
Supervisor Reduction by Hiding Events

Robi Malik

Department of Computer Science, University of Waikato, Hamilton,
New Zealand (e-mail: robi@waikato.ac.nz)

Abstract: This paper proposes a method to improve supervisor reduction for discrete event
systems by first reducing the number of events. Supervisor reduction is a method to reduce
the number of states of an automatically computed supervisor or controller in order to make it
more manageable. This paper proposes to complement the most popular supervisor reduction
algorithm currently in use by first reducing the supervisor’s event set. Experimental results show
that this does not only reduce the communication between the supervisor and plant, but also
produces a simpler state machine that can be minimised more effectively.

1. INTRODUCTION

Given a finite-state model of a plant or a system to
be controlled, supervisory control theory (Ramadge and
Wonham, 1989) is concerned with means to restrict the
plant’s behaviour to enforce certain requirements. This can
be achieved by synthesising or automatically computing
another finite-state machine, called supervisor.

This supervisor is usually constructed by deleting transi-
tions from the plant so as to avoid undesirable behaviour.
Then it has the same state space as the plant, which can
be very large—millions of states or more. This can pose
problems for humans trying to understand the supervisor,
or when implementing it on devices with limited memory.
As a remedy, Vaz and Wonham (1986) propose supervi-
sor reduction, which can replace a given supervisor by a
smaller supervisor with equivalent behaviour.

Given a plant and supervisor, the goal of supervisor
reduction is to find another supervisor which achieves
the same controlled behaviour and has the fewest states
possible. This problem is different from standard state
machine minimisation problems (Hopcroft et al., 2001),
because the supervisors can exploit the presence of the
plant to use fewer states. Su and Wonham (2004) show
that the problem to find a smallest equivalent supervisor
is NP-hard.

Vaz and Wonham (1986) propose an algorithm to compute
a reduced supervisor based on covers, but their method is
exponential. Su and Wonham (2004) propose a polynomial
algorithm that computes a reduced but not necessarily
minimal supervisor. Their algorithm is the most popular
supervisor reduction algorithm currently in use due to its
trade-off between speed and reduction effectiveness. It will
be referred to as the SW Algorithm in this paper. The
SW Algorithm repeatedly merges pairs of states and is
sensitive to the order in which state pairs are processed.
Its result can be seen as arbitrary as the order often is.

This paper proposes to amend the arbitrariness by adding
a preprocessing step that reduces the number of events.
An automatically computed supervisor typically uses all
events of the plant model, while only a part is needed
to make the control decisions. By identifying a reasonable
subset, it is not only possible to reduce the communication
between the plant and supervisor, but also to produce

a smaller and more reasonable supervisor that can be
minimised more effectively with the SWAlgorithm.

Cai and Wonham (2016) propose supervisor localisation
among other improvements to the SW Algorithm. They
also remove unnecessary events, but only after using the
SW Algorithm. This paper proposes to remove events
before invoking the SWAlgorithm.

After introducing the relevant terminology of supervisory
control theory in Section 2, Section 3 describes the pro-
posed method, which consists of an algorithm to determine
whether a given set of events is sufficient to make control
decisions, and algorithms to find such event sets. After-
wards, Section 4 shows experimental results that demon-
strate the effectiveness of the approach, and Section 5 adds
concluding remarks.

2. PRELIMINARIES

2.1 Languages and Finite-State Machines

Event sequences and languages are a simple means to
describe discrete system behaviours. Their basic building
blocks are events, which are taken from a finite alphabet Σ.
The silent event τ labels transitions that are only taken
by the component under consideration. Σ∗ denotes the
set of all finite traces of the form σ1σ2 · · ·σn of events
from Σ, including the empty trace ε. The concatenation of
two traces s, t ∈ Σ∗ is written as st.

Definition 1. A finite-state machine (FSM) is a tuple G =
〈ΣG, QG, Q

◦
G,→G〉 where ΣG ⊆ Σ with τ /∈ ΣG is an event

set, QG is a finite set of states, Q◦
G ⊆ QG is the set of initial

states, and →G ⊆ QG × (ΣG ∪ {τ})×QG is the transition
relation.

The transition relation is written in infix notation x
σ
→G y

and extended to traces s ∈ (ΣG ∪ {τ})
∗ in the standard

way. For a state x ∈ QG and trace s ∈ (ΣG ∪ {τ})
∗, the

notation G
s
→G x means x◦

G

s
→G x for some x◦ ∈ Q◦

G, and

x
s
→G means x

s
→G y for some y ∈ QG. Also, x 6

s
→G means

that x
s
→G does not hold, x→ y means x

s
→G y for some

s ∈ (ΣG∪{τ})
∗, and a state x is reachable in G if G→G x.

Events not in the event set of an FSM are always enabled
without state change, so the transition relation is further

extended by x
σ
→G x for all x ∈ Q and σ ∈ (Σ\ΣG)∪{τ}.

The FSM G is deterministic if it has exactly one initial
state, |Q◦

G| = 1, no silent transitions,→G ⊆ QG×ΣG×QG,
and there is at most one transition from every state with

a given event, i.e., x
σ
→G y and x

σ
→G z implies y = z.

2.2 Projection, Hiding, and Composition

Given a sub-alphabet Υ ⊆ Σ, the behaviour of an FSM
without the events in Υ is of interest. The projection
PΣ→Σ\Υ : Σ∗ → (Σ \ Υ)∗ is the operation that deletes all
events in Υ from traces. Its inverse image map is

P−1
Σ→Σ\Υ : (Σ\Υ)∗ → 2Σ

∗

; s 7→ { t ∈ Σ∗ | PΣ→Σ\Υ(t) = s }.

As a special case, the natural projection Pτ = PΣ→Σ\{τ}

deletes silent (τ) events from traces. The FSM operation
corresponding to projection is hiding.

Definition 2. Let G = 〈ΣG, QG, Q
◦
G,→G〉 be an FSM, and

let Υ ⊆ Σ. The result of hiding Υ from G is the FSM
G\Υ = 〈ΣG \Υ, QG, Q

◦
G,→Σ\Υ〉, where→Σ\Υ is obtained

from→G by replacing every transition x
υ
→G y with υ ∈ Υ

by x
τ
→Σ\Υ y.

Hiding replaces transitions with events from Υ by silent τ -
transitions, producing a nondeterministic FSM. To define
the behaviour of such an FSM, another transition relation

⇒G ⊆ QG × Σ∗ × QG is introduced such that x
s
⇒G y if

and only if there exists t ∈ (Σ∪ {τ})∗ such that Pτ (t) = s

and x
t
→G y. Thus, x

s
⇒G y indicates a sequence of

transitions from x to y using the events of s and possibly

additional τ -transitions. Notation such as G
s
⇒G x is

defined analogously to →.

The language of an FSM G = 〈ΣG, QG, Q
◦
G,→G〉 is the set

of traces starting from initial states without silent events,

L(G) = { s ∈ (Σ \ {τ})∗ | G
s
⇒G } . (1)

This definition uses the extended definition of the transi-
tion relation, x

σ
→G x for σ ∈ Σ \ ΣG. In this paper, the

language L(G) is always defined over the same event set Σ,
assumed fixed and including the event sets ΣG of all FSMs
under consideration.

A nondeterministic FSM such as G\Υ can be transformed
to a deterministic FSM that accepts the same language.
In the following, det(G) denotes the minimal deterministic
FSM that accepts the same language as G, i.e., det(G) is
the deterministic FSM with the fewest states such that
L(det(G)) = L(G). It can be computed by well-known
algorithms (Hopcroft et al., 2001).

FSMs are synchronised in lock-step (Hoare, 1985).

Definition 3. The synchronous composition of two FSMs
G1 = 〈Σ1, Q1, Q

◦
1,→1〉 and G2 = 〈Σ2, Q2, Q

◦
2,→2〉 is

G1 ‖G2 = 〈Σ1 ∪ Σ2, Q1 ×Q2, Q
◦
1 ×Q◦

2,→〉 (2)

where

(x1, x2)
σ
→ (y1, y2) if σ 6= τ , x1

σ
→1 y1, x2

σ
→2 y2 ; (3)

(x1, x2)
τ
→ (y1, x2) if x1

τ
→1 y1 ; (4)

(x1, x2)
τ
→ (x1, y2) if x2

τ
→2 y2 . (5)

The definition again uses the extended transition relation,

x
σ
→i x for σ /∈ Σi. Accordingly, shared events must

be executed by both FSMs together, while events in
only one FSM, including τ , are executed separately. The
behaviour of two composed FSMs is obtained by language
intersection, L(G1 ‖G2) = L(G1) ∩ L(G2).

2.3 Supervisors and Supervisor Reduction

Given an FSM representing a plant, supervisory control
theory (Ramadge and Wonham, 1989) is concerned with
means to restrict its behaviour. This can be achieved
through a deterministic FSM S, called supervisor, which
interacts with the plant G in synchronous composition,
S ‖ G. This paper is concerned about whether two such
supervisors result in the same behaviour.

Definition 4. Let G, S1, and S2 be deterministic FSMs.
S1 and S2 are said to be control equivalent with respect
to G, written S1 ≃G S2, if L(S1 ‖G) = L(S2 ‖G).

If the supervisor S is computed automatically by synthesis,
it is usually constructed by deleting certain transitions
from the plant, resulting in a sub-FSM.

Definition 5. Let G = 〈ΣG, QG, Q
◦
G,→G〉 be an FSM. An

FSM S = 〈ΣG, QS , Q
◦
S ,→S〉 is a sub-FSM of G, written

S ⊑ G, if QS ⊆ QG and →S ⊆ →G and Q◦
S ⊆ Q◦

G.

Whether or not a supervisor is a sub-FSM of its plant, its
control action is determined by what events it enables or
disables.

Definition 6. (Su and Wonham, 2004) Let G and S be
deterministic FSMs. The sets of events enabled or disabled
by S at state x ∈ QS are:

ES(x) = {σ ∈ Σ | x
σ
→S } ; (6)

DS,G(x) = {σ ∈ Σ | x 6
σ
→S and there exists s ∈ Σ∗

such that S
s
→ x and sσ ∈ L(G) } .

(7)

The set of enabled events ES(x) is the set of events enabled
by the supervisor in its state x. The set of disabled events
DS,G(x) is the set of events enabled by the plant, but
disabled by the supervisor. These definitions reflect the
observation that, if an event is not enabled by the plant,
then it cannot occur regardless of whether or not it is
enabled by the supervisor. In the special case where S is
a sub-FSM of G, the set of disabled events can be written
without the condition on reachability in G.

Lemma 1. Let G and S be deterministic FSMs such that
S ⊑ G. Then it holds for all reachable states x ∈ QS that,

DS,G(x) = {σ ∈ Σ | x
σ
→G and x 6

σ
→S } . (8)

Definition 7. (Su and Wonham, 2004) Let G and S be
deterministic FSMs. The set of control consistent state
pairs of S with respect to G is

RS,G = { (x, y) ∈ QS × QS | ES(x) ∩ DS,G(y) =
ES(y) ∩DS,G(x) = ∅ } .

(9)

Two states are control consistent if no event needs to be
enabled in one state and disabled in the other. The SWAl-
gorithm (Su and Wonham, 2004) computes a reduced
supervisor after finding a relation that respects Def. 7
and is preserved under the transition relation. This paper
uses the same relation to determine whether supervisor
reduction can be achieved by hiding events.

3. SUPERVISOR REDUCTION BY EVENT HIDING

Given a plant G and supervisor S, the concern of this
paper is to identify a set of events Υ that can be hidden
from S without affecting control equivalence. As a first
step, Section 3.1 proposes an algorithm to determine for a

given event set Υ whether or not its hiding affects control
equivalence. Afterwards, Section 3.2 uses this algorithm to
search for a suitable event set Υ.

3.1 Test for Feasible Event Set

Given a plant G, supervisor S, and event set Υ, the goal
of this subsection is to determine whether S is control
equivalent to S \ Υ. If so, hiding Υ and the projection
PΣ→Σ\Υ are said to be feasible for supervisor reduction.

More precisely, the result S\Υ of hiding must be converted
to its deterministic equivalent det(S \Υ). As suggested by
Cai and Wonham (2016), it is further modified by adding
selfloops to retain control decisions for hidden events.

Definition 8. Let G = 〈ΣG, QG, Q
◦
G,→G〉 and S = 〈ΣS ,

QS , Q
◦
S ,→S〉 be FSMs, and let Υ ⊆ Σ. The reduced

supervisor det(S,G,Υ) for S with respect to G and Υ
is obtained from det(S \ Υ) by extending the event set

to ΣS and adding transitions x
σ
→ x for states x and

events σ ∈ ΣS ∩ Υ if there exists s ∈ Σ∗ such that

det(S \Υ)
PΣ→Σ\Υ(s)
−−−−−−−→ x and sσ ∈ L(S ‖G).

The reduced supervisor det(S,G,Υ) has the same struc-
ture as det(S \ Υ), but it is defined over all events of S.
Hidden events are enabled (without state change) when-
ever they would be enabled by G and S. Then its language
includes that of G and S combined.

Lemma 2. Let G and S be FSMs, and let Υ ⊆ Σ. Then
L(S ‖G) ⊆ L(det(S,G,Υ)).

Hidden events only appear as selfloops in det(S,G,Υ), so
the state only depends on the retained events, Σ \Υ. For
a given trace s ∈ (Σ \ Υ)∗, there may be more than one
matching trace over Σ, and these may lead to different
states in S \Υ. If these states are associated with different
control decisions, then det(S,G,Υ) does not produce the
same control as S.

This suggests that it should be checked for all traces s

and all paths S \ Υ
s
⇒ x and S \ Υ

s
⇒ y, whether x

and y are control consistent, i.e., whether (x, y) ∈ RS,G.
This can be checked with verifier algorithms (Yoo and
Lafortune, 2002; Pena et al., 2014) in polynomial time.
These algorithms construct a verifier as the synchronous
composition (S \Υ) ‖ (S \Υ), whose reachable states are

precisely the pairs (x, y) such that S\Υ
s
⇒ x and S\Υ

s
⇒ y

for some s. While constructing the verifier, its state pairs
are checked. Here, the check is for control consistency
(Def. 7), i.e., it is checked whether the following condition
holds:
For all x, y ∈ QS such that (S\Υ)‖(S\Υ)→ (x, y)
it holds that (x, y) ∈ RS,G.

(10)

Algorithm 1 checks condition (10) for a given supervisor S
and event set Υ. It uses the fact that pairs (x, x), for
reachable states x of S, are reachable in the verifier and
control consistent, and only their successors on hidden
events can lead to pairs (x, y) with x 6= y. Line 4 calls
the recursive procedure on line 6 for these successors (x, y),
which checks their control consistency and explores further
successors.

Line 7 assumes a pre-defined linear ordering > on the
states of S to exploit symmetry, as the pairs (x, y)

Algorithm 1: Check for Feasibility of Projection

1 procedure check(S = 〈ΣS , QS , Q
◦
S ,→S〉, Υ)

2 foreach reachable state x ∈ QS do

3 foreach transition x
υ
→S y with υ ∈ Υ do

4 check(x, y)

5 stop “S is control equivalent to S \Υ.”

6 procedure check(x ∈ QS , y ∈ QS)
7 if x > y then
8 check(y, x)
9 else if (x, y) /∈ RS,G then

10 stop “S is not control equivalent to S \Υ.”
11 else if x 6= y and (x, y) is not yet checked then
12 mark (x, y) as checked

13 foreach transition x
σ
→S x′ with σ ∈ ΣS \Υ do

14 foreach transition y
σ
→S y′ do

15 check(x′, y′)

16 foreach transition x
υ
→S x′ with υ ∈ Υ do

17 check(x′, y)

18 foreach transition y
υ
→S y′ with υ ∈ Υ do

19 check(x, y′)

and (y, x) have the same properties. Line 9 checks for
control consistency, and stops the algorithm with a nega-
tive result as soon as an inconsistent pair is encountered.
Otherwise, lines 11–19 explore the successors, avoiding
pairs (x, x) and pairs that have already been checked. After
all pairs have been explored without encountering a control
inconsistent pair, the algorithm reaches line 5 and reports
that hiding Υ preserves control equivalence.

To estimate the time complexity of Algorithm 1, it is noted
that each pair (x, y) is visited at most once, at most |QS |

2

pairs. This is the maximum number of times lines 12–19
can be executed. Assuming a deterministic FSM S, the
loop on line 13 explores at most one transition for each
event σ ∈ ΣS \Υ, and the loops on lines 16 and 18 explore
at most one transition for each event υ ∈ Υ. As all other
operations can be completed in constant time, the worst-
case time complexity is O(|QS |

2|Σ|).

The remainder of this section proves the correctness of
Algorithm 1. To prove this, it is enough to show that
condition (10) is equivalent to the control equivalence of S
and det(S,G,Υ). First, Prop. 3 proves that condition (10)
implies this control equivalence, confirming that hiding is
feasible whenever Algorithm 1 reports a positive result.

Proposition 3. Let G and S be deterministic FSMs, and
let Υ ⊆ Σ. If S satisfies (10), then S ≃G det(S,G,Υ).

Proof. It follows from Lemma 2 that L(S‖G) ⊆ L(det(S,
G,Υ) ‖G). By Def. 4, it remains to show that L(det(S,G,
Υ)‖G) ⊆ L(S ‖G). Consider s ∈ L(det(S,G,Υ)‖G). It is
shown by induction on the length of s that s ∈ L(S ‖G).

Base case. It is clear by construction in Def. 8 that
ε ∈ L(det(S,G,Υ) ‖ G) = L(det(S,G,Υ)) ∩ L(G) implies
ε ∈ L(S) ∩ L(G) = L(S ‖G).

Inductive step. Consider sσ ∈ L(det(S,G,Υ) ‖ G). Then
there exists x ∈ QS such that

S \Υ
P (s)
=⇒ x

σ
→ , (11)

where P = PΣ→Σ\Υ. Then σ ∈ ES(x) by (6). From sσ ∈
L(det(S,G,Υ)‖G), it follows that s ∈ L(det(S,G,Υ)‖G).

Thus, s ∈ L(S ‖G) by inductive assumption. Then S
s
→ y

for some y ∈ QS , and by (10) and (11) it follows that

(S \Υ) ‖ (S \Υ)
P (s)
=⇒ (x, y) ∈ RS,G . (12)

As σ ∈ ES(x), it follows by (9) that σ /∈ DS,G(y). As

S
s
→ y and sσ ∈ L(G), it follows from (7) that y 6

σ
→S

cannot hold, i.e., S
s
→ y

σ
→. Thus, sσ ∈ L(S) ∩ L(G) =

L(S ‖G). ✷

Conversely it is of interest whether Algorithm 1 correctly
identifies every feasible event set as such. This only holds
under the additional assumption that the supervisor is a
sub-FSM of its plant.

Proposition 4. Let G and S be deterministic FSMs such
that S ⊑ G, and let Υ ⊆ Σ. If S ≃G det(S,G,Υ), then S
satisfies (10).

Proof. Assume that S ≃G det(S,G,Υ), i.e., L(S ‖ G) =
L(det(S,G,Υ) ‖G), and let (S \ Υ) ‖ (S \ Υ) → (x, y). It
is to be shown that (x, y) ∈ RS,G, i.e., ES(x)∩DS,G(y) =
ES(y) ∩ DS,G(x) = ∅ by (9). Because of symmetry, it is
enough to show that σ ∈ DS,G(x) implies σ /∈ ES(y).

So assume σ ∈ DS,G(x), i.e., x
σ
→G and x 6

σ
→S by (8). As

S \ Υ → x and S ⊑ G, there exists s ∈ Σ∗ such that

G
s
→ x

σ
→ and S

s
→ x 6

σ
→. Then sσ ∈ L(G) and sσ /∈ L(S)

as S is deterministic. It follows that sσ /∈ L(S) ∩ L(G) =
L(S ‖G) = L(det(S,G,Υ) ‖G), i.e., sσ /∈ L(det(S,G,Υ)).
Also s ∈ L(S‖G) ⊆ L(det(S,G,Υ)) by Lemma 2, and thus

det(S,G,Υ)
s
→ z 6

σ
→. It follows from Def. 8 that σ /∈ Υ,

and then det(S \ Υ)
s
→ z 6

σ
→. By determinism it follows

that sσ /∈ L(det(S \Υ)) ∩ L(G) = P−1(P (L(S))) ∩ L(G),
where P = PΣ→Σ\Υ, which given sσ ∈ L(G) implies

P (sσ) /∈ P (L(S)). As (S \Υ)‖(S \Υ)→ (x, y) and S
s
→ x,

there exists t ∈ Σ∗ such that P (s) = P (t) and S
t
→ y. But

then y 6
σ
→S , since otherwise P (sσ) = P (tσ) ∈ P (L(S)). It

follows from (6) that σ /∈ ES(y). ✷

According to Prop. 4, if a projection is feasible for su-
pervisor reduction, then Algorithm 1 will terminate and
report this fact—provided that S ⊑ G. Fortunately, most
synthesis algorithms construct the supervisor by removing
transitions from the plant and ensure S ⊑ G.

If the supervisor is obtained differently and S ⊑ G does
not hold, then Algorithm 1 only tests a sufficient condition.
This is because the control consistency relation RS,G does
not accurately characterise the equivalence of states in
this case. Still, if Algorithm 1 reports that an event set is
feasible, it can be used for supervisor reduction according
to Prop. 4. It is only that some feasible event sets may be
missed if S ⊑ G does not hold.

3.2 Search for Feasible Event Set

This subsection discusses ways to find, for a given super-
visor S, an event set Υ ⊆ Σ that is feasible for supervisor
reduction. The straightforward way to find such a set is
to check all subsets Υ ⊆ Σ using Algorithm 1 and return
the largest set that passes the test. Unfortunately, this
naive approach has exponential complexity. The search can
be simplified using the following proposition, which shows
that the feasible event sets are closed under set inclusion.

Algorithm 2: Greedy Search for Projection

1 procedure greedySearch(S = 〈ΣS , QS , Q
◦
S ,→S〉)

2 Υ← ∅
3 foreach σ ∈ ΣS do
4 if S ≃G det(S \ (Υ ∪ {σ})) then
5 Υ← Υ ∪ {σ}

6 return Υ

Algorithm 3: Exhaustive Search for Projection

1 procedure exhaustiveSearch(S = 〈ΣS , QS , Q
◦
S ,→S〉)

2 return exhaustiveSearch(ΣS , ∅, ∅)

3 procedure exhaustiveSearch(Σ′,Υ, B ⊆ Σ)
4 if |Σ′ ∪Υ| > |B| then
5 Choose σ ∈ Σ′

6 if S ≃G det(S \ (Υ ∪ {σ})) then
7 if |Υ ∪ {σ}| > |B| then
8 B ← Υ ∪ {σ}

9 B ← exhaustiveSearch(Σ′ \ {σ},Υ ∪ {σ}, B)

10 B ← exhaustiveSearch(Σ′ \ {σ},Υ, B)

11 return B

Proposition 5. Let G and S be deterministic FSMs, and
let Υ′ ⊆ Υ ⊆ Σ. If S ≃G det(S,G,Υ) then S ≃G

det(S,G,Υ′).

Proof. L(S‖G) ⊆ L(det(S,G,Υ′)‖G) holds by Lemma 2.
Conversely, Υ′ ⊆ Υ implies L(det(S,G,Υ′)) ⊆ L(det(S,
G,Υ)) by Def. 8. It follows that L(det(S,G,Υ′) ‖ G) ⊆
L(det(S,G,Υ) ‖G) = L(S ‖G) because S ≃G det(S \Υ).
It has been shown that L(S ‖ G) = L(det(S,G,Υ′) ‖ G),
i.e., S ≃G det(S,G,Υ′) by Def. 4. ✷

According to Prop. 5, if hiding Υ is feasible, then this also
holds for all subsets. This also means that, if some set Υ
is not feasible, there is no need to check its supersets, as
they also must be infeasible. This observation gives rise to
a greedy search algorithm shown as Algorithm 2.

Algorithm 2 processes the events in a fixed order, trying
to add each to the set Υ. If adding an event results in
a feasible projection, it is included in Υ, otherwise it is
skipped. By Prop. 5, it is clear that Algorithm 2 returns
a maximal feasible event set, i.e., a feasible set Υ such
that no proper superset Υ′ ⊃ Υ is feasible. Line 4 invokes
Algorithm 1 to determine whether hiding Υ is feasible. As
this invocation occurs once for each event in Σ, and the
worst-case time complexity of Algorithm 1 is O(|QS |

2|Σ|),
it follows that the worst-case time complexity of Algo-
rithm 2 is O(|QS |

2|Σ|2).

While the result of Algorithm 2 is maximal, there could
be larger feasible event sets that are not supersets of
the result. As an alternative, Algorithm 3 performs an
exhaustive search to find a feasible event set Υ with the
largest cardinality possible. The recursive procedure on
line 3 is called with a set Σ′ of events still available for
inclusion in the set Υ of events being hidden, and a known
best set B. If Σ′ is not empty, line 5 chooses an event
σ ∈ Σ′ to add to Υ. Line 6 checks whether this is feasible
using Algorithm 1. If it is, and the extended set Υ ∪ {σ}
exceeds the known best B, it replaces B on line 8; and

line 9 tries to extend the set further. Additionally, line 10
searches for feasible events sets not including the selected
event σ. The test on line 4 is a branch-and-bound condition
to stop searching when it is clear that the remaining events
in Σ′ together with those already selected in Υ cannot
improve the known best B.

Although the branch-and-bound condition together with
Prop. 5 reduces the search space, many of the recursive
calls in Algorithm 3 trigger two further calls. The worst-
case time complexity of Algorithm 3 is O(|QS |

2|Σ|2|Σ|).

The criterion to maximise the number of hidden events
may be too naive. The implementation in Section 4 max-
imises the number of hidden non-selflooptransitions in-
stead. This is achieved by changing the criterion for com-
parison on lines 4 and 6 in Algorithm 3, or by considering
more desirable events first in Algorithm 2.

3.3 Enforcing the Observer Property

While the test for a feasible projection and the greedy
search can be accomplished in polynomial time, the next
step in supervisor reduction is to compute a deterministic
FSM det(S \ Υ). This is done with subset construction
(Hopcroft et al., 2001). In most cases, the result will be
smaller than the original supervisor S, but this is not
guaranteed. The worst-case for the number of states of
det(S \Υ) is exponential in the number of states of S.

The exponential worst case can be avoided by imposing an
additional restriction, known as the observer property.

Definition 9. (Wong et al., 2000) Let S = 〈Σ, Q,Q◦,→〉
be a deterministic FSM, and let Υ ⊆ Σ. The projection
P = PΣ→Σ\Υ is an observer projection for S, if for all
s ∈ L(S) and all t ∈ (Σ \Υ)∗ such that P (s)t ∈ L(S \Υ)
there exists t′ ∈ Σ∗ such that P (t′) = t and st′ ∈ L(S).

The observer property ensures that, if two states are

reached by traces with the same projection, i.e., S \Υ
s
⇒ x

and S \ Υ
s
⇒ y, then all continuations from one state are

also possible from the other, i.e., x
t
⇒ if and only if y

t
⇒

in S \Υ. Then hiding results in an observation equivalent
FSM, which implies that det(S \ Υ) cannot have more
states than S \Υ (Wong and Wonham, 2004).

The observer property can be checked with the OP-
Verifier algorithm (Pena et al., 2014), which is similar to
Algorithm 1: it checks for each verifier pair (x, y) whether

it holds for all σ ∈ Σ \Υ that x
σ
⇒ if an only if y

σ
⇒. This

suggests to modify Algorithm 1 and check the observer
property while checking whether the projection is feasible
for supervisor reduction.

One complication arises because a result analogous to
Prop. 5 does not hold for the observer property—if an
event set fails the observer property, its supersets may
still have it. Therefore the search for a feasible projection
proceeds as per Algorithm 2 or 3, but discards any pro-
jections that do not have the observer property. Another
complication exists, because the OP-Verifier uses an FSM
without cycles of hidden events so that only verifier pairs
without Υ-transitions need to be checked. Therefore, the
FSM is preprocessed using Tarjan’s algorithm (Tarjan,
1972) to find strongly connected components of Υ-tran-
sitions, check whether their states are control consistent,

and if so merge each strongly connected component into
a single state. This results in an FSM without cycles of
Υ-transitions, which is passed to Algorithm 1 while also
performing the checks of the OP-Verifier.

4. EXPERIMENTAL RESULTS

This section presents the results of some experiments to
evaluate the effectiveness of event hiding as a preprocessing
step in supervisor reduction. The hypothesis is that hiding
results is a more structured input to the SWAlgorithm (Su
and Wonham, 2004), enabling it to produce better results.

The synthesis implementation of Supremica (Åkesson
et al., 2006) was modified for the experiments in this sec-
tion. After synthesis, supervisors are first minimised while
preserving the language using the standard algorithm
(Hopcroft et al., 2001). Then supervisor localisation (Cai
andWonham, 2016) is used to create a modular supervisor:
for each controllable event, a copy of the supervisor is
created which is responsible for only this event and leaves
all other events always enabled. Each of these supervisors
is reduced separately. This increases the number of test
cases and the potential for supervisor reduction.

For each supervisor reduction attempt, Algorithm 2 or 3
is used to find a feasible event set with as many non-
selfloop transitions as possible. If such a set is found, the
natural projection is computed using subset construction
(Hopcroft et al., 2001), and the result is again minimised.
But if subset construction produces too many states (more
than twice the size of the input), it is aborted and the
original FSM is used instead. The result of this procedure
is passed to the SWAlgorithm for further minimisation.

Supervisors have been synthesised and reduced for 20 dis-
crete event system models from industrial case studies
and examples in other publications. Table 1 shows the
name of each model, the number of events (|Σ|), the num-
ber of localised supervisors (Sup #), and the number of
reachable states of the unreduced supervisor (Sup states).
Under SW, the table shows time taken by the SWAlgo-
rithm alone and its number of reduced supervisor states,
aggregated over all localised supervisors. Then Greedy
and Exhaustive show results using Algorithm 2 and 3,
respectively; Greedy OP and Exhaustive OP refer to
the same algorithms when the observer property is also
enforced. In each case, the projection rate (Proj rate) is
a percentage of states removed after hiding (0% means
no reduction). The projection time (Proj [s]) refers to the
time needed to find a feasible event set plus the subset
construction time to compute an FSM for the projec-
tion; the following columns show the time taken by the
SWAlgorithm applied to the projected FSM and the final
number of supervisor states. The Timeout entries in the
table mean that the run did not complete in 20minutes.
All experiments were conducted with a standard desktop
PC using a 3.3GHz microprocessor and not more than
4GiB of RAM.

In most test cases, feasible event sets are found and many
states are removed by hiding, often resulting in signifi-
cantly smaller supervisors. In four cases, it is possible to
compute reduced supervisors after hiding, while using only
the SWAlgorithm fails to complete within the time limit.
Yet, no feasible event set is found for the assembly53

Table 1. Experimental results

Model SW Greedy Exhaustive Greedy OP Exhaustive OP

Sup Sup Red Red Proj Proj Red Red Proj Proj Red Red Proj Proj Red Red Proj Proj Red Red

Name |Σ| # states [s] States rate [s] [s] States rate [s] [s] States rate [s] [s] States rate [s] [s] States

aip0sub1p1 105 3 27165 3.9 18 67% 2.0 4.5 111 67% 17.2 4.6 111 54% 2.1 7.7 114 Timeout

assembly35r 32 17 68118 34.3 5019 29% 8.0 26.6 3986 29% 7.9 26.5 3986 15% 8.9 35.0 4151 15% 8.9 33.8 4151

assembly53tr 65 3 1219992 827.6 14818 0% 3.9 828.7 14818 0% 3.7 828.0 14818 0% 3.9 819.9 14818 0% 3.8 833.2 14818

assembly53vr 53 3 453183 536.1 8927 0% 1.3 519.6 8927 0% 1.3 508.9 8927 0% 1.4 522.8 8927 0% 1.4 522.7 8927

cm unsup1 〈2, 3〉 872 7 1998 3.4 2361 0% 1.6 3.1 2555 0% 1.5 3.2 2555 0% 0.1 2.5 2361 0% 0.1 2.6 2361

cm unsup1 〈3, 2〉 872 7 1998 2.9 2289 0% 1.4 4.0 2733 0% 1.5 4.1 2733 0% 0.1 3.1 2289 0% 0.1 3.3 2289

cm unsup2 〈2, 2〉 560 8 698 0.3 208 53% 1.1 0.1 86 53% 2.7 0.1 86 4% 0.7 0.2 106 4% 412.6 0.2 106

cm unsup2 〈2, 3〉 908 14 62836 Timeout Timeout Timeout 2% 140.0 358.4 15159 Timeout

cm unsup2 〈3, 2〉 908 14 62836 Timeout 0% 511.9 456.9 20928 Timeout 2% 141.1 300.4 14563 Timeout

ctn 〈5〉 38 11 42964 50.4 879 92% 16.7 0.8 186 92% 16.4 0.8 186 92% 15.9 0.8 186 92% 16.3 0.9 186

ct6 46 14 447998 Timeout 95% 624.5 15.7 800 95% 616.2 15.8 800 95% 619.7 15.7 800 95% 620.2 15.5 800

fms2016 31 7 45504 4.8 14 96% 21.2 0.2 14 96% 21.3 0.2 14 96% 21.0 0.2 14 96% 20.9 0.2 14

ims uncont 17 4 12960 0.8 8 88% 1.1 0.1 8 88% 1.0 0.1 8 88% 1.1 0.1 8 88% 1.0 0.1 8

ipc 16 8 9216 8.0 2034 93% 1.4 0.1 145 93% 1.4 0.1 145 93% 1.5 0.1 145 93% 1.5 0.1 145

ipc cswitch 18 8 18432 24.7 5494 95% 3.2 0.1 145 95% 3.3 0.1 145 95% 3.2 0.1 145 95% 3.3 0.1 145

ipc lswitch 20 5 4374 0.9 250 88% 0.8 0.1 21 88% 0.8 0.1 21 88% 0.6 0.1 21 88% 0.8 0.1 21

tictactoe 35 9 2394 3.3 1970 18% 0.3 1.7 1245 18% 0.4 1.6 1245 2% 0.3 2.0 1450 12% 6.7 1.4 1335

transferline n 〈3〉 17 6 5992 0.9 18 89% 19.0 0.1 18 89% 19.3 0.1 18 42% 16.3 0.3 18 84% 117.9 0.1 18

zhennancase 31 10 485721 Timeout 41% 42.6 244.7 19280 41% 42.7 241.7 19280 35% 43.2 308.5 21313 35% 43.5 305.5 21313

2linkalt 26 3 6288 0.4 7 57% 0.3 0.1 7 57% 0.3 0.1 7 57% 0.3 0.2 7 57% 0.3 0.2 7

test cases, and while event sets are found for aip0sub1p1
and cm unsup1, the resulting supervisors are larger than
those of the SWAlgorithm alone. This suggests that the
SWAlgorithm usually benefits from the smaller input after
hiding, but it retains the potential to find reductions that
are not possible with hiding.

In the second and third cm unsup2 cases, state numbers
increase massively after subset construction and the al-
gorithm uses supervisors without projection. This is miti-
gated by imposing the observer property, and the Greedy
OP method produces the best results in these cases. In
most other cases, the observer property results in a small
increase in supervisor size. Exhaustive search usually takes
longer than greedy search, and finds a better result only
in the case of tictactoe with the observer property.

5. CONCLUSIONS

It has been shown how events can be removed from a
synthesised supervisor prior to supervisor reduction. This
enables a more effective use of the existing SWAlgorithm
and often results in simpler and smaller supervisors. The
main challenge with supervisor synthesis remains the ex-
ponentially large state number of automatically computed
state machines, which are often too large for storage or
processing by any algorithm. In some cases, smaller repre-
sentations can be computed symbolically (Miremadi et al.,
2011) or compositionally (Mohajerani et al., 2014). The
method proposed here can also help with such supervisors.

REFERENCES

Åkesson, K., Fabian, M., Flordal, H., and Malik, R.
(2006). Supremica—an integrated environment for ver-
ification, synthesis and simulation of discrete event sys-
tems. In 8th Int. Workshop on Discrete Event Systems,
WODES ’06, 384–385. IEEE. doi:10.1109/WODES.
2006.382401.

Cai, K. and Wonham, W.M. (2016). Supervisor Localiza-
tion: A Top-Down Approach to Distributed Control of
Discrete-Event Systems, volume 459 of LNCS. Springer.

Hoare, C.A.R. (1985). Communicating Sequential Pro-
cesses. Prentice-Hall.

Hopcroft, J.E., Motwani, R., and Ullman, J.D. (2001).
Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Boston, MA, USA.

Miremadi, S., Åkesson, K., and Lennartson, B. (2011).
Symbolic computation of reduced guards in supervisory
control. IEEE Trans. Autom. Sci. Eng., 8(4), 754–764.
doi:10.1109/TASE.2011.2146249.

Mohajerani, S., Malik, R., and Fabian, M. (2014). A
framework for compositional synthesis of modular non-
blocking supervisors. IEEE Trans. Autom. Control,
59(1), 150–162. doi:10.1109/TAC.2013.2283109.

Pena, P.N., Bravo, H.J., da Cunha, A.E.C., Malik, R.,
Lafortune, S., and Cury, J.E.R. (2014). Verification
of the observer property in discrete event systems.
IEEE Trans. Autom. Control, 59(8), 2176–2181. doi:
10.1109/TAC.2014.2298985.

Ramadge, P.J.G. and Wonham, W.M. (1989). The control
of discrete event systems. Proc. IEEE, 77(1), 81–98.
doi:10.1109/5.21072.

Su, R. and Wonham, W.M. (2004). Supervisor reduction
for discrete-event systems. Discrete Event Dyn. Syst.,
14(1), 31–53. doi:10.1023/B:DISC.0000005009.40749.
b6.

Tarjan, R. (1972). Depth first search and linear graph
algorithms. SIAM J. Computing, 1(2), 146–160. doi:
10.1137/0201010.

Vaz, A.F. and Wonham, W.M. (1986). On supervisor
reduction in discrete-event systems. Int. J. Control,
44(2), 475–491. doi:10.1080/00207178608933613.

Wong, K.C., Thistle, J.G., Malhame, R.P., and Hoang,
H.H. (2000). Supervisory control of distributed systems:
Conflict resolution. Discrete Event Dyn. Syst., 10, 131–
186. doi:10.1023/A:1008391200517.

Wong, K.C. and Wonham, W.M. (2004). On the com-
putation of observers in discrete-event systems. Dis-
crete Event Dyn. Syst., 14(1), 55–107. doi:10.1023/B:
DISC.0000005010.55515.27.

Yoo, T.S. and Lafortune, S. (2002). Polynomial-time ver-
ification of diagnosability of partially observed discrete-
event systems. IEEE Trans. Autom. Control, 47(9),
1491–1495. doi:10.1109/TAC.2002.802763.

