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Abstract: The remaining capacity of a battery is a crucial indicator, which has significant
impact on State of Charge (SoC) estimation and the safe operations of electric vehicles. In this
paper, an electrochemical model considering the electrolyte dynamics is proposed to estimate
the real capacity of a lithium-ion battery. The electrochemical model with electrolyte dynamics
governed by several partial differential equations has the potential to accurately describe
varieties of phenomenons inside the battery. Furthermore, a Pade’ one-order approximation
is adopted to obtain the transfer function between the boundary lithium-ion concentration and
input current, then a boundary state estimator is proposed to estimate the the boundary lithium-
ion concentration. After that, the least square method is used to obtain the adaptive update law
for maximum concentration estimation in anode. Finally, the correctness of the aforementioned
estimation methods is verified through simulation.

Keywords: lithium-ion battery, electrochemical model, capacity, electrolyte dynamics, Pade’
approximation, least square method.

1. INTRODUCTION

On account of the superiorities of high energy density, low
self-discharge rate and lack-of-memory property, lithium-
ion battery has wide applications around our life, such as
cell phones, laptops, electric vehicles and so on. However,
capacity fade of the lithium-ion battery is inevitable on
account of aging. According to the definition of SoC,
we know that SoC is inversely proportional to the real
capacity of the battery. Hence, the accuracy of capacity
estimation has great impact on SoC computation.
Generally, the methods of capacity estimation can be
classified into five parts: methods based on equivalent
circuit model (ECM) consisting of several resistances and
capacitances; methods on basis of electrochemical mod-
el which can detail and model the dynamic phenome-
na emerging in the battery; methods based on perfor-
mances model using the physics equations which describe
the relationship between capacity and physical proper-
ties; methods using analytical models with empirical fit-
ting through measurements; data-driven based approach-
es. Markus Einhorn et al. propose an approach for es-
timating capacity which can be operated in any voltage
stages and is unnecessary to discharge the cell completely,
but this approach is strictly dependent of accurate SoC
and the relationship between SoC and OCV obtained by
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ECM in [Einhorn et al.(2012)]. An approach based on half-
cell open circuit voltages is used for capacity estimation,
which can help derive the relationship between OCV and
SoC at different ages, then look-up tables were estab-
lished and utilized in [Marongiu et al.(2016)]. The method
considering the Butter-Volmer kinetics in equivalent cir-
cuit model is proposed for capacity fade prediction by
[Fleischer et al.(2014)], then an order reduction technique
is used for efficient implementation on microprocessor. A
two-state thermal model coupling ECM is leveraged for
identifying the battery capacity in [Zhang et al.(2019)],
and the convergence properties of estimation are analyzed.
Compared with ECM, the research based on electrochemi-
cal model is relatively less. A pde’-based PDE parameters
identifier was introduced to obtain accuracy capacity and
the identifiability of the output equation was analyzed
[Moura et al.(2014)]. [Li et al.(2018)] develop an single
particle-based degradation model to estimate the SoH of
battery by introducing the solid electrolyte interface layer
formation, which is more accurate than those based on
ECM and empirical model. In [Bizeray et al.(2019)], the
identifiability of battery model based on Single Particle
Model (SPM) is analyzed and parameters estimation in-
cluding capacity are completed. Performance based model
is created through investigating the dependency between
physics properties and capacity. However, relative research
is very few. [Samad et al.(2016)] studies the dependency
between the surface force and capacity of the battery
without using voltage and current measurement, which can
improve the signal to noise ration of capacity estimation.
In practice, due to the limit of computation, empirical
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based method is widely used, which is more computation-
ally inexpensive. By investigating the influences on aging
of temperature and SoC, a capacity fade model on basis of
Dakin’s degradation approach is established for capacity
estimation in [Baghdadi et al.(2016)]. [Hoog et al.(2017)]
propose a capacity estimation method through a second-
order differential voltage, which needs to obtain a reference
voltage curve from a fresh battery for the comparison
with the curve from the aging battery. A semi-empirical
capacity fade model is used for SoH computation through
the tests of 146 cells in [Goh et al.(2017)]. Considering the
effect of internal resistance on SoH estimation, a regression
model of capacity fade obtained by the analysis of capacity
fade data can be used to accurately predict the remaining
useful life [Guha et al.(2018)]. [Singh et al.(2019)] intro-
duce a semi-empirical model of capacity fade for SoH
estimation, which can extract the real maximum capacity
of battery from the discharge curve. Data-driven based
method for SoH estimation has become popular recent-
ly due to the development of intelligent algorithms. A
support vector machine model is introduced to complete
SoH estimation by capturing internal characteristics from
collected data in [Klass et al.(2012)]. [Kim et al.(2015)]
propose a rayleigh quotient-based method for capacity
estimation, which considers this estimation as a problem
of solving recursive total-least-squares (RTLS). Capacity
fade estimation based on artificial neural networks is in-
troduced to estimate capacity of battery and the Data
is obtained by amounts of charging and discharging cy-
cles in [Hussein et al.(2015)]. Based on the spare Bayesian
learning method, relevance vector machine (RVM) is used
to learn the dependency of capacity on the properties
abstracted from the voltage and current measurements in
[Hu et al.(2015)]. [Sung et al.(2016)] adopt a data-driven
model to capture the variations in the shape of the charge
curve when the battery ages and the parameters are iden-
tified by the least squares method. In [Liu et al.(2018)],
a data-driven method, Gaussian process regression, is p-
resented for capacity computation, which deals with the
problem that the differentiate of data can enlarge the
measurement noise. A model based on neural network
in varieties of charge-states is developed, and the ter-
minal voltage, temperature and load are input parame-
ters [Richardson et al.(2019)]. Based on the measurable
data, such as voltage, current and temperature from
the battery, the relationship between capacity and those
parameters is obtained by machine learning method in
[Choi et al.(2019)].
In this paper, an electrochemical model considering the
dynamics of liquid phase is proposed for capacity identi-
fication. Comparing with ECM and SPM, electrochemi-
cal model with electrolyte dynamics can detail the phe-
nomenons inside battery more accurately and obtain the
more precise prediction of terminal voltage. Furthermore,
a Pade’ one-order approximation is adopted to obtain
the transfer function between the boundary lithium-ion
concentration and input current, then a boundary state
estimator is proposed to estimate the boundary lithium-
ion concentration. After that, the least square method is
used to obtain the adaptive update law for maximum con-
centration estimation in anode, which can help compute
the maximum available capacity. Finally, simulation is im-
plemented to verify the correctness of the aforementioned

estimation methods.
The remaining parts of this paper are arranged as follows:
Section. 2 presents the electrochemical model with the dy-
namics of liquid phase. The Pade’ approximation is utilized
in Section. 3 for boundary state estimation. In Section.
4, the capacity estimation is completed through the least
squares method. Finally, the simulation is implemented to
verify the correctness of the capacity estimation method
in Section. 5.

2. ELECTROCHEMICAL MODEL WITH
ELECTROLYTE DYNAMICS (SPME)

The SPM as the simplest version of Doyle Fuller Newman
(DFN) model has been widely used in the area of esti-
mation and control of lithium-ion battery. However, there
are relatively few literatures using electrochemical model
to estimate capacity of lithium-ion battery. Additionally,
neglecting the dynamics of liquid phase in SPM is unwise
because the terminal voltage computation is strictly de-
pendent of liquid phase potential. Here, a modified model
of SPM considering the dynamics of liquid phase is pre-
sented.

2.1 SPM Considering the Dynamics of Liquid Phase

The evolution of lithium in each electrode can be governed
by the following partial differential equations:

∂cjs
∂t

=
Dj

r2j

∂

∂rj
(r2j

∂cjs
∂rj

). (1)

Where, cjs is the lithium concentration in solid phase, rj
is the radial of spherical particle, Dj

s denotes the diffusion
coefficient of electrode, j represent +,− which mean anode
and cathode. The equation (1) has the following Newman
boundary conditions:

∂cjs
∂rj

(0, t) = 0,
∂cjs
∂rj

(Rjs, t) = − J
j

Dj
(2)

Where, rj = 0 and rj = Rjs respectively denote the center
and the surface of single particle. Jj is the molar flux of
lithium ion in anode/cathode which is directly related to
the input current by the following expressions:

J+ =
−I

a+L+FA
, J− =

+I

a−L−FA
(3)

Where, F is the Faraday constant, A represents the surface
area of electrode which is considered as a uniform vale for
anode/cathode, aj is the specific active surface area ob-
tained by 3εj/Rjs, ε

j is volume fraction of active material.
Next, the electrolyte diffusion equations are presented as
follows:

∂c−e
∂t

(x, t) =
∂

∂x
[De(c

−
e )
∂c−e
∂x

(x, t)] +
(1− t0c)
ε−e FL− I(t) (4)

∂csepe
∂t

(x, t) =
∂

∂x
[De(c

sep
e )

∂csepe
∂x

(x, t)] (5)

∂c+e
∂t

(x, t) =
∂

∂x
[De(c

+
e )
∂c+e
∂x

(x, t)]− (1− t0c)
ε+e FL+

I(t) (6)
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Where, c−e , c
+
e and csepe respectively denote the electrolyte

concentration of lithium ion in cathode, anode and sepa-
rator, De is the diffusion coefficient of lithium ion in liquid
phase which is the function of lithium-ion concentration,
t0c is the transference number, εje is the volume fraction of
electrolyte phase, Lj is the thickness of anode/cathode.
The PDE (4),(5) and (6) are with the following boundary
conditions:

∂c−e
∂x

(0−, t) =
∂c+e
∂x

(0+, t) = 0 (7)

ε−e De(L
−)
∂c−e
∂x

(L−, t) = εsepe De(0
sep)

∂csepe
∂x

(0sep, t) (8)

ε+e De(L
+)
∂c+e
∂x

(L+, t) = εsepe De(L
sep)

∂csepe
∂x

(Lsep, t) (9)

ce(L
−, t) = ce(0

sep, t) (10)

ce(L
sep, t) = ce(L

+, t) (11)

Where, 0−, 0+, 0sep, Lsep, L−, L+ denote the boundary po-
sitions.
After that, the output function of terminal voltage is
derived, which is dependent of solid potential φ±s (x, t), that
is V (t) = φ+s − φ−s . φ±s can be computed as follows:

φ±s (x, t) = η̄±(t) + φ̄±e + U±(c̄±ss(t)) + FR±
f J̄

±(t) (12)

The first term of equation (12) is overpotential which can
be obtained by the following equation:

η̄±(t) =
RT

αF
sinh−1(

∓I(t)

2a±L±ī±0 (t)
) (13)

The electrolyte potential φ±e are governed by the following
ODE:

∂φe
∂x

(x, t) =
i±e (x, t)

k(ce)
+

2RT

F
(1− t0c)

×(1 +
d ln fc/a

d ln ce
)
∂ ln ce
∂x

(x, t)dx

(14)

Where, i±e is ionic current, k(ce) is the conductivity of elec-
trolyte, fc/a denotes the mean molar activity coefficient in

electrolyte. The term (1+
d ln fc/a
d ln ce

) is assumed as a uniform

value kf (t). φ±e can be solved by integrating equation (14)
across the battery width. Then,

φ̄+e (0+, t)− φ̄−e (0−, t) =
L+ + 2Lsep + L−

2k(ce)
I(t)

+
2RT

F
(1− t0c)kf (t)[ln ce(0

+, t)− ln ce(0
−, t)].

(15)

Hence, the terminal voltage V (t) can be expressed as
follows

Fig. 1. Voltage predictions of DFN, SPMe and SPM

V (t) =
RT

αF
sinh−1(

−I(t)

2a+L+ī+0 (t)
)

−RT
αF

sinh−1(
−I(t)

2a−L−ī−0 (t)
)

+U+(c̄+ss(t))− U−(c̄−ss(t))− (
R+
f

a+L+
+

R−
f

a−L− )I(t)

+
L+ + 2Lsep + L−

2k(ce)
I(t)

+
2RT

F
(1− t0c)kf (t)[ln ce(0

+, t)− ln ce(0
−, t)].

(16)

Due to the introduction of electrolyte dynamics, additional
two terms are generated in the last part of V (t). Fig. 1
shows the terminal voltage predictions of three battery
models, DFN, SPMe and SPM. DFN is the most accurate
battery model which can be regarded as the true battery.
We can find that the SPMe is capable of obtaining more
precise voltage prediction than single SPM, which can help
achieve more accurate capacity estimation.

2.2 Coordinates Normalization

For the sake of identifying the time-varying parameters,
we introduce the coordinate transformation r̄j = rj/Rj .
The equations (1),(2) can be rewritten as follows:

∂cjs
∂t

=
Dj

R2
j

1

r̄2j

∂

∂r̄j
(r̄2j

∂cjs
∂r̄j

). (17)

With the boundary conditions:

∂cjs
∂r̄j

(0, t) = 0,
∂cjs
∂r̄j

(1, t) = −−RjJ
j

Dj
(18)

For linearizing equation (17), the coordinate transforma-
tion wjs = r̄jc

j
s is adopted, then equations (17), (18) can

be rewritten:

∂wjs
∂t

=
Dj

R2
j

∂2wjs
∂r̄2j

. (19)

∂wjs
∂r̄j

(0, t) = 0,
∂wjs
∂r̄j

(1, t)− wjs(1, t) = −−RjJ
j

Dj
(20)

Then, the overpotential equation (13) is transformed into
the following expressions:

η̄+(t) =
RT

αF
sinh−1(

−I(t)

2a+L+k+
√
c̄ec

+
ss(1− c+ss)

) (21)
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η̄−(t) =
RT

αF
sinh−1(

I(t)

2a−L−k−
√
c̄ec

−
ss(1− c−ss)

) (22)

Let

Rf =
R+
f

a+L+
+

R−
f

a−L− , Re =
L+ + 2Lsep + L−

2k(ce)
,

Kf =
2RT

F
(1− t0c)kf (t)

(23)

Then,

V (t) =
RT

αF
sinh−1(

−I(t)

2a+L+k+
√
c̄ec

+
ss(c

+
ss,max − c+ss)

)

−RT
αF

sinh−1(
I(t)

2a−L−k−
√
c̄ec

−
ss(c

+
ss,max − c−ss)

)

+U+(x+ss(t))− U−(x−ss(t))−RfI(t)
+ReI(t) +Kf [ln ce(0

+, t)− ln ce(0
−, t)].

(24)

3. THE PADE’ APPROXIMATION FOR BOUNDARY
LITHIUM-ION CONCENTRATION ESTIMATION

Introducing σDj =
R2

j

Dj and taking the Laplace transform of
(19) yields:

d2W j
s (r̄j , s)

dr̄2j
− sσDj W j

s (r̄j , s) = 0 (25)

According to the boundary conditions (20) and the solu-
tion of (19) is achieved:

W j
s (r̄j , s) = M j

sinh(r̄j

√
sσDj )I(s)

sinh(
√
sσDj )−

√
sσDj cosh

√
sσDj

(26)

where,M j =
Rj

Dj
sajLjFA

.

By substituting wjs = r̄jc
j
s into (26), at r̄j = 1, the transfer

function T (s) from input current I(t) to the surface nom-
inal surface concentration Cjss is given as

T (s) =
Cjss
I

= M j
sinh(

√
sσDj )

sinh(
√
sσDj )−

√
sσDj cosh

√
sσDj

(27)

Due to the advantages of Pade’ approximation is that they
naturally keeps the poles and zeros, this approximation
method is applied to transfer function (27). The first order
Pade’ approximation is used, we have

T (s) ≈ −M j
3/σDj + 2

7s

s+
σD
j

35 s
2

(28)

Then, the inverse laplace transform of (28) is implemented,
one has

c̈jss(t) = − 35

σDj
ċjss −

105M j

(σDj )2
I(t)− 10M j

σDj
İ(t) (29)

For the negative electrode, when the input current is
constant(İ = 0), then, the assumption of c̈−ss = 0 is
reasonable. Hence, we have,

ċjss(t) =
3M j

(σDj )
I(t) (30)

For estimating the boundary state of negative electrode,
designing the following boundary state estimator:

˙̂c
−
ss(t) =

3M−

(σDj )
I(t)

+L(V̂ (ĉ−ss(t), t)− V (c−ss(t), t))

(31)

where,

V̂ (ĉ−ss(t), t) =
RT

αF
sinh−1(

−I(t)

E+

√
c̄eĉ

+
ss(c

+
ss,max − ĉ+ss)

)

−RT
αF

sinh−1(
I(t)

E−
√
c̄eĉ

−
ss(c

−
ss,max − ĉ−ss)

)

+U+(
ĉ+ss(t)

c+ss,max
)− U−(

ĉ−ss(t)

ĉ−ss,max(t)
)−RfI(t)

+ReI(t) +Kf [ln ce(0
+, t)− ln ce(0

−, t)].

(32)

Ej = 2ajLjkj (33)

Theorem 1. The proposed boundary observer in equation
(31) is stable if there is a gain L satisfying that L > 0.

Proof. Introducing the transformation c̃−ss(t) = c−ss(t) −
ĉ−ss(t) and subtracting (31) from (30), one has

˙̃c
−
ss(t) = −L(V̂ (ĉ−ss(t), t)− V (c−ss(t), t)) (34)

Using the following Lyapunov function:

VL =
1

2λ
(c̃jss)

2 (35)

The time derivative of Lyapunov functional is obtained:

VL =
1

λ
c̃jss ˙̃c

j

ss

= − 1

λ
c̃jssL(V̂ (ĉ−ss(t), t)− V )

(36)

According to the monotonicity of V (x−ss, t) with respect to

x−ss, we have sign(x̃−ss) = −sign(V (t)− V̂ (t)). Then,

x̃−ss = −sign[V (t)− V̂ (t)]× |x̃jss| (37)

Then,

VL =
1

λ
c̃jss ˙̃c

j

ss

= − 1

λ
L|V̂ (ĉ−ss(t), t)− V )| × |x̃jss|

≤ 0

(38)

4. THE LEAST SQUARES METHOD FOR
CAPACITY ESTIMATION

Let c̃−ss,max = c−ss,max−ĉ−ss,max, c̃+ss,max = c+ss,max−ĉ+ss,max,
then the terminal voltage can be rewritten as follows:
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V (t) =
RT

αF
sinh−1(

−I(t)/E+√
c̄eĉ

+
ss(ĉ

+
ss,max + c̃+ss,max − ĉ+ss)

)

−RT
αF

sinh−1(
I(t)/E−√

c̄eĉ
−
ss(ĉ

−
ss,max + c̃−ss,max − ĉ−ss)

)

+U+(
c+ss(t)

ĉ+ss,max + c̃+ss,max
)− U−(

c−ss(t)

ĉ−ss,max + c̃−ss,max
)

−RfI(t) +ReI(t) +Kf [ln ce(0
+, t)− ln ce(0

−, t)].

(39)

(39) is expanded by the McLaughlin series as follows:

V (t) =
RT

αF
sinh−1(

−I(t)/E+√
c̄eĉ

+
ss(ĉ

+
ss,max − ĉ+ss)

)

−RT
αF

sinh−1(
I(t)/E−√

c̄eĉ
−
ss(ĉ

−
ss,max − ĉ−ss)

) + U+(
c+ss(t)

ĉ+ss,max
)

−U−(
c−ss(t)

ĉ−ss,max
)−RfI(t) +ReI(t) +Kf [ln ce(0

+, t)

− ln ce(0
−, t)] +

∂V (c−ss,max, t)

∂c−ss,max
c̃−ss,max + ∆(c−ss,max).

(40)

where, ∆(c−ss,max) is infinitesimal of higher order respect

to c−ss,max.
Hence,

V (c−ss,max)− V (ĉ−ss,max) =
∂V (ĉ−ss,max, t)

∂c−ss,max
c̃−ss,max. (41)

where,

V̂ (ĉ−ss,max) =
RT

αF
sinh−1(

−I(t)/E+√
c̄eĉ

+
ss(ĉ

+
ss,max − ĉ+ss)

)

−RT
αF

sinh−1(
I(t)/E−√

c̄eĉ
−
ss(ĉ

−
ss,max − ĉ−ss)

) + U+(
c+ss(t)

ĉ+ss,max
)

−U−(
c−ss(t)

ĉ−ss,max
)−RfI(t) +ReI(t) +Kf [ln ce(0

+, t)

− ln ce(0
−, t)]

(42)

The least squares capacity estimation law is designed as
follows

˙̂c
−
ss,max = −P

∂V (ĉ−ss,max, t)

∂c−ss,max
(V (c−ss,max)− V (ĉ−ss,max))(43)

where, P is a positive scalar. Using Lyapunov functional
1
2 (c̃−ss,max)2 can easily prove the exponential stability of

c̃−ss,max by estimation law (43).

5. SIMULATION RESULTS

The model parameters of electrochemical model are ob-
tained from the paper [Forman et al.(2011)]. The true
initial maximum lithium-ion concentration of anode is
29480mol/m3 and the initial estimation lithium-ion con-
centration is set to 32000mol/m3. Besides that, the true
initial state of anode is 20000mol/m3 and the initial
estimation boundary value is 16000mol/m3. We assume
that the total number of lithium ions of anode is equal
to that one of cathode which means that ε−c−ss,maxL

− =

Fig. 2. The true boundary lithium-ion concentration and
its estimation value

Fig. 3. The true maximum lithium-ion concentration and
its estimation value

Fig. 4. The estimation error of c−ss/c
−
ss

ε+c+ss,maxL
+. Hence, the maximum lithium-ion concentra-

tion of cathode can be obtained through the estimation of
lithium-ion concentration in anode.
In this simulation, 2C constant current is applied. Within
8 seconds, the estimation value of boundary lithium-ion
concentration converges to the true one quickly as shown
in Fig. 2. Fig. 3 presents the true maximum concentration
and the estimation maximum concentration. Similar with
Fig. 2, the estimation of the maximum lithium-ion con-
centration can approach to the true one fast. The result
of Fig. 4 is consistent with those expressed in Fig. 2 and
Fig. 3. Fig. 5 describes the error between the true terminal
voltage and the estimation voltage. When both the estima-
tion of boundary lithium-ion concentration and maximum
lithium-ion concentration are close to the true value, the
estimation of terminal voltage is also approximated to the
true one.

6. CONCLUSION

In this paper, an electrochemical model considering the
electrolyte dynamics is proposed to estimate the real ca-
pacity of a lithium-ion battery. Furthermore, a Pade’ one-
order approximation is adopted to obtain the transfer
function between the boundary lithium-ion concentration
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Fig. 5. The error between true terminal voltage and its
estimation value

and input current, then a boundary state estimator is pro-
posed to estimate the boundary lithium-ion concentration.
Finally, the least square method is used to obtain the adap-
tive update law for maximum concentration estimation in
anode.
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