
Data-Driven Stochastic Distribution Network Reconfiguration 
 

Wanjun Huang*. Weiye Zheng*, David J. Hill* 

*Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong  

(e-mail: wjhuang@eee.hku.hk; neo_adonis@139.com; dhill@ eee.hku.hk). 

Abstract: Distribution network reconfiguration (DNR) is indispensable for the operation of active 

distribution networks. To address the uncertainties of renewables and variables loads, a data-driven 

stochastic DNR model is proposed for day-ahead DNR of three-phase unbalanced distribution networks. 

The switching cost and expected costs resulted from power losses and load balance are minimized. Based 

on the analysis of historical data, the probability distribution of DG output and load demand is derived 

using a data-driven method. To improve computation efficiency, a mixed-integer linear programming 

problem is formulated using linearization techniques. Numerical tests are carried out in an IEEE 

unbalanced benchmark. The comparison with the conventional deterministic method verifies the 

effectiveness of the proposed method. 

Keywords: Stochastic optimization, data-driven, renewable energy, unbalanced distribution network, 

distribution network reconfiguration. 

NOMENCLATURE 

Indices and Sets 

i, j, k Indices of buses, from 1 to N. 

, N Set of all buses and its cardinality. 

, E Set of all branches and its cardinality. 

, S Set of scenarios and its cardinality. 

φ, Фi Index of phases and set of phases at bus i. 

Input Parameters 

ijS  Branch transmission capacity for branch ij. 

,V V   Lower and upper bounds for voltage magnitude 

in phase φ of bus i. 
0

ijl  Initial network configuration indicator; equals 1 

if branch ij was initially connected, and 0, 

otherwise.  

L  The maximum number of lines to reconfigure. 

,gi giq q   Lower and upper bounds for reactive generation 

in phase φ of bus i. 

,ij ijR X 
 Resistance and reactance of branch ij between 

phases   and  . 

,con dis

ij ijw w  Cost to connect/disconnect branch ij. 

wloss,wLBI Coefficients that transform losses and load 

balance index into costs. 

M A large positive constant in big-M method. 

Uncertain Parameters 
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,s

gjp  Active power generation in phase φ of bus i in 

scenario s. 
, ,,s s

dj djp q   Active and reactive load demands in phase φ of 

bus i in scenario s. 

Variables 

π  Empirical probability distribution. 

lij Binary for network configuration; equals 1 if 

branch ij is connected, and 0, otherwise.  
, ,,s s

ij ijp q 
 Active/reactive power flow of branch ij in phase 

 . 
,s

giq  Reactive power generation in phase φ of bus i in 

scenario s. 
,s

iv  Squared voltage magnitude in phase φ at bus i in 

scenario s. 

1. INTRODUCTION 

Distribution network reconfiguration (DNR) is an effective 

method for power loss minimization (Rao et al, 2012) and 

load balance (Kashem et al, 1999), which is conducted by 

changing the open/closed states of line switches while 

maintaining the radial topology of the network. Nevertheless, 

with the increasing penetration of renewables, such as wind 

power and solar power, there are more uncertainties of power 

flows in distribution networks, which brings new challenges 

for the reconfiguration optimal process. 

The DNR is typically studied by the deterministic method 

which assumes the renewables and loads keep constant 

throughout the reconfiguration process. There are only a few 

research on DNR considering the uncertainties of distribution 

generators (DGs) and loads. A probabilistic generation-load 

model is proposed to combine all possible operating 

conditions of renewables and loads for each season (Zidan & 

El-Saadany, 2013). Monte Carlo simulation is also used to 

consider uncertainties in renewables and load (Gangwar et al, 

2019). The wind speed, solar irradiance and load demand are 
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assumed to follow Weibull, Beta and normal distributions, 

respectively (Gangwar et al, 2019; Zidan & El-Saadany, 

2013). However, there are no justified common distributions 

of renewables (Arthur et al, 2013; Carta et al, 2009) and loads 

(Singh et al, 2009). For instance, the Weibull distribution is 

the most widely used distribution for wind speed, but it is not 

appropriate for wind regimes presenting bimodality or with a 

high percentage of null wind speeds which should be fitted 

by mixture distributions (Carta et al, 2009). Therefore, there 

is no guarantee that the renewables or load demand will 

follow the assumed distribution types.  

With the recent development of monitoring, sensing and 

communication, it is possible to collect and analyze data from 

millions of various distributed endpoints such as smart 

meters, phasor measurement units (Depuru et al, 2011). 

Hence, the uncertainties of DG output and load demand can 

be captured by analysis of historical data and the probability 

distribution can be derived using a data-driven method 

without assumption on the distribution types. 

On the other hand, the distribution system is usually 

simplified as a balanced single-phase system in most existing 

studies (Zheng & Wu, 2018). Nevertheless, due to the non-

uniform load distribution, asymmetrical network structures 

and renewables, the distribution network is intrinsically 

unbalanced, which can introduce additional power losses and 

limit the loading capability of distribution transformers (Bina 

& Kashefi, 2011). The consideration of the unbalanced nature 

of distribution networks makes the DNR problem more 

complicated. 

The main contribution of this study is summarized as follows. 

First, the probability distribution of DG output and load 

demand is derived using a data-driven method. Second, a 

stochastic model is established for the day-ahead three-phase 

unbalanced DNR with the minimization of switching cost and 

the costs resulting from power losses and load imbalance. 

The performance of the proposed method is verified by 

comparison with the conventional deterministic method. 

2. SCENARIO GENERATION AND PROBABILITY 

DISTRIBUTION 

Given a set of historical data, we can get H observations of 

DG active power generations and active/reactive load 

demands of all buses with each observation denoted as 

 , , ,, , 1,2,..., , ,gi h di h di h ip p q h H i        p . Then the 

observations can be clustered into S categories using K-

medoids clustering algorithm (Park & Jun, 2009), which can 

be summarized as follows: 

Step 1: Choose S samples at random to be the initial cluster 

medoids. Assign each sample to the cluster associated with 

the closest medoid and calculate the sum of distances from all 

samples to their medoids; 

Step 2: Find a new medoid of each cluster, which is the 

sample minimizing the total distance to other samples in its 

cluster. Update the current medoid in each cluster by 

replacing with the new medoid; 

Step 3: Assign each sample to the nearest medoid and obtain 

the clustering result. Calculate the sum of the distance from 

all samples to their medoids. If the sum is equal to the 

previous one, stop the algorithm. Otherwise, go back to Step 

2. 

Each cluster is a typical type of scenario, and the cluster 

medoid is regarded as the representative of the corresponding 

scenario. Therefore, there are S scenarios, and the scenario s 

is represented by  , , ,, , ,s s s

gi di di ip p q i       s
ξ . Then 

the empirical distribution 
1[ ,..., ]S π  is obtained by 

/s sH H   where Hs is the number of observations clustered 

in scenario s. The number of clusters is determined by a 

trade-off between clustering accuracy and computational 

efficiency 

3. STOCHASTIC DISTRIBUTION NETWORK 

RECONFIGURATION MODEL 

To deal with the uncertainties of DGs and loads, a stochastic 

DNR model is established with the objective to minimize 

expected power losses and switch costs and balance load 

demand. A distribution network with N buses and E branches 

is considered. The point of common coupling is indexed as 

bus 1 without loss of generality. The DGs are assumed to 

work at the maximum power point tracking mode to make 

full utilization of renewable energy sources. 

3.1  Objective Function  

In power systems, the voltage magnitude is around 1.0 p.u. 

Thus, the total power losses in scenario s can be 

approximated as 
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According to (Siti et al, 2007), the load balance index (LBI) 

of scenario s can be defined as 
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A larger value of LBI refers to the better performance of load 

balancing. Therefore, the objective function of the DNR can 

be expressed as  

 

0 0

( , )

1

min  (1 ) (1 )

( )

ij

con dis

ij ij ij ij ij ij
l i j

S
s s

s loss loss LBI

s

w l l w l l

w p w LBI





   

  




 (3) 

The objective in (3) minimizes the switching cost and the 

expected costs resulted from power losses and unbalanced 

load over branches. 
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3.2  Topology Constraints  

The radial topology of the distribution network is guaranteed 

by constraint (4). Constraint (5) limits the maximum 

allowable number of switches to change their status. 

Constraint (6) is the binary constraint for the status of 

switches. 

( , )

1ij C

i j

l N E E


     (4) 

0 0

( , )

(1 ) (1 ) / 2ij ij ij ij

i j

l l l l L


       (5) 

{0,1}, ( , )ijl i j    (6) 

3.3  Three-Phase Power Flow Constraints 

The active and reactive power flow balance of each bus are 

ensured by constraints (7) and (8), respectively. The voltage 

drops of branches are described by constraints (9). 

, , , ,

: :

,s s s s

ij gj dj jk

i i j k j k

p p p p   

 

     , ,

j

j s



   

 
 (7) 

, , , ,

: :

,s s s s

ij gj dj jk

i i j k j k

q q q q   

 

     , ,

j

j s



   

 
 (8) 

 , , , ,- 2
j

s s s s

i j ij ij ij ijv v R p X q     



   
( , ) ,i j s     

(9) 

 

3.4  Branch Thermal Limits 

Constraint (10) limits the apparent power over each branch. 

The branch flow limit is automatically set as 0 if branch (i, j) 

is opened. 

   
2 2

, , 2 ,s s

ij ij ij ijp q l S    ( , ) , , ji j s        (10) 

3.5  Voltage Limits 

2 ,s 2 ,i i iV v V     , , ii s        (11) 

2 ,

1= ,s

refV v  1,s      (12) 

Constraint (11) specifies the upper and lower bounds for 

voltage magnitude of each bus. The voltage at the point of 

common coupling is set as the reference value refV in 

constraint (12). 

3.5  Reactive Power Limits for Distributed Generators   

, ,s

gi gi giq q q     , , ii s        (13) 

Constraint (13) sets the upper and lower bound limits on the 

reactive power output of DGs. 

3.6  Reactive Power Limits for Distributed Generators   

Since the constraint in (9) depends on the status of switches, 

it is replaced by the following constraint in (14) using the 

big-M method. 
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 (14) 

In addition, it is noticed that the constraint (10) is a nonlinear 

constraint with binary variables, which makes the problem 

more complicated. In this study, we use the circular 

constraint linearization technique (Zheng et al, 2018) and 

extend it to the DNR problem with discrete variables. 

Intuitively, this procedure uses an octagon to approximate the 

original circle feasible region.  Generally, the accuracy of the 

approximation increases with the number of square 

constraints. To balance between the accuracy requirement of 

industrial applications and the computation burden, we 

approximate and replace the nonlinear constraint (10) with 

the following square constraints: 
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 (15) 

2019 21 22

25

29 30 31

4 5

282726

6 16

17183332

23

121110

24

1513 1497 81 2 3

DG1-A DG2-B

DG3-C

DG4-A

DG5-ABC

DG6-CDG7-ABC
DG8-C

DG9-B DG10-A

DG11-ABC  

Fig. 1. The modified IEEE 33-bus distribution network with 

11 DGs. 

4. SIMULATION RESULTS 

4.1  Simulation Configurations and Data Description 

A modified three-phase unbalanced IEEE 33-bus distribution 

system is considered for numerical tests. There are 11 DGs 

connected randomly to the distribution systems, as is shown 

in Fig. 1. For example, DG-1 is connected at bus 10 in phase 

A, while DG-5 is connected at bus 33 in three phases. For the 

convenience of analysis, the initial values of 

wLBI,
con

ijw and dis

ijw  are all set as 0. The five lines marked by 

blue dash lines in Fig. 1 are initially open. The real data from 

the Data platform (Open Power Data platform, 2019) is 
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applied to generate the historical data of DG output and load 

demand in the test system. The data in Germany from Jan 1, 

2015 to Dec 31, 2017 are used for there are no missing 

values. Other main parameters are set as follows: ijS =1.5 p.u., 

refV =1.0 p.u., 
iV  =0.95 p.u., 

iV  =1.05 p.u., L =5, giq =-0.3 

p.u., giq  =0.3 p.u., wloss = 1.0, S = 10. 

4.2  Effectiveness of the Data-Driven Stochastic Model 

To show the effectiveness of the proposed approach, we 

compare it with the conventional deterministic DNR method 

which ignores the uncertainties of DG output and load 

demand. As is shown in Table 1, the average line losses of 

the proposed method are much smaller than that of the 

deterministic method. Besides, the bus voltages are all within 

the constraints in the proposed method, while the voltage 

magnitudes of 12 buses are below their lower bounds in the 

deterministic method. Therefore, the proposed method has 

better performance than the deterministic DNR method. The 

reconfiguration results are displayed in Fig. 2.  

Table 1.  Comparison results of the proposed and 

conventional deterministic methods 

Method 
Average Line 

Losses (kW) 

Number of 

undervoltage buses 

Proposed 0.090 0 

D-DNR 0.173 12 
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Fig. 2. Configuration results obtained by the (a) proposed 

method and (b) deterministic DNR methods. 

5. CONCLUSIONS 

In this study, we propose a data-driven stochastic distribution 

network reconfiguration model for three-phase unbalanced 

distribution networks considering the uncertainties of DG 

output and load demand. The numerical test results show that 

the proposed method has better performance than the 

deterministic method by much less cost and more securer 

system under uncertainties. How to handle the errors of 

probability distribution will be considered in the future. 

REFERENCES 

Arthur, Y. D., Gyamfi, K. B. & Appiah, S. (2013) Probability 

distributional analysis of hourly solar irradiation in 

Kumasi-Ghana. International Journal of Business and 

Social Research, 3(3), 63-75. 

Bina, M. T. & Kashefi, A. (2011) Three-phase unbalance of 

distribution systems: Complementary analysis and 

experimental case study. International Journal of 

Electrical Power & Energy Systems, 33(4), 817-826. 

Carta, J. A., Ramirez, P. & Velazquez, S. (2009) A review of 

wind speed probability distributions used in wind energy 

analysis: Case studies in the Canary Islands. Renewable 

and sustainable energy reviews, 13(5), 933-955. 

Open Power Data platform. (2019). Available online: 

https://open-power-system-data.org. 

Depuru, S. S. S. R., Wang, L., Devabhaktuni, V. & Gudi, N. 

(2011) Smart meters for power grid—Challenges, issues, 

advantages and status, 2011 IEEE/PES Power Systems 

Conference and Exposition. IEEE. 

Gangwar, P., Singh, S. N. & Chakrabarti, S. (2019) Multi-

objective planning model for multi-phase distribution 

system under uncertainty considering reconfiguration. 

IET Renewable Power Generation, 13(12), 2070-2083. 

Kashem, M., Ganapathy, V. & Jasmon, G. (1999) Network 

reconfiguration for load balancing in distribution 

networks. IEE Proceedings-Generation, Transmission 

and Distribution, 146(6), 563-567. 

Park, H.-S. & Jun, C.-H. (2009) A simple and fast algorithm 

for K-medoids clustering. Expert systems with 

applications, 36(2), 3336-3341. 

Rao, R. S., Ravindra, K., Satish, K. & Narasimham, S. (2012) 

Power loss minimization in distribution system using 

network reconfiguration in the presence of distributed 

generation. IEEE transactions on power systems, 28(1), 

317-325. 

Singh, R., Pal, B. C. & Jabr, R. A. (2009) Statistical 

representation of distribution system loads using 

Gaussian mixture model. IEEE Transactions on Power 

Systems, 25(1), 29-37. 

Siti, M. W., Nicolae, D. V., Jimoh, A. A. & Ukil, A. (2007) 

Reconfiguration and load balancing in the LV and MV 

distribution networks for optimal performance. IEEE 

Transactions on Power Delivery, 22(4), 2534-2540. 

Zheng, W. & Wu, W. (2018) Distributed multi-area load flow 

for multi-microgrid systems. IET Generation, 

Transmission & Distribution, 13(3), 327-336. 

Zheng, W., Wu, W., Zhang, B. & Lin, C. (2018) Distributed 

optimal residential demand response considering 

operational constraints of unbalanced distribution 

networks. IET Generation, Transmission & Distribution, 

12(9), 1970-1979. 

Zidan, A. & El-Saadany, E. F. (2013) Distribution system 

reconfiguration for energy loss reduction considering the 

variability of load and local renewable generation. 

Energy, 59, 698-707. 

 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7286


