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Abstract: The problem of avoiding overshoot in tracking control problems has an extensive
history, but only a few works have offered methods that are applicable to a nonlinear plant. The
recent paper (Schmid, 2019) adapted some methods from the linear control systems literature
to offer state feedback laws to deliver a nonovershooting response in all outputs of a multi-input
multi-output feedback linearisable plant.
A double-buck converter consists of cascaded buck converters connected to a single voltage
supply. Taking the system outputs as the voltages across the two load resistors, we use dynamic
averaging to obtain a nonlinear state model for the converter. We introduce suitable coordinates
to show it has a well-defined vector relative degree and show the system is feedback linearisable.
The methods of (Schmid, 2019) are then employed to obtain a state feedback law that ensures
both outputs track arbitrary time-varying reference trajectories without overshoot.
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1. INTRODUCTION

In tracking control problems, the twin performance ob-
jectives of obtaining a rapid response while minimising
overshoot have traditionally been viewed as competing
objectives, with most control methods seeking a suitable
trade-off between the two (Chen et al, 2003). Most works
on controller synthesis for avoiding overshoot entirely have
considered linear time-invariant plants (Darbha and Bat-
tacharyya, 2003; Bement and Jayasuriya, 2004; Schmid
and Ntogramatzidis, 2010). Only a very few papers, no-
tably (Krstić and Bement, 2006) and (Zhu and Zhao, 2013)
have given nonovershooting control methods for nonlinear
single-input single output (SISO) plants.

In the recent paper (Schmid, 2019), a design method was
offered to avoid overshoot in all outputs of a feedback
linearisable multiple-input multiple output (MIMO) sys-
tem. It was claimed that the paper addressed a wider class
of systems than were considered in (Krstić and Bement,
2006), and the controller synthesis method was rather sim-
pler than the one given in (Zhu and Zhao, 2013). However,
none of these three papers considered any application of
their proposed methods to a plant model derived from
real-world engineering practice, and hence the practical
utility of these methods is not known. In this paper we
seek to demonstrate the utility of the method proposed in
(Schmid, 2019) by considering its application to a voltage
converter circuit.
? The third author kindly acknowledges support by the European
Union Horizon 2020 research and innovation program under Marie
Skłodowska-Curie grant agreement No. 734832.

The double buck converter circuit, with outputs taken to
be the voltages on the two load resistors and the control
inputs given by the pulse width modulations (PWM) of
the transistors, was considered in (Bustamante, 2018). The
double buck converter presents a suitably challenging real-
world application to investigate the effectiveness of the
nonovershooting tracking control methods proposed for
feedback linearisable systems in (Schmid, 2019).

The paper is organised as follows. In Section 2 we briefly
revisit the controller synthesis methods of (Schmid, 2019).
In Section 3 we develop the plant model for the double
buck converter circuit and introduce the state coordinates
that yield a well-defined vector relative degree. A coordi-
nate transformation and feedback linearising control law
are given to render the system as two decoupled chain-of-
integrator systems. Section 4 provides simulation results
of the proposed control methods. Finally Section 5 offers
some concluding thoughts on possible further investiga-
tions.

2. NONOVERSHOOTING TRACKING CONTROL

In this section we present a summary of the controller
synthesis methods given in (Schmid, 2019) for feedback
linearisable nonlinear plants. We consider an affine non-
linear square MIMO system Σnonlin in the form

Σnonlin :

{
ẋ = f(x) + g(x)u, x0 = x(0)
y = h(x),

(1)

where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rp, and f , g and h
are smooth vector fields. The problem of nonovershooting
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output regulation is to find a state feedback control law
u = u(x) that stabilizes the closed-loop system and ensures
the system output tracks a reference signal r(t) ∈ Rp
without overshoot; thus the tracking error signal e(t) =
r(t) − y(t) → 0 without changing sign in all components.
We assume the reference signal is obtained as the output
of a linear exosystem

Σexo :

{
ẇ = S w, w0 = w(0)
r = Hw,

(2)

where w(t) ∈ Rm is the state of the exosystem and w0 is
an arbitrary known initial condition.

2.1 Normal forms for feedback linearisable systems

We assume (1) is feedback linearisable by state feedback.
The following standard assumptions ensure the existence
of suitable linearising state feedback law (Sastry, 1999):
Assumption 2.1. The origin is an equilibrium point of (1).
Assumption 2.2. The system (1) has a well-defined vector
relative degree (γ1, . . . , γp) at x0 ∈ Rn, if (i) for all x in a
neighbourhood U of x0 the Lie derivatives satisfy

LgjL
k
fhj(x)≡ 0, k ∈ {0, 1, . . . , γj − 2}, (3)

where gi and hi are the j-th components of the vector
fields g and h, for j ∈ {1, . . . , p}, and (ii) the matrix

A(x) =

 Lg1L
γ1−1
f h1 . . . LgpL

γ1−1
f h1

...
. . .

...
Lg1L

γp−1
f hp . . . LgpL

γp−1
f hp

 (4)

is nonsingular at x = x0.

Under these assumptions, in the neighbourhood U of x0
there exists a change of coordinates

[
T1(x)

T2(x)

]
=



η1
...

ηn−γ

ξ1
...
ξp


=

[
η

ξ

]
, (5)

where γ = γ1 + · · ·+ γp and for each j ∈ {1, . . . , p},
ξj=(ξj1, ξ

j
2, . . . , ξ

j
γj )>= (hj(x), Lfhj(x), . . . , L

γj−1
f hj(x))>.

(6)
Applying the feedback linearising control law

u(x) = −A−1(x)

 Lγ1f h1...
L
γp
f hp

+A−1(x)ν (7)

to (1) yields the linear closed-loop system in chain-of-
integrator normal form coordinates

Σnormal :

 η̇ = fo(η, ξ)

ξ̇ = Acξ +Bcν, ξ0 = ξ(0)
y = Ccξ,

(8)

where ξ(t) ∈ Rγ , η(t) ∈ Rn−γ , and (Ac, Bc, Cc) is a
decoupled MIMO chain-of-integrator system with

Ac = blkdiag(A1, . . . , Ap), (9)

Bc = blkdiag(B1, . . . , Bp), (10)

Cc = blkdiag(C1, . . . , Cp), (11)

where, for each j ∈ {1, . . . , p}, each system (Aj , Bj , Cj) is
a SISO chain-of-integrator system of order γj :

A =


0 1 0 · · · 0

0 0 1
. . .

......
...
. . . . . . 0

0 0 · · · 0 1
0 0 · · · 0 0

 , B =


0...
0
1

 , C = [ 1 0 0 · · · 0 ] .

(12)

Our final assumption is
Assumption 2.3. The zero dynamics η̇ = f0(η, 0) is stable.

Control of (1) may then be achieved by designing the
feedback ν for (8) and including it in (7).

2.2 Nonovershooting output regulation for linear systems

For the case where (1) is an LTI system, we have

Σlin :


ẋ = Ax+B u, x(0) = x0
y = C x
ẇ = S w, w(0) = w0

r = Hw,

(13)

for suitably dimensional state matrices A, B and C.
The problem of output regulation by linear state feedback
(Saberi, 2000) can be solved by a control input of the form

u = F x+Gw. (14)
Here F can be any matrix such that A+B F is Hurwitz-
stable, and the feedforward matrix G = Γ− F Π, where Γ
and Π are obtained by solving the Sylvester equations

ΠS =AΠ +B Γ (15)

0 =C Π−H. (16)
In (Schmid and Ntogramatzidis, 2014), it was shown that
the control input (14) achieves nonovershooting output
regulation from (x0, w0) provided the closed-loop system
Σnom, defined by

Σnom :

{
˙̃x = (A+BF ) x̃, x̃(0) = x̃0
ẽ = C x̃,

(17)

has a nonovershooting natural response from initial con-
dition x̃0 = x0 − Πw0. (Schmid, 2019) gave a method for
obtaining a nonovershooting response for a linear chain-
of-integrator system that we describe in the next section.

2.3 Nonovershooting natural response for linear systems
in chain-of-integrator normal form

We consider a n-th order LTI SISO system{
ẋ = Ax+B u, x(0) = x0 ∈ Rn,
y = C x,

(18)

whose input-output map is a chain of integrators. Our
aim is to obtain a feedback matrix F such that the state
feedback control law u = Fx will ensure that the natural
response of the closed-loop system converges to 0 without
overshoot. To do this we firstly let L = {λ1, λ2, . . . , λn}
be a set of desired real stable closed-loop poles with
λ1 < λ2 < · · · < λn < 0. For each i ∈ {1, . . . , n}, we
solve the Rosenbrock equation[

A− λiI B
C 0

] [
vi
wi

]
=

[
0
1

]
, (19)
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and obtain vectors V = {v1, v2, . . . , vn} ⊂ Rn and W =
{w1, w2, . . . , wn} ⊂ R given by

vi =


1
λi
λ2i...
λn−1i

 , wi = λni . (20)

We let V = [v1 v2 . . . vn] and W = [w1 w2 . . . wn] and
use the method of (Moore, 1976) to obtain the matrix

F = WV −1 (21)
that ensures A + BF has eigenvalues L and eigenvectors
V. Introducing α = (α1, . . . , αn)> = V −1x0, the natural
response of the closed-loop system is given by

y(t) =

n∑
i=1

αie
λit. (22)

The following lemma from (Schmid, 2019) provides a
sufficient condition for y to not change sign, for t ≥ 0.
Lemma 2.1. Let (A,B,C) be an n-th order chain-of-
integrators SISO system as in (12). Let L be a desired
set of real stable poles with λ1 < λ2 < · · · < λn < 0, and
let F be obtained from (19)-(21). For the initial condition
x0, let α ∈ Rn be such that the natural response y of the
closed-loop system is given by (22). We introduce

ck :=

{
1, if αkαn < 0
0, otherwise , for k ∈ {1, . . . , n− 1}(23)

p(x0,L) := |αn|+ (1− 2cn−1)|αn−1| −
n−2∑
k=1

ck|αk|. (24)

Then y(t) does not change sign for t ≥ 0 if p(x0,L) > 0.

(Schmid, 2019) gave the following algorithm for a nonover-
shooting state feedback linearising control law for (1):
Algorithm 2.1.

(1) For each chain-of-integrators subsystem (Aj , Bj , Cj)
of order γj in (12), obtain matrices Γj , Πj satisfying

Πj S =Aj Πj +Bj Γj (25)

0 =Cj Πj −Hj , (26)
where Hj denotes the j-th row of H in (2). Let
ξ0 = T2(x0) be decomposed as

ξ0 = (ξ10 , ξ
2
0 , . . . , ξ

p
0)> (27)

and compute, for each j ∈ {1, . . . , p},
ξ̃j0 = ξj0 −Πjw0. (28)

(2) Let Σjnom be the nominal system in (17) with re-
spect to (Aj , Bj , Cj), with initial condition ξ̃j0. Se-
lect candidate sets of desired negative closed-loop
poles Lj = {λj1, . . . , λjγj} and use (20) to obtain
Vj = {vj1, v

j
2, . . . , v

j
n} and Wj = {wj1, w

j
2, . . . , w

j
n}.

Compute αj = V −1j ξ̃j0 and use Lemma 2.1 to test
p(ξ̃j0,Lj) > 0. If the test fails, select alternative poles.

(3) Obtain Fj from (21), and compute Gj = Γj − Fj Πj .
(4) Combine F = blkdiag(F1, . . . , Fp) and

G = (G>1 , . . . , G
>
p )> to obtain the control law

ν = Fξ +Gw, (29)

and include ν in (7) to obtain the feedback linearising
controller u.

3. THE DOUBLE BUCK CONVERTER CIRCUIT

The multivariable average model for the double buck con-
verter of Figure 1 is (Bustamante, 2018)

L1
di1
dt

=−v1 + E u1 (30)

C1
dv1
dt

= i1 −
v1
R1
− i2 u2 (31)

L2
di2
dt

=−v2 + v1 u2 (32)

C2
dv2
dt

= i2 −
v2
R2

(33)

y1 = v1 (34)

y2 = v2. (35)
The outputs are the resistor voltages v1 and v2, and the
controls are the switching functions u1 and u2 for the pulse
width modulation (PWM) of the transistors.

1 U1 
Ll U2 L2 

• 1 • 

0 . 0 
' 

11 • + • 12 + • • 

Cl Vl Rl V2 C2 R2 
E 

Figure 1. Cascaded double buck converter with load resis-
tors R1 and R2.

We collect the state as x> = (i1, v1, i2, v2) and rewrite

ẋ1 =− x2
L1

+
Eu1
L1

(36)

ẋ2 =
x1
C1
− x2
R1C1

− x3u2
C1

(37)

ẋ3 =− x4
L2

+
x2u2
L2

(38)

ẋ4 =
x3
C2
− x4
R2C2

(39)

y1 = x2 (40)

y2 = x4. (41)
The goal is to regulate the output voltages y to desired set-
point values. Problems associated to this system are that
only inputs ui(t) ∈ [0, 1] are admissible and that output y
has no vector relative degree (singular decoupling matrix).

The latter problem may be solved by introducing a dy-
namic extension ū2 to the system, such that u2(t) :=∫ t
0
ū2(τ)dτ . Augmenting the state vector with x5 = u2,

we obtain the extended system

ẋ1 =− x2
L1

+
Eu1
L1

(42)

ẋ2 =
x1
C1
− x2
R1C1

− x3x5
C1

(43)

ẋ3 =− x4
L2

+
x2x5
L2

(44)
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ẋ4 =
x3
C2
− x4
R2C2

(45)

ẋ5 = ū2. (46)

The vector relative degree γ can now be found by differ-
entiating (y1, y2) = (x2, x4) with respect to time until the
first appearance of u1 or ū2:

ẏ1 =
x1
C1
− x2
R1C1

− x3x5
C1

ÿ1 =− x2
C1L1

x2 +
Eu1
C1L1

− x1
R1C2

1

+
x2

R2
1C

2
1

+
x3 x5
R1C2

1

− 1

C1

(
x3 ū2 − x5

(
− x4
L2

+
x2 x5
L2

))
4
= f1(x) +

Eu1
C1L1

− x3 ū2
C1

ẏ2 =
x3
C2
− x4
R2C2

ÿ2 =− x4
C2L2

+
x2 x5
C2L2

− x3
R2C2

2

+
x4

(R2C2)2

...
y 2 =− 1

C2L2

(
x3
C2
− x4
R2C2

)
+
x2ū2
C2L2

+
x5
C2L2

(
x1
C1
− x2
R1C1

− x3 x5
C1

)
+

1

(R2C2)2

(
R2x4
L2

− R2x2 x5
L2

+
x3
C2
− x4
R2C2

)
4
= f2(x) +

x2 ū2
C2L2

, where

f1(x) =− x2
C1L1

− x1
R1C2

1

+
x2

R2
1C

2
1

+
x3 x5
R1C2

1

− x5
C1

(
− x4
L2

+
x2 x5
L2

)
f2(x) =− 1

C2L2

(
x3
C2
− x4
R2C2

)
+

x5
C2L2

(
x1
C1
− x2
R1C1

− x3 x5
C1

)
+

1

(R2C2)2

(
R2x4
L2

− R2x2 x5
L2

+
x3
C2
− x4
R2C2

)
.

Hence the extended system has vector relative degree γ =
(2, 3), and the decoupling matrix has full rank whenever
x2 6= 0. We introduce the diffeomorphism T as:

T (x) =



x2
x1
C1
− x2
R1C1

− x3 x5
C1

x4
x3
C2
− x4
R2C2

− x4
C2L2

+
x2 x5
C2L2

− x3
R2C2

2

+
x4

(R2C2)2


. (47)

The chain of integrators form of the double buck converter
system can be represented in coordinates ξ = T (x) as:

ξ̇1 = ξ2 (48)

ξ̇2 = f1(x) +
Eu1
C1L1

− x3 ū2
C1

(49)

ξ̇3 = ξ4 (50)

ξ̇4 = ξ5 (51)

ξ̇5 = f2(x) +
x2 ū2
C2L2

. (52)

Note that for brevity we represent the transformed system
in the original x coordinates. From (52) we compute the
linearising

ū2 =
C2L2

x2
(−f2(x) + ν2),

which results in (49) becoming:

ξ̇2 = f1(x) +
Eu1
C1L1

− C2L2x3
C1x2

(−f2(x) + ν2). (53)

We can now compute u1 to linearize (53):

u1 =
C1L1

E

(
−f1(x) +

C2L2x3
C1x2

(−f2(x) + ν2) + ν1

)
=
C1L1

E
(−f1(x) + ν1) +

C2L1L2x3
Ex2

(−f2(x) + ν2).

Setting f(x) = (f1(x), f2(x))>, and ν = (ν1, ν2)>, the
exactly linearising control reads(

u1
ū2

)
=
C1C2L1L2

Ex2

( x2

C2L2

x3

C1

0 E
C1L1

)
(−f(x) + ν), (54)

and results in two decoupled integrator chains

ζ̇1 =Ac,1ζ1 +Bc,1ν1 (55)

y1 =Cc,1ζ1 (56)

ζ̇2 =Ac,2ζ1 +Bc,2ν2 (57)

y2 =Cc,2ζ2, (58)

where ζ1 = (ξ1, ξ2)>, ζ2 = (ξ3, ξ4, ξ5)> and (Ac,1, Bc,1, Cc,1)
and (Ac,2, Bc,2, Cc,2) are chain-of-integrator systems of
order 2 and 3, respectively. Combining the controls inputs
gives ν = [ν1, ν2]> for (54). Design of ν1 and ν2 must
ensure u1 and u2 remain within [0, 1] at all times.

4. NONOVERSHOOTING TRACKING FOR THE
DOUBLE BUCK CONVERTER

In this Section we demonstrate how the controller design
methods from Section 2 can be applied to the double
buck converter circuit of Figure 1. We adopt the system
parameters used in (Linares-Flores et al, 2006):

E L1 C1 R1 L2 C2 R2

55 V 12 mH 470 µF 100 Ω 16 mH 470 µF 10 kΩ

Assuming the switch u2(0) = 0 and the switch u1(0) = 1,
and assuming the circuit initially starts in steady state,
then we can calculate the values of the currents and
voltages using circuit laws as v1 = 55V, i1 = 0.55A,
v2 = 0V and i2 = 0A. Hence a valid initial condition
for the system is x0 = (0.55, 55, 0, 0, 0)>.

4.1 Constant step references

We want to obtain output voltages v1 = 40V and v2 =
20V . For (2), we choose the constant dynamics exosystem

S = 0, w0 = 1, H = [40 20]>, (59)
yielding the constant reference signal of r(t) = [40 20]>.
We assume the initial condition of x0 = (0.55, 55, 0, 0, 0)>

for (42)-(46) and employ Algorithm 2.1 to design feedback
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and feedforward matrices for control law νj = Fjζj +Gjw,
j = 1, 2, for the chain-of-integrator systems (55)-(58). In
Step 1, we solve (25)-(26) for j = 1, 2 and obtain

Π1 =

[
40
0

]
, Γ1 = 0, Π2 =

[
20
0
0

]
, Γ2 = 0. (60)

From (47) we compute ξ0 = (55, 0, 0, 0, 0)> and from (28)
we obtain ξ̂0 = (15, 0,−20, 0, 0)>. In Step 2, we select
intervals in the negative real line within which the desired
closed-loop poles should lie. For (Ac,1, Bc,1, Cc,1) we select
from the interval (−4,−1) and apply procedure (19)-(21)
with ξ̂10 = (15, 0)>. The choice L1 = {−1.6256, −1.4204}
yields the feedback matrix F1 = −[2.309, 3.046] and
the coordinate vector α = (−103.8, 118.8)> satisfying
Lemma 2.1. For (Ac,2, Bc,2, Cc,2) we select from the in-
terval (−4,−1) and apply procedure (19)-(21) with ξ̂20 =
(−20, 0, 0)>. The choice L2 = {−3.9772,−2.0972,−1.0321}
yields the feedback matrix F2 = −[8.608, 14.61, 7.107] and
the coordinate vector α = (−11.63, 89.19,−97.56)>, again
satisfying Lemma 2.1. In Step 3, we use Gj = Γj − FjΠj

to compute G1 = 92.361 and G2 = 172.17. In Step 4 we
combine F = blkdiag(F1, F2) and G = (G>1 , G

>
2 )> to

finally obtain
ν = Fξ +Gw (61)

for (54). Figures 2a-d show the outputs track the reference
values without overshooting, and the control inputs satisfy
the saturation condition.

4.2 Tracking of time-varying reference signals

The time-varying voltage outputs

r(t) =

[
40− sin(t)
20− sin(t)

]
(62)

are generated by the exosystem (2) with

S =

[
0 1 0
−1 0 0
0 0 0

]
, w0 =

[
0.5
−0.5
0.5

]
, H =

[
1 1 80
1 1 40

]
.

Solving (25)-(26) for j = 1, 2 yields

Π1 =

[
1 1 80
−1 1 0

]
, Γ1 = [−1 −1 0] , (63)

Π2 =

[
1 1 40
−1 1 0
−1 −1 0

]
, Γ2 = [1 −1 0] . (64)

From (28) we obtain ξ̂0 = (15, 1,−20, 1, 0)>. In Step 2, we
apply procedure (19)-(21) for (Ac,1, Bc,1, Cc,1) with ξ̂10 =

(15, 1)>, and for (Ac,2, Bc,2, Cc,2) with ξ̂20 = (−20, 1, 0)>.
Choice F1 = −[7.98, 5.77] and F2 = −[6.25, 11.63, 6.42]
yield the coordinate vectors α1 = (−30.29, 45.29)> and
α2 = (−5.09, 56.64, −71.55)>, both of which satisfy
Lemma 2.1. Step 3 yields
G1 = [1.21 12.75 638.4] , G2 = [−10.81 10.46 249.86] .

(65)
In Step 4 we again combine matrices to obtain F and G
for ν in (54). Figures 3a-d show the outputs track the
sinusoidal reference voltages without overshooting, and the
control inputs satisfy the saturation condition.

5. CONCLUSION

We investigated the application of the nonovershooting
tracking control methods of (Schmid, 2019) for the control
of a double buck voltage converter circuit. Our simulation
study demonstrated that these methods could deliver the
desired nonovershooting tracking response for both voltage
outputs. Future work will investigate the effectiveness of
the proposed methods in a hardware implementation.
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Figure 2. Simulation of Double Buck Converter Circuit
with a Constant Reference.
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Figure 3. Simulation of Double Buck Converter Circuit
with a Time-Varying Reference.
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