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Abstract: In intensive care units (ICUs), mortality prediction is crucial to help doctors
select appropriate diagnosis and treatment methods and reasonably allocate medical resources.
However, the scoring system currently used by hospitals may not be suitable for every patient.
Therefore, personalized diagnosis is trending because it responds to a wide range of needs. This
study proposes a new combination of dynamic time warping (DTW) and one-class extreme
learning machine (ELM) to improve the mortality prediction accuracy, termed as one-class
DTW-ELM, where DTW is used to find similar cases for new patients, and while one-class ELM
is adopted for fast and accurate model building. The testing results on the real physiological
data from PhysioNet demonstrate that the area under curve (AUC) index of one-class DTW-
ELM model is 0.9739, with the Lift of 8.1081 and the G-mean of 0.8137. The accuracy rate is
0.9583, with specificity and sensitivity of 1 and 0.6622, respectively. As mentioned, one-class
DTW-ELM can accurately predict the future physiological state of a patient by using early
physiological parameters.
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1. INTRODUCTION

As medical and nursing technology continuously improves,
intensive care units (ICUs) progressively play a pivotal
role in modern hospitals. Nowadays, numerous model-
s have been established to assess patient status based
on physiological indicators (Valenza et al., 2018). Well-
known methods based on generalized linear models are
commonly used for mortality prediction problems, such as
acute physiology and chronic health evaluation, simplified
acute physiology score, and mortality probability model.
Given the in-depth study on technology by many scholars
and the increasing amount of clinical data in ICUs, many
researchers have adopted data-driven learning methods
to implement mortality prediction (Ma et al., 2020). In
particular, machine learning involves various non-linear
modeling methods, and only relies on physiological mea-
surements to improve the accuracy of mortality prediction,
such as neural networks (Ding et al., 2018), support vector
machine (SVM) (Azar et al., 2014), and naive Bayesian
model.

The mortality prediction of ICU patients not only assists
doctors in making clinical decisions during the diagnosis
stage but also optimizes the allocation of medical re-
sources. In fact, because each ICU patient has a specific
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status, all the data may not provide an exceedingly tar-
geted diagnosis and treatment program for individual pa-
tients. However, due to the advent of intelligent medicine,
personalized treatment for patients is achievable.

In this study, specificity of ICU patients is fully considered,
and the patients personalized diagnosis is achieved based
on the idea that similar inputs yield similar outputs. Thus,
DTW is selected as a personalized search tool to ensure
that the local model is accurately targeted. In particular,
one-class ELM is used as a classifier. What should be
emphasized is that in the case of severe data imbalance,
deaths accounted for a low percentage of total cases are
regarded as outliers and the one-class classification method
is commonly in accordance with the actual situation and
has achieved ideal results.

Furthermore, the proposed algorithm is verified by means
of three sets of comparative experiments. The experi-
mental datas come from PhysioNet, which contained real
physiological information of 4,000 patients, 554 of whom
survived and 3446 died in hospital. The experimental re-
sults are 0.9739 for the area under curve (AUC) index of
the one-class DTW-ELM model, 8.1081 for Lift, 0.8137
for G-mean, 0.9583 for accuracy rate, 1 for specificity, and
0.6622 for sensitivity.

Overall, the main findings and contributions of this study
are as follows: (1) A personalized model based on patients
time-series data is proposed. Through this model, the state
of inpatients can be judged accurately. (2) Personalized
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search based on time series can help doctors find similar
cases. (3) Turning the binary classification problem into a
single classification problem, using only the physiological
indicators for the first 48 hours after admission to the ICU,
can more accurately predict the patient’s status.

The rest of this paper is organized as follows. Section 2
summarizes data collection, data interpolation, and prin-
cipal component analysis. Section 3 introduces one-class
DTW-ELM. Section 4 presents illustrative experiments
and results. Finally, Section 5 draws conclusions.

2. DATA PROCESSING

2.1 Data Collection

The physiological data of ICU patients are collected from
the PhysioNet website (Johnson et al., 2016). The website
offers free access to complex physiological signals to help
scholars conduct in-depth research. The scientific and
rigorous information of this authoritative website has been
widely validated.

Herein, total 4,000 real ICU patient records are collected,
which includes 554 dead patients and 3,446 surviving pa-
tients. The physiological parameters of each ICU patient
first 48 hours after admission to the ICU were recorded
truthfully. The data collected generally consist of three
parts, which includes basic information about hospital-
ization, 36 physiological variables, and final state of the
patient (0 = survivor, 1 = deceased), as shown in Table 1.

Table 1. PHYSIOLOGICAL DATASET.

RecordID=132540 Final State: 0

Time HR Temp GCS ... NIDiasABP

0:00 -1 -1 -1 ... -1
0:42 -1 -1 -1 ... -1
1:11 88 35.2 -1 ... 67
1:26 88 35.1 3 ... 69
... ... ... ... ... ...

46:15 -1 -1 -1 ... -1
47:11 65 37.1 15 ... 49

’-1’ denotes the missing value.

However, the sampling frequency of these physiological
parameters is different, not all of them are suitable for
accurately predicting the future state of patients. Among
these parameters, some are selected for modeling. There-
fore, 15 physiological parameters with the most complete
information are selected, as shown in Table 2.

2.2 Data interpolation

Missing data represent a problem in physiological parame-
ters. To interpolate the missing data while simultaneously
retaining the time information to the greatest extent,
irregular ICU physiological variables for each sampling
period are converted to a time series of periodic sampling,
sampled every two hours (McMillan et al., 2012).

Data from the first two days of ICU admission are used.
For each indicator of the patient, it is divided into 24
segments by time and one value per segment. If there are
more than one detection value in a certain section of the

Table 2. LIST OF 15 SELECTED PHYSIO-
LOGICAL PARAMETERS AND THEIR AB-

BREVIATIONS.

Abbreviation Name

HR Heart rate (bpm)
RespRate Respiration rate (bpm)

GCS Glasgow coma index<3-15>
DiasABP Invasive diastolic arterial blood pressure (mmHg)

NIMAP
Non-invasive

mean arterial blood pressure (mmHg)
FiO2 Fractional inspired O2 <0-1>

NIDiasABP
Non-invasive diastolic arterial

blood pressure (mmHg)
SysABP Invasive systolic arterial blood pressure (mmHg)
Temp Temperature (◦C )
PaCO2 Partial pressure carbon dioxide
MAP Invasive mean arterial blood pressure (mmHg)

MechVent
Mechanical ventilation respiration

(0: false, or 1: true)
PH Arterial pH <0-14>

NISysABP
Non-invasive systolic

arterial blood pressure (mmHg)
Urine Urine output (mL)

index, the average of these detection values is taken. If
there is no detection value in one segment of the index, the
average value of the patient in the other segments of the
index is used to interpolate. Some patients do not have the
test data of one index, then interpolate the data in these
24 segments with the overall average of other patients. The
total number of extracted medical information features is
360.

Herein, the dimension of extracted features is high. Before
features input into the model, principal component analy-
sis (PCA) algorithm can reduce the amount of calculation
(Lou et al. 2017), extract the main information and avoid
the influence of useless information (Wang et al., 2018).
For the remaining information, 267 principal components
are selected, including 99 percent of cumulative variance
contribution rate, which would be the input data of one-
class classification DTW-ELM model.

3. ONE-CLASS DTW-ELM

ICU patients are highly specific, so using all the data
to model patients does not meet the individual needs
of patients, as shown in Fig. 1. Based on the idea of
getting similar output based on similar inputs, the ICU
patient personalized search becomes the key to solving this
problem. Herein, DTW (Gogolou et al., 2019) is selected
as a personalized search tool to ensure that the local model
is more targeted.

Simultaneously, the classification accuracy of the model
is also a major factor. The common classifier adopts a
binary classification algorithm to learn the laws of two
types of data through the training set. However, the
physiological parameters of ICU patients are extremely
special. A serious imbalance exists in the data, and the
ratio of survival to death is about 7:1. Those who can
survive in hospital conform to certain rules, unlike those
who die.

Interquartile range (IQR) is a quantity used to represent
the degree of data dispersion in robust statistics. We know
that the larger the value of IQR, the more scattered

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16353



Fig. 1. Mechanism comparison of conventional model and
personalized model.

the data, and the smaller the value of IQR, the more
centralized the data. The X-axis corresponds to each
physiological parameter, and the y-axis represents the
difference of the IQR between the dead and the surviving
patients in this physiological parameter. The blue line
indicates that the difference is 0 and the IQR is equal.
If the red dot is higher than the blue line, it means
that the IQR of the dead patient is larger than that
of the surviving patient. As shown in the Fig 2, points
above the blue line are much more than points below the
line. This indicates that most IQR are less in survivors
than in dead patients. This shows that the distribution
of physiological parameters of surviving patients is more
centralized, more in line with certain rules, while the
distribution of physiological parameters of dead patients
is more scattered and more disordered. So we choose more
centralized survival data as training set and use one class
classification method to model. If the classifier learns two
kinds of data, the result will become inaccurate.

Fig. 2. The difference of the IQR between the physiological
parameters of the two kinds of data.

Accordingly, one-class ELM is picked as the local modeling
tool instead of ELM (Huang et al., 2012), and transforms
classification problems into outlier detection problems.
This method provides an effective way to solve the problem
of low prediction accuracy due to the unbalanced distri-
bution of training samples. In particular, only data of

patients who survive in hospital are used as training set,
and death data are considered abnormal when classified.

One-class DTW-ELM modeling algorithm is described as
follows:

Step 1. Total 600 records are randomly selected as the
testing samples, and 2,900 survival records are selected
from the remaining data as a training set.

Step 2. Each time a test sample is read, then the 200 most
similar samples are selected as a personalized training set
for use as modeling data in the next step.

Step 3. For the current testing patient, a one-class ELM
model is established using 200 most similar samples.

Step 4. The current test data is input into the established
model to obtain the predicted result.

Step 2 is repeated if new testing sample data are available.

Fig. 3. One-class DTW-ELM model procedure.

Fig. 3 shows the working process of the one-class DTW-
ELM model. In practice, the test data is read in order, and
the one-class ELM model is built for each patient by its
most similar samples. New models are built in real time,
and old models are abolished. The idea for this process is
similar to that of diagnosing diseases. When a new patient
is encountered, the doctor searches for similar cases in the
brain according to the patient’s symptoms and provides
the final diagnosis and treatment plan.

Compared with the traditional modeling method, the one-
class DTW-ELM model is simpler and more accurate.
Simultaneously, it is more in line with the real diagnosis
process of doctors.
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4. EXPERIMENTS AND RESULTS

Herein, we use three sets of experiments to verify the
superiority of one-class DTW-ELM in ICU patients phys-
iological parameters. And used several indicators to prove
the validity of the classifier. Traditional indicators are
widely used, however, the overall accuracy does not ap-
ply to the datasets with imbalance. Because when a few
classes are misclassified, the overall accuracy rate may still
have a good indicator. In this study, imbalanced problem
also evidently exists. Surviving patients account for the
majority, and death patients account for a minority. In
the medical field, “positive” and “negative” are often used
to represent two categories; the former represents death
and the latter represents survival.

Confusion matrix is often used to judge the performance
of classification algorithm. TP, FP, FN, and TN indicate
the number of samples of true positive, false positive, false
negative, and true negative, respectively. Moreover, many
other indices are available, such as

sensitivity : Sn =
TP

TP + FN
(1)

specificity : Sp =
TN

TN + FP
(2)

G−mean =

√
TP

TP + FN
× TN

TN + FP
(3)

Lift =
TP

TP + FP

/
TP + FN

all
(Liftmin = 1) (4)

Acc = (TP + TN)/all (5)

where sensitivity refers to the proportions of true positive
samples that can be correctly detected, and specificity
indicates that the proportion of true negative samples are
not wrongly misclassified; G-mean refers to the geometric
mean of those accuracies, which indicates the final result to
measure the functionality of a classifier; and Lift describes
the performance improvement compared with the non-
use model, the minimum value of which is 1. Receiver
operating characteristics (ROC) graph and AUC are also
used for comparison in the experiment. The area under a
ROC curve should be at least 0.75 for good prediction. To
ensure the fairness of the experiment, the test set of each
model is the same 600 records. The survival and death
records used in the training set are also the same.

4.1 Experiment 1: Comparison with unsupervised algorithm

In this unsupervised experiment, the classical K-means
clustering algorithm and the novel isolation forest algorith-
m (iForest) are selected for comparison. For fair compari-
son, unsupervised algorithms use only 600 test set data.

The core of K-means is to use k initial centroids as the
clustering category and repeat iteration until the algorith-
m converges. In this paper, according to the experimental
needs, k=2.

The iForest algorithm does not describe the normal point
but is dedicated to isolating the abnormal point. The
iForest has a efficient strategy for judging outliers. The
anomaly point here is defined as an outlier that is eas-
ily isolated. The algorithm does not require training to

recursively segment the dataset until all sample points
are isolated. Under this stochastic segmentation strategy,
normal points are not easily segmented, while outliers
usually have shorter paths. In this set of experiments, the
threshold was set to 0.5.

In specificity, Lift, G-mean, accuracy and AUC, one-class
DTW-ELM achieves the best results. In sensitivity, k-
means works best, but its specificity and accuracy are too
low, and the classification effect is not great. The iForest
do not perform very well in all indicators, as shown in
Table 3. ROC is presented in Fig. 4.

The results show that one-class DTW-ELM works better
than the usual unsupervised methods.

Fig. 4. ROC curves for one-class DTW-ELM, K-means and
iForest.

4.2 Experiment 2: Comparison with traditional binary
classification algorithm

In this group of experiments, except one-class DTW-ELM,
all the other models are binary classification methods. In
the training of the model, besides 2,900 survival records,
400 death records were added proportionally to build the
training set. Both DTW-ELM and DTW-SVM are bina-
ry classification algorithms that use personalized search.
Similarly to one-class DTW-ELM, the closest 200 cases
are selected for modeling.

At the same time, we added a set of comparative exper-
iments to eliminate the impact of data imbalance on the
data of binary training set. The SMOTE algorithm is used
to increase the death data by 2500, so that the number of
two kinds of samples in the training set is 2900. And the
test set is the same for all algorithms.

In the contrast experiment of unbalanced training set, the
results show that the sensitivity of SVM and DTW-ELM
is equal to 0, and a serious problem occurs with failing
reports, causing the G-mean to be 0, as shown in Table
4. For SVM, TP FP is zero, and the classifier has no
discriminant ability. It regards all patients as viable, which
leads to the absence of its AUC value. In such cases, the
ROC curves are no longer drawn. ROC is presented in Fig.
5.

In another set of comparisons, we use SMOTE algorithm
to balance training set (Chawla et al., 2011). SMOTE
algorithm does not simply copy minority samples, but
seeks to balance the class distribution of training samples
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Table 3. COMPARISON WITH UNSUPERVISED ALGORITHM.

TP TN FP FN Sn Sp Lift Gmean Acc Auc

one-class DTW-ELM 49 526 0 25 0.6622 1 8.1081 0.8137 0.9583 0.9757

K-means 56 175 351 18 0.7568 0.3327 1.1156 0.5018 0.3850 0.5117

iForest 9 438 88 65 0.1216 0.8289 0.7523 0.3175 0.7417 0.4452

Table 4. COMPARISON WITH BINARY CLASSIFICATION ALGORITHMS.

TP TN FP FN Sn Sp Lift Gmean Acc Auc

one-class DTW-ELM 49 526 0 25 0.6622 1 8.1081 0.8137 0.9583 0.9757

SVM 0 526 0 74 0 1 NaN 0 0.8767 NaN

ELM 1 523 3 73 0.0135 0.4771 2.0270 0.1159 0.8733 0.4771

DTW-SVM 0 513 13 74 0 0.97529 0 0 0.8550 0.5841

DTW-ELM 49 526 0 25 0.5270 0.5741 1.2023 0.5501 0.5683 0.5068

”NaN” represents the absence of this indicator due to all missed reports.

Fig. 5. ROC curves for one-class DTW-ELM, DTW-SVM
and DTW-ELM and ELM.

by generating a large number of new samples with certain
strategies.

The result shows that all indicators of one-class DTW-
ELM are in the best position in this comparison, as shown
in Table 5. ROC is presented in Fig. 6. SMOTE-SVM and
SMOTE-DTW-SVM have the same perfect specificity, but
their sensitivity is 0. In this case, no matter how high the
accuracy is, the classification effect is not ideal.

Fig. 6. ROC curves for one-class DTW-ELM, SMOTE-
ELM and SMOTE-DTW-ELM.

Therefore, compared with the binary classification, one-
class DTW-ELM performs well. This result also indicates
that the data may not be suitable for classification by
common binary classification methods.

4.3 Experiment 3: Comparison with one-class classification
algorithm

This set of Comparisons randomly select the same 2,900
survival records as the train set and 600 records as the test
set. Of these, 526 were survival records and 74 were death
records.

The experiment results are obvious, and all the death
records in one-class ELM model are not reported, as shown
in Table 6. As both TP and FP are 0, the sensitivity
of one-class ELM is 0. This causes the denominator of
Lift’s formula to become 0, so Lift does not exist and
is represented by NaN in the table. AUC functions in a
similar manner. In this group of experiments, one-class
DTW-ELM has the highest sensitivity, but its specificity
is zero and its classification is invalid. The specificity
and sensitivity of one-class DTW-ELM are 1 and 0.6622,
respectively, which means that all survival records can be
judged correctly.

One-class SVM is a classical single classification model,
which is mostly used in outlier detection. Owing to the
imbalance of records, a good idea is to regard death records
as outliers. The comparison shows that one-class SVM can
be used in classification, but the classification effect is not
ideal, as shown in Table 6. ROC is shown in Fig. 7. In
both specificity and sensitivity, one-class SVM is inferior
to one-class DTW-ELM. In particular, for the AUC of one-
class SVM, the index is even lower than 0.5. In terms

Fig. 7. ROC curves for one-class DTW-ELM and one-class
SVM.

of various indicators, one-class DTW-ELM has obvious
advantages. The experimental results show that one-class
DTW-ELM still has obvious advantages over common
single classification algorithms.
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Table 5. COMPARISON WITH BINARY CLASSIFICATION ALGORITHMS (SMOTE).

TP TN FP FN Sn Sp Lift Gmean Acc Auc

one-class DTW-ELM 49 526 0 25 0.6622 1 8.1081 0.8137 0.9583 0.9757

SMOTE-SVM 0 526 0 74 0 1 NaN 0 0.8767 NaN

SMOTE-ELM 33 318 208 41 0.4459 0.6046 1.1102 0.5192 0.5850 0.5272

SMOTE-DTW-SVM 0 526 0 74 0 1 NaN 0 0.8767 NaN

SMOTE-DTW-ELM 42 251 275 32 0.5676 0.4772 1.0743 0.5204 0.4883 0.4772

”NaN” represents the absence of this indicator due to all missed reports.

Table 6. COMPARISON WITH ONE-CLASS CLASSIFICATION ALGORITHMS.

TP TN FP FN Sn Sp Lift Gmean Acc Auc

one-class DTW-ELM 49 526 0 25 0.6622 1 8.1081 0.8137 0.9583 0.9757

one-class ELM 0 526 0 74 0 1 NaN 0 0.8767 NaN

one-class SVM 33 365 161 41 0.4459 0.6939 1.3792 0.5563 0.6633 0.4984

one-class DTW-SVM 74 0 526 0 1 0 1 0 0.1233 NaN

”NaN” represents the absence of this indicator due to all missed reports.

5. CONCLUSION

By associating DTW for matching new patients with
the same precedents having one-class ELM to set up a
model fast and accurately, the proposed method accurately
predicts mortality. The real data used in the study were
obtained from the PhysioNet database, including 554
death and 3,446 survival records are used for ICU patients’
mortality prediction. In terms of specificity, sensitivity,
AUC, Lift, G-mean, and accuracy rate, one-class DTW-
ELM achieves great performance compared with other
algorithms. For the optimal tradeoff between specificity
and sensitivity, the AUC index of one-class DTW-ELM
model is 0.9757. The Lift is 8.1081 and the G-mean is
0.8137. The accuracy rate is 0.9583, with a specificity and
sensitivity of 1 and 0.6622, respectively.

In summary, one-class DTW-ELM can use early physio-
logical parameters to predict the future of patients. In ad-
dition, this method exhibits the outstanding performance
of the early warning system and the reasonable alloca-
tion of medical resources, as well as consistency with the
wide application of personalized medical treatment. In the
future, other advanced methods could be combined with
the proposed method, such as two-dimensional filtering
(Zhao et al., 2017) and two-step PCA (Lou et al., 2018),
to further improve the medical prediction performance and
provide more effective treatment for patients.
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