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Abstract: We introduce a new method for torque and speed estimation of induction motors
under voltage/frequency (V/f) open-loop control. In contrast to existing approaches that need
the phase current, the proposed algorithm only requires the effective value (root mean square)
of the stator current and the synchronous frequency, which are usually available from variable
frequency inverter (VFI) at no additional cost. Our approach is particularly useful for inverter-
fed motor-pumps in which the load varies slowly. We demonstrate the proposed algorithm is able
to estimate the pump torque, speed, differential pressure and flow rate in a hydraulic process
with a progressive cavity pump.
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1. INTRODUCTION

Variable frequency inverter drives are ubiquitous today.
Their use is getting more and more common even in ba-
sic and fundamental domains such as hydraulic processes
(Ahonen et al. (2013)). A task of the variable frequency
inverter (VFI) in these applications is to vary the motor
speed in order to achieve the desired flow rate of the
pump. A mechanism for the determination of the flow rate
of the process is required to meet this control objective.
Moreover, in a pumping process often the monitoring of
other signals such as pressure, speed, torque, and efficiency
of the pump are much desired. Additional measurement
device for these signals, even if the installation is physically
possible, increases the cost significantly. Consequently, es-
timation of these quantities based on already existing sig-
nals is of great interest. As many VFIs provide information
on motor operation, it is natural to engage these data for
estimation algorithms.

Speed and torque estimations of an induction motor have
been widely studied in the context of electric drives, often
for achieving the sensorless control of the motor speed. The
most notable algorithms for speed estimation are those
that use the equivalent circuit of the induction motor for
finding the slip between the synchronous speed and the ro-
tor speed in steady state (Sen (2007)); direct computation
of the speed through the estimated rotor flux (Kanmachi
and Taahashi (1993)); observer based estimation such as
model reference adaptive systems (Kubota et al. (1993));
and anisotropy methods in which the speed is computed
by capturing the spatial harmonics of the rotor position
on the stator current (Ha and Sul (1999), Holtz (2002)).
Once the speed is estimated, the torque estimation can be
accomplished with the steady state model (Sen (2007)) or
the dynamic model of the motor (Kubota et al. (1993)). All

of these approaches require high resolution measurements
of the voltage and current of at least one phase of the
motor, however.

It is our main contribution to introduce a new method
for the computation of the speed and the torque based
on the motor model, the effective value of the current, the
synchronous speed, and the magnitude of the voltage. The
necessary data are usually provided by the VFI and thus
no extra sensor is needed. As an application, we employ
this approach for the estimation of the torque and speed
of a progressive cavity pump driven by an induction motor
and use the information of the characteristic curves of
the pump to determine the differential pressure and the
flow rate of the hydraulic process. It is worth mentioning
that using the effective value of the stator current and
pump characteristic curves for flow rate estimation of a
centrifugal pumping process has already been investigated
by Leonow and Mönnigmann (2013). However, in their
approach, a model is created from the direct effect of the
flow rate on the motor current, and the motor model and
parameters do not explicitly appear in the estimation.

In Section 2 we present the motor model and propose our
algorithm for the estimation of speed and torque of the
induction motor. In Section 3 we introduce the process
control system and explain how the differential pressure
and the flow rate of the pump can be estimated. Moreover,
we verify our algorithm by its implementation on a real
test bench. Finally, in Section 4 we give a brief conclusion.

2. COMPUTATION OF SPEED AND TORQUE OF
AN INDUCTION MOTOR IN STEADY STATE

The stator model of a three phase induction motor in the
rotational coordinate system (d-q) attached to the rotor
flux vector is described by the following equations:
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usd = Rsisd +
dψsd

dt
− ωsψsq, (1)

usq = Rsisq +
dψsq
dt

+ ωsψsd, (2)

ψsd = Lsisd + Lmird, (3)

ψsq = Lsisq + Lmirq, (4)

where isd, isq and ird, irq are the stator and the rotor
currents in d and q axes, respectively. Likewise, usd,
usq and ψsd, ψsq describe the stator voltages and the
electromagnetic fluxes in the mentioned coordinate frame.
The index s always refers to the stator variables and the
index r refers to the rotor variables. Rs and Rr represent
the resistances, whereas Ls, Lr, and Lm represent the
stator, rotor, and mutual inductances, respectively. The
parameter

σ = 1− L2
m

LsLr
. (5)

is called leakage factor. Neglecting the motor saturation
and assuming that the leakage and mutual inductances
are constant, the parameter σ is also constant.

In steady state, the rotor flux coordinate system rotates
with the synchronous rotational speed ωs. In this represen-
tation the d-axis current (isd) builds up the electromag-
netic flux ψrd, and the q-axis current (isq) is proportional
to the electromagnetic torque of the motor. Moreover, the
following relations hold in steady state:

dψsd
dt

= 0,
dψsq
dt

= 0, ird = 0, irq = −Lm
Lr

isq, (6)

(see, e.g., Quang and Dittrich (2015)). Applying the sim-
plification (6) to (1) and (2), and inserting (3) and (4) in
(1) yield

usd = Rsisd − ωsσLsisq, (7)

usq = Rsisq + ωsLsisd. (8)

The electromagnetic torque Te and the shaft torque Tm
are related by the momentum equations according to

Te − Tm − F ωm = Jω̇m, (9)

where F and J are the friction coefficient and the moment
of inertia, respectively, and ωm represents the mechanical
speed in (9). Applying the steady state condition ω̇m = 0
results in

Tm = Te − F ωm. (10)

Many inverter driven motors operate under the volt-
age/frequency (V/f) open-loop control to regulate the
motor speed. The principle of the V/f control relies on
keeping the ratio of the magnitude of voltage vector to
frequency, i.e., |us|/|ωs|, constant. The rotor electromag-
netic flux ψrd will then be almost constant and therefore
the motor can deliver the nominal torque in the entire
basic speed region. From a control systems perspective, we
consider the motor under control as a single-input-single-
output system, where the synchronous speed represents
the control input, the motor speed represents the system
output, and the shaft torque is a disturbance. Note that
as the magnitude of the voltage is set proportionally to
the synchronous frequency by the inverter, this variable
is neither control input nor output. We emphasize that
under V/f control the motor speed is not exactly equal
to the synchronous speed, and a slip (up to 3%) between

-5 0 5
isd

-5

0

5

i s
q

Fig. 1. Curves that specify the currents in d and q axes.

these two variables results depending on the shaft torque.
An estimation of the actual motor speed and shaft torque
are therefore of obvious interest. We present our estimation
algorithm for this purpose in what follows.

2.1 Estimation of motor speed in V/f control

Most VFIs provide the effective value of one phase of
stator current Ieff as a measurement signal. In our speed
estimation algorithm the synchronous rotational speed ωs
serves as the input, Ieff is the measured signal, and the
actual motor speed ωm represents the estimation signal.
The first step for speed estimation concerns computation
of the currents isd and isq. Since the current of each phase
of the motor in stator-fixed coordinate system is almost
sinusoidal in steady state (the effect of higher harmonics of
the current caused by the vector modulation is neglected),
the magnitude of the current vector is = [isd isq]

> equals

the maximum current of one phase, which is
√

2Ieff. Hence,
the mathematical expressions for the magnitude of the Ieff

and |us| read:

|us| =
√
u2
sq + u2

sd, (11)

Ieff =

√
2

2

√
i2sq + i2sd, (12)

Combining (7), (8), and (11) results in the following
equation for the magnitude of the stator voltage:

(Rsisd−ωsσLsisq)2 + (Rsisq+ωsLsisd)
2 = |us|2. (13)

Equations (12) and (13) describe a circle and an ellipse in
isd and isq, respectively, which are illustrated in Figure 1.
Since the motor currents are positive in normal operation,
we require the intersection point in the first quadrant
marked by the black point in Figure 1. The currents isd
and isq can be computed as follows. Expanding (13) to

|us|2 = R2
s(i

2
sd + i2sq) + 2ωsRsLs(1− σ)isdisq+

+ ω2
sL

2
s(σ

2i2sq + i2sd),
(14)

and substituting

isd =
√

2I2
eff − i2sq (15)

results in
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|us|2 − 2(R2
s + ω2

sL
2
s)I

2
eff = (1− σ)ωsLs

(
2Rsisq×

×
√

2I2
eff − i2sq − ωsLs(1 + σ)i2sq

)
. (16)

It proves to be convenient to introduce the auxiliary
variables

a1 = 2Rs, a2 = ωsLs(1 + σ),

a3 =
|us|2 − 2(R2

s + ω2
sL

2
s)I

2
eff

ωsLs(1− σ)
,

(17)

which permit expressing (16) as

a3 = a1isq

√
2I2

eff − i2sq − a2i
2
sq. (18)

Rearranging (18) yields

(a3 + a2i
2
sq)

2 = a2
1i

2
sq(2I

2
eff − i2sq)

a2
3 + 2a3a2i

2
sq + a2

2i
4
sq = a2

1i
2
sq(2I

2
eff − i2sq)

a2
3 + 2

(
a3a2 − a2

1I
2
eff

)
i2sq + (a2

1 + a2
2)i4sq = 0

i2sq =
−a3a2 + a2

1I
2
eff ± a1

√
−2a3a2I2

eff + a2
1I

4
eff − a2

3

a2
1 + a2

2

,

(19)

where we used a2
1 + a2

2 > 0 in the last step, which holds
since a1 > 0 and a2 > 0 by definition. Furthermore, (18)
yields a3 + a2i

2
sq > 0, or equivalently,

i2sq > −a3/a2. (20)

This implies the solution in the last line of (19) with the
positive sign applies. Hence,

isq =

√
−a3a2 + a2

1I
2
eff + a1

√
−2a3a2I2

eff + a2
1I

4
eff − a2

3

a2
1 + a2

2

, (21)

isd =

√
a3a2 + (a2

1 + 2a2
2)I2

eff − a1

√
−2a3a2I2

eff + a2
1I

4
eff − a2

3

a2
1 + a2

2

,

(22)

where isd is calculated with (15). The speed of a motor
with the number of pole pairs zp can be calculated from the
difference between synchronous speed and the slip speed
given by the following equation

ωm =
1

zp

(
ωs −

RrLm
Lrψrd

isq

)
=

1

zp

(
ωs −

Rr isq
Lr isd

)
, (23)

(for the derivation of (23) see, e.g., Melkebeek (2018),
pp. 678).

2.2 Computation of the motor torque

Assuming the currents isq and isd and the speed ωm are
available, the mechanical power Pm of the motor and the
shaft torque Tm can be computed. We first model the
iron losses in the induction motor to achieve a better
accuracy in the estimation of the mechanical power and
accordingly the torque. Iron losses PFe appear in the form
of eddy-current losses and hysteresis losses. Since the rotor
frequency is much smaller than the stator frequency at
the frequencies considered here, the iron losses in rotor
can be neglected. The iron losses significantly increase in
inverter driven motors due to the harmonic components
of the voltages and currents caused by the vector space
modulation. These losses are usually modeled by adding
a resistance RFe in the equivalent circuit of the motor

parallel to the mutual inductance (see, e.g., Sen (2007)).
This resistance is defined by

RFe =
3

2

(ωs|ψm|)2

PFe
, (24)

where ψm is the mutual flux linkage. ψm can be expressed
in terms of the stator and rotor currents with the formula

ψm = Lm [isd + ird isq + irq]
>
. (25)

Subsequently, substituting the rotor currents from (25) by
the ones in (6), the magnitude of mutual flux linkage can
be determined from the stator currents

|ψm| = Lm

√
(isd + ird)2 + (isq + irq)2

= Lm

√
i2sd +

L2
rσ

L2
r

i2sq, (26)

where Lrσ is the rotor leakage inductance. It is an es-
tablished method for the characterization of the iron re-
sistance to run a no-load test and to use the measured
values of stator voltages and currents of the three phases
and the power factor (Sen (2007)). However, since only
the signals provided by the inverter are available in our
case, we do not have a direct access to the mentioned
signal as a function of time. Thus, we consider a simple
approximation for modeling the iron resistance suggested
by Quang and Dittrich (2015). The iron resistance can be
stated by an expression proportional to the synchronous
speed

RFe = RFe,n
ωs
ωs,n

, (27)

where RFe,n is the iron resistance at the nominal frequency
ωs,n. We briefly explain how to approximate the parameter
RFe,n from the nominal data of the motor. To this end, we
first compute the nominal currents isd,n and isq,n with
the algorithm from Section 2.1 and the nominal motor
data (current, voltage, and synchronous frequency). The
nominal mutual flux ψm,n then results with (26). Next,
recalling (6), the iron losses for the nominal operating
point equal

PFe,n = Pelec,n − Pm,n − PRs,n − PRr,n − Pfr,n

= 3UnIeff,ncos(ϕn)− Pm,n − 3RsI
2
eff,n+

− 3

2
Rr

L2
m

L2
r

i2sq,n − Pfr,n. (28)

We assume the nominal data of the effective value of the
voltage of one phase Un, effective value of stator current
Ieff,n, mechanical power Pm,n, the power factor cos(ϕn),
and the friction losses Pfr,n to be available from the motor
manufacturer. Thus, by substituting the expression for the
iron losses (28) into (24), the iron resistance RFe,n can be
determined. Combining (24), (26), and (27) the iron losses

PFe =
3

2

(ωs|ψm|)2

RFe
=

3

2

ωs,n
RFe,n

L2
mωs

(
i2sd +

L2
rσ

L2
r

i2sq

)
. (29)

result as a function of the frequency ωs.

Once the iron losses are known, we can compute the air
gap power according to the formula

Pag = Pelec − PRs
− PFe, (30)

where Pelec and PRs indicate the electric power and
ohmic losses of the stator, respectively. In the rotor flux
coordinate system, they are given by
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Pelec = 3
2 usis = 3

2 (usd isd + usq isq), (31)

PRs
= 3

2 Rs (i2sd + i2sq). (32)

where the currents isd and isq results from (21) and (22)
and the voltages usd and usq result from (7) and (8). In
summary,

Pag = 3
2

[
(1− σ)Lsisqisd −

L2
mωs,n
RFe,n

(
i2sd +

L2
rσ

L2
r

i2sq

)]
ωs.

(33)

The friction losses are proportional to the square of the
motor speed ωm according to Pfr = Fω2

m. Using the
following expression for the mechanical power

Pm = Pag(1− s)− Pfr, (34)

we can compute the shaft torque as

Tm =
Pm
ωm

=
1

ωm
(Pag(1− s)− Pfr) (35)

=
3

2
zp

[
(1−σ)Lsisqisd−

L2
mωs,n
RFe,n

(
i2sd+

L2
rσ

L2
r

i2sq

)]
−Fωm,

for a motor with number of pole pairs zp, where

s =
ωs − zp ωm

ωs
(36)

is the slip parameter.

Table 1 summarizes the steps needed for the computation
of the motor speed and torque.

Table 1. Computational steps for estimation of
the motor speed and torque.

estimation algorithm:

Required signals and parameters:

• Ieff is the measured signal.
• ωs is the input.
• |us| is computed from the V/f table.
• The iron resistance at nominal speed (e.g., derived

from (27)) and the motor parameters are required.

Computational steps:

i) Calculate currents isq from (21) and isd from (22).
ii) Calculate motor speed from (23).

iii) Calculate motor torque from (35).

3. IMPLEMENTATION AND RESULTS

We apply the proposed algorithm to a test setup with
a progressive cavity pump (PCP). We summarize some
aspects about the PCP needed for the remainder of the
paper in Section 3.1. The proposed algorithm is applied in
Section 3.2.

3.1 Inverter-driven progressive cavity pump

Progressive cavity pumps are frequently used in industrial
systems for pumping high viscosity and abrasive media
(Wittrisch and Cholet (2012), Paladino et al. (2011)).
They are not understood as well as centrifugal pumps.
We estimate the speed, torque, differential pressure over
the pump, and the flow rate, because these quantities are
essential for a reliable operation of PCP.

VFI PCP

plate data

ωs

Ieff

|us|

ωm/ωp

Tm/Tp

RFe,n

estimation

motor parameters

∆p

Q
V/f-curve algorithm char. curve

ωs

Fig. 2. Block diagram for the estimation.

Figure 2 shows a block diagram of the quantities and their
role in the estimation algorithm as applied to the PCP.
The PCP is driven by an induction motor. We assume
the synchronous frequency is set by the operator of the
pump as the input and the effective value of the current
is provided by the inverter. The amplitude of the stator
voltage is obtained from the V/f table. If the motor
resistances and inductances are not known, they can be
determined with established algorithms (see, e.g., Quang
and Dittrich (2015)). We determined the iron resistance
at nominal speed from the motor data provided by the
manufacturer as explained in Section 2.2 and estimated the
speed and the shaft torque of the motor with the algorithm
summarized in Table 1. The estimated motor speed and
shaft torque are the input signals to the pump block shown
in Figure 2. A gear box with gear ratio γ and efficiency
η ≤ 1 is used in our test setup. It can be accounted for in
ωp and Tp with

ωp =
1

γ
ωm, (37)

Tp = γ η Tm. (38)

We estimate the differential pressure over the pump with
the characteristic curves available from the pump manu-
facturer. The characteristics that apply in our test case,
specifically, the mechanical power (Pp [kW]) as a function
of the speed (n [rpm]) for a set of given differential pres-
sures (∆p [bar]) are given by the dashed lines in Figure 3.
Since the relationship between the mechanical power Pp
and the speed n are linear for the PCP according to
Figure 3, the mechanical torque is constant for a constant
differential pressure. The mechanical power also is a linear
function of the differential pressure for a given speed ac-
cording to the characteristic curves. Therefore, the torque
Tp respects a function of the form

Tp =
Pp
ωp

= Tp,0 + α∆p, (39)

where Tp,0 refers to the torque at zero differential pressure
and where α can be determined from manufacturer data
such as the characteristics shown in Figure 3. The expres-
sion (39) can be viewed as a simple form of the torque
models for a PCP presented by Moraes-Duzat (2000) and
Wittrisch and Cholet (2012). The simple form results if
only friction and hydraulic components of the torque are
taken into account and the other torque components, e.g.
viscous torque, are neglected. In this case Tp,0 can be
considered as the friction torque and the term α∆p repre-
sents the hydraulic torque, where the constant parameter
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Fig. 3. Characteristic curves for the progressive cavity
pump. 1

α depends on the geometry of the PCP. However, note that
the starting torque of a PCP is large (see e.g. Wittrisch
and Cholet (2012), pp. 27) and the approximation (39) is
only valid for the middle range speeds. We experimentally
verified this approximation applies with high accuracy for
the estimation of the torque in the range of 100-400 rpm.

The values Tp,0 = 15.03 and α = 5.97 apply in our test
setup. After determining Tp with (38), the differential pres-
sure can be determined with (39). Subsequently, we deter-
mine the flow rate with the characteristic curve available
from the pump manufacturer. This second characteristic
curve, which states the flow rate Q as a function of the
speed n for fixed differential pressures ∆p, is given in
Figure 3 (solid lines). For our specific test setup, a char-
acteristic curve corresponding to a differential pressure
∆p [bar] ∈ {0, 2, 4, 6} can be approximated by

Q(t) = Qnref,∆p + knref,∆p(n(t)− nref), (40)

where Qnref,∆p [m3/h] ∈ {2.9, 2.72, 2.15, 0.536} is the
flow rate value corresponding to the reference speed
nref [rpm] = 100 and knref

∈{0.0283, 0.0283, 0.0285, 0.0298}.
The flow rate Q(t) corresponding to a differential pressure

∆p ∈ [∆p1,∆p2] at a speed n(t), where ∆p1 = 2b∆p
2 c

and ∆p2 = 2b∆p
2 c + 2 (b·c is the floor operator) can be

computed in the following way. We obtain the variable
Q1(t) by inserting n(t), Qnref,∆p1 , and knref,∆p1 in (40).
Analogously, the variable Q2(t) is computed at the same
speed with the differential pressure ∆p2. Then, the flow
rate Q(t) can be calculated by the linear interpolation of
Q1(t) and Q2(t) as

Q(t) = θ Q1(t) + (1− θ)Q2(t), (41)

where the parameter 0 ≤ θ ≤ 1 is defined by

θ =
∆p2 −∆p

2
. (42)

3.2 Results

Figure 2 shows a sketch of the experimental setup. The
fluid pumped from the container a) passes through the
PCP b) and the control valve c), and eventually flows back
to the container a). The control valve produces a back
pressure, allowing the realization of different operational

1 10-6L manufactured by Seepex GmbH with undersize rotor.

f)

M

a) c) b)

VFI Tp, ωp

PT PT

FT
d) e)

g)

Fig. 4. Components of the pumping process test setup:
a) container; b) PCP; c) control valve; d) VFI; e)
induction motor; f) gear box. Measurement devices:
g) torque and speed transmitter; PT: pressure trans-
mitter; FT: flow transmitter.
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Fig. 5. Estimation of the currents isd and isq.

points. The PCP is driven by an induction motor 2 . The
iron resistance at nominal operating point is approximated
by (27), where for this case RFe,n = 628 Ω has been
calculated. The motor and pump are connected via a gear
box with the transmission ratio γ = 2.94 and the efficiency
η = 0.96. By using the algorithm introduced in Quang
and Dittrich (2015) (pp. 207), we determined the motor
parameters

Rs = Rr = 1.16Ω, Lm = 0.16 H,

Ls = Lr = 0.19 H, σ = 0.0812 (43)

from the nominal data. The friction coefficient of the
shaft is taken from the motor manufacturer data sheet as
F = 7.69 × 10−4. The VFI is set to V/f open loop mode.
We record the pump speed, torque, flow rate, and pressure
signals of the pump separately by additional sensors for
verification purposes. Note that these additional sensors
are not used for the proposed algorithm. All data is
recorded with the sampling time 1 ms.

Starting from the synchronous frequency 10 Hz, we incre-
ment the motor synchronous frequency by steps of 10 Hz
every 30 s. The position of the control valve c) is kept
constant. Figure 5 shows the estimated current signals isd
and isq, and the measured signal Ieff. The flux producing
current isd is almost constant as expected, whereas the
2 SK-112MH/4 manufactured by Nord GmbH. Nominal data: power
4 KW, current 8A in star connection, frequency fn = 50 Hz, effective
voltage of one phase with respect to the star connection point
Un = 230 V, speed nn = 1440 rpm, power factor cosϕn = 0.83,
and number of pole pairs zp = 2.
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Fig. 6. Estimation signals (dashed) and reference measurements (solid) for the PCP process.

torque producing current isq changes due to the load
changes. Figure 6 depicts the estimated signals, in which
the pressure and the flow signals are calculated from the
characteristic curves given by Figure 3. All signals in this
picture are filtered by a first order low pass filter with the
time constant of 0.2 s for the sake of an easier comparison.

It is evident that the proposed algorithm results in a
high accuracy. Specifically, the maximum range of the
errors remain within the following bounds: 2 rpm for speed
estimation, 1 Nm for torque estimation, 0.1 bar for pressure
estimation, and 0.2 m3/h for flow rate estimation.

4. CONCLUSION

We developed an algorithm for the speed and torque
estimation of an induction motor in steady state. This
algorithm is suited for applications in which the motor
operates under V/f open loop control when only effective
stator current is available. In particular, the proposed al-
gorithm does not require phase currents. We demonstrated
the viability of the proposed algorithm with a torque,
speed, differential pressure and flow rate estimation for
a progressive cavity pump. In this estimation scheme the
effective value of the stator current is indeed the only
signal that must be measured online to estimate all process
signals. This method is simple and exhibits high accuracy
results in practical implementations.
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