LIDAR provides enough information to estimate the
heave motion. The algorithm described in Section 3 is
applied to the data using the pitch estimate obtained by
the BBRr algorithm and Figure 9 plots the results for
the speed bump data. The real heave coordinate is not
available in the current experimental set-up, thus a formal
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Fig. 7. Estimated pitch angle for all ratios.

Table 1. Mean square error (RMSE) results

Algorithm Speed bump Acceleration and braking

WBR 1.60◦ 1.20◦

BBR 1.18◦ 0.77◦

BBRr 0.35◦ 0.29◦

evaluation is not possible. However, the estimate shows a
reasonable dynamics.

6. CONCLUSION

This paper studies the feasibility of a LIDAR based pitch
dynamics estimation. We propose two methods to estimate
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Fig. 8. Acceleration and braking experimental test.
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Fig. 9. BBRr heave estimation algorithm applied the speed
bump experimental test of Figure 6a

the vehicle pitch angle based on a solid-state LIDAR. The
first method uses a physical model of the vehicle and a
simplified model of the LIDAR, while the second method
exploits a black-box approach. The methods are tested
and compared on experimental data showing that, given
the specific features of the employed LIDAR, the black box
approach yields better results.

A sensitivity analysis is also carried out and shows that not
all the available LIDAR measurements provide sufficient
signal-to-noise ratio to improve the pitch estimate. Based

on this analysis these measurements are excluded from the
pitch estimation algorithm which improves significantly
the estimate quality.
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