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Abstract: This work proposes a computationally efficient observation algorithm for the surface
temperature profile of heated silicon wafers. The observer exploits the fact that only a few
modes of the original large-order model are unstable or slowly converging. In this case, it
suffices to modify only these modes by the observer’s output feedback gain. Compared to
classical observation techniques, the proposed method allows to compute the feedback gain
for a state space of lower dimension, which reduces computational complexity. A comparison of
the approach with the extended Kalman-Bucy filter using experimental data shows its appealing
performance.
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1. INTRODUCTION

State estimation is required in a variety of applications
in process control and monitoring. Especially for model-
based process control, observers are an essential tool, as
usually the available measurements are limited, see Ali
et al. (2015). The estimator (usually called filter in a
stochastic or observer in a deterministic setting) is usually
implemented on programmable logic controllers (PLCs)
with limited computational power and strict memory con-
straints. Frequently, models in the process industry are
obtained by discretizing partial differential equations in
space. This discretization results in a set of ordinary dif-
ferential equations (ODEs) with a large model order. This
makes it challenging to realize standard observer concepts
like the (extended) Kalman filter for these problems, be-
cause the computational effort to solve the filter Riccati
equation may be excessively large or even not feasible due
to processor and memory constraints of the available PLCs
as pointed out in Ali et al. (2015) and Kleindienst et al.
(2019).

The specific problem considered in this contribution is
the temperature profile estimation of silicon wafers heated
by light emitting diodes (LEDs). Various processes in the
semiconductor industry, like thermal oxidation or chemical
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vapor deposition require the wafer to be kept at a specific
temperature. Hence, the wafer’s temperature profile is to
be controlled in these so-called rapid thermal processing
(RTP) applications. The surface temperature is usually
measured only at specific points using pyrometers. This
makes it necessary to estimate the temperature profile
over the entire wafer surface in order to apply model-based
control techniques, as proposed, e.g., in Kleindienst et al.
(2018, 2019).

Kleindienst et al. (2018) presents a model for the heat
transport in a rotating silicon wafer. The wafer is heated
via a heating plate equipped with high power LEDs. The
model is based on the heat equation and takes into account
significant effects like the light absorption of the wafer
and cooling effects caused by radiation. The distributed
parameter model is discretized in space resulting in a set
of (nonlinear) ordinary differential equations. An extended
Kalman filter is proposed for the state estimation problem.
For this approach, the computational effort is significant
and powerful PLCs are required due to the large model
order, see Kleindienst et al. (2019). Hence, as an alterna-
tive, a so-called late lumping approach is presented, which
results in a computationally efficient observer. However, no
insight on the influence of the observer gain on the stability
or performance of the observer is obtained. Therefore,
the gain has to be chosen empirically, which may be a
challenging task in various situations.

In the present work, a subspace observer recently pre-
sented in Tranninger et al. (2020) is adopted for the
temperature profile estimation problem. The proposed
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procedure is based on the idea that physically motivated
high order models often possess only a few unstable or
slowly converging modes. To reduce the computational
complexity of the resulting observer, only these modes
are modified in the observer error dynamics. This allows
to solve the corresponding filter Riccati equation on a
reduced-order state space. In Tranninger et al. (2020),
the subspace observer is derived for a linear time-varying
system. Inspired by the extended Kalman-Bucy filter, the
idea is applied here to the nonlinear model developed
in Kleindienst et al. (2018) by linearization along the
estimated state trajectory.

It is shown that it is possible to design a computationally
efficient observer with a systematically designed feedback
gain obtained via a reduced order Riccati differential equa-
tion. For the problem under consideration, experimental
results show that it suffices to numerically solve a scalar
Riccati differential equation for a satisfying observer per-
formance. The proposed observer algorithm is compared
to a deterministic interpretation of the extended Kalman-
Bucy filter and shows a comparable estimation perfor-
mance at a significantly reduced computational cost.

Notation: Matrices are printed in bold capital letters
whereas column vectors are bold face lower case letters.
The vector qi denotes the i-th column of the Matrix Q
whose entries are denoted by qij . The time derivative
dx(t)
dt is represented by ẋ(t) and in some cases the time

dependency is omitted for the sake of better readability.
The 2-norm of a vector or the corresponding induced
matrix norm is denoted by ‖ · ‖.

2. SEMICONDUCTOR PROCESS

This section describes the considered semiconductor pro-
cess together with the mathematical model derived in Klein-
dienst et al. (2018). The ultimate control goal is to en-
sure a uniform temperature profile of the wafer’s surface
following a desired temperature. This is required, e.g.,
for activating dopant or repairing damage of the wafer
after ion implantations. Another application could be the
treatment of the wafer surface with reactive gases to, e.g.,
remove hard-baked photoresist with the aid of ozone gas.

2.1 Plant Description

A silicon wafer is mounted on a chuck and rotates in the
process chamber. A static heating plate equipped with
high power LEDs is mounted below the rotating chuck.
The LEDs emit light with a wavelength of approximately
450 nm which is absorbed by the wafer. The LEDs are
grouped into four heating zones. All LEDs of one group are
controlled simultaneously with a desired electrical power.

The measurement of the surface temperature is a challeng-
ing task. Infrared cameras would be desirable but cannot
be used, because on one hand the silicon wafer is trans-
parent in this wavelength range and on the other hand it
is not possible to mount cameras in the process chamber
due to highly reactive gases. Therefore, pyrometers are
used in the present setup to measure the temperature at
specific points. Four pyrometers are available to measure
the temperatures in the four heating zones, see Fig. 1.

Fig. 1. Radial symmetric spatial discretization of the wafer
together with the four available heating zones.

One of these is used for the state estimation, the others
for validation.

2.2 Mathematical Model

The basis of the process model is the heat transfer equation
for rotationally symmetric problems. This one dimensional
partial differential equation is then spatially discretized
with n = 30 grid points into concentric rings, see Fig. 1.
The resulting nonlinear model is given by

dx

dt
= f(x,u) = A1(x)x

︸ ︷︷ ︸
1

− εA2(x)


x41
x42
...
x4n


︸ ︷︷ ︸

2

+ B(x)u

︸ ︷︷ ︸
3

. (1)

State xi represents the temperature in the center of the
i-th ring. The first part 1○ of the model is related to the
lossless heat equation. The heat losses through radiation
are described by 2○, where ε is the total emissivity,
which strongly depends on the wafer type. The heat input
through light absorption is described by 3○. The input
u ∈ R4 is the electrical power supplied to the LED groups
in the four heating zones. Details on the derivation on the
model and the specific structure and properties of A1(x),
A2(x) and B(x) can be found in Kleindienst et al. (2018).

In the productive setup, only one pyrometer is available
to measure the temperature in zone 1. Hence, for observer
design purposes the model possesses a scalar output

y = xp = Cx (2)

with C = eT
p and ep as the unit vector corresponding to

the position of pyrometer 1. The other pyrometers present
in the laboratory setup are used for validation purposes.

The total emissivity ε is a characteristic quantity for a
specific wafer type and in particular depends on its dopant
level and coating. The parameter varies from approxi-
mately 0.2 for a “bare silicon” wafer to 0.9 for a “highly
doped” wafer. In some cases, the type of the processed
wafer is not known and hence it is required to estimate the
total emissivity ε together with the temperature profile.
In order to account for this, the state vector is extended
according to x̃T =

[
xT ε

]
and a new model
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dx̃

dt
= f̃(x̃,u) =

A1(x)x− εA2(x)


x41
x42
...
x4n

+ B(x)u

0


y = [C 0] x̃

(3)

is obtained where ε is modeled as an unknown constant.

3. LYAPUNOV EXPONENTS AND THE
CORRESPONDING SUBSPACES

This section recalls basic results on the stability properties
of the linear time varying (LTV) systems that are required
for the design of the proposed observer. The time varying
system is obtained by linearizing a nonlinear system based
on the ideas of the extended Kalman-Bucy filter, see Simon
(2006). The system

ẋ(t) = A(t)x(t) + f̄(t,x), x(t) ∈ Rn (4)

considered on the half line, i.e. t ∈ J = [0,∞) with the
coefficients of the matrix A(t) continuous and uniformly
bounded and f̄(t,x) as a perturbation. Such systems
typically occur when linearizing a nonlinear system around
a given trajectory. Stability of (4) is strongly related to the
stability properties of the unperturbed system

ẋ(t) = A(t)x(t), (5)

which, in a first step, will therefore be investigated in the
following. The unique solution of (5) is given by

x(t) = Φ(t, t0)x0, t, t0 ∈ J (6)

with Φ(·, ·) as the state transition matrix and x0 = x(t0)
as the initial state. The state transition matrix can be
obtained by any nonsingular solution of the fundamental
matrix differential equation

Ẋ(t) = A(t)X(t), X(0) = X0 ∈ Rn×n (7)

according to

Φ(t, s) = X(t)X−1(s), t, s ∈ J. (8)

The stability notions used in this work are now briefly
recalled.

Definition 1. (Tranninger et al. (2020)). System (5) is ex-
ponentially stable if and only if there exist constants
K, µ > 0 such that for all t ≥ 0 it holds that

‖Φ(t, 0)‖ ≤ Ke−µt; (9)

It is uniformly exponentially stable if and only if there exist
constants K, µ > 0 such that for all t0 ∈ J and all t ≥ t0
the inequality

‖Φ(t, t0)‖ ≤ Ke−µ(t−t0) (10)

holds.

Exponential stability can be studied using the functional

χs(x(·)) = lim sup
t→∞

1

t
ln ‖x(t)‖, (11)

which measures the asymptotic rate of exponential growth
of a function x(t). For x(t) = X(t)ei with a fundamental
matrix solution X(t) and the i-th standard basis vector,
this functional attains the values λi, i = 1, . . . , n. The
sum

∑n
i=1 λi is minimized over all fundamental matrix

solutions X(t). The values λi obtained in this way are the
so-called (upper) Lyapunov exponents λsi = λi, see Dieci

and Van Vleck (2007). It can be assumed without loss of
generality that these exponents are ordered according to
λs1 ≥ λs2 ≥ · · · ≥ λsn and the corresponding X(0) is then
called an ordered normal Lyapunov basis. For simplicity,
it is assumed that the Lyapunov exponents are distinct.
Let the sets Vj be defined as

Vj =
{
x0 ∈ Rn : χs(Φ(·, 0)x0) ≤ λsj

}
(12)

for j = 1, . . . , n. It is shown in (Barreira and Pesin,
2002, p. 10) that these Vj are subspaces of Rn such that
{0} =: Vn+1 ( Vn ( . . . ( V2 ( V1 = Rn with nj =
dimVj = dimVj+1 + 1. One obtains χ(Φ(t, 0)x0) = λsj
if and only if x0 ∈ Vj\Vj+1. For an ordered normal Lya-
punov basis X(0) = [x1,0 · · · xn,0] and distinct expo-
nents it holds that Vi = span[xi,0, . . . ,xn,0] and moreover
χs(Φ(t, 0)xi,0) = λsi , and hence every so-called Lyapunov
vector xi,0 corresponds to a specific Lyapunov exponent.
It should be noted that for a constant dynamic matrix
A(t) = A, the Lyapunov exponents correspond to the
real parts of the eigenvalues of A. A more detailed intro-
duction into the theory of Lyapunov exponents including
exponents with multiplicity larger than one can be found
in Barreira and Pesin (2002) or as a summary in Dieci and
Van Vleck (2007) and Tranninger et al. (2020).

According to Lyapunov’s stability theory (Barreira and
Pesin, 2002, p. 9), system (5) is (non-uniformly) expo-
nentially stable if and only if all Lyapunov exponents are
negative, i.e. λs1 < 0; in particular, (9) then holds for any
µ < −λ1. Exponential stability based on negative Lya-
punov exponents is not robust under small perturbations,
see Barreira and Pesin (2002). However, assuming the
additional property of forward regularity, which is defined
later, exponential stability of (5) is preserved for (4) in
the presence of sufficiently small perturbations fulfilling
the conditions f̄(t,0) = 0 and

‖f̄(t,x)− f̄(t,v)‖ ≤ α‖x− v‖(‖x‖+ ‖v‖)q−1 (13)

for some α > 0 and q > 1, see 1 (Barreira and Pesin, 2002,
Theorem 1.4.3). Forward regularity is also desirable for the
numerical approximation of the exponents, which will be
discussed in the following.

An important tool for the numerical approximation of
the Lyapunov exponents and the corresponding directions
determined by Lyapunov vectors is the QR-decomposition
of the fundamental matrix solution X(t) = Q(t)R(t) with
Q(t) as an orthogonal and R(t) as an upper triangular ma-
trix. In the continuous version of the QR-decomposition,
Q(t) and R(t) are the unique solutions of

Ṙ(t) = B(t)R(t), B(t) = QT(t)A(t)Q(t)− S(t) (14)

Q̇(t) = Q(t)S(t), (15)

with X(0) = X0 = Q(0)R(0) as some ordered normal
Lyapunov basis. The entries sij of S ∈ Rn×n are given by

sij(t) =


−qT

i (t)A(t)qj(t) i < j,

0 i = j,

qT
i (t)A(t)qj(t) i > j,

(16)

with qi(t) as the i-th column of Q(t). Note that the
differential equation (14) is related to the fundamental dif-
ferential equation (7) via a (stability preserving) Lyapunov

1 Note that the inequality presented in the original theorem of Bar-
reira and Pesin (2002) is incorrect. This was corrected in an errata.
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transformation R(t) = QTX(t), and hence the Lyapunov
exponents of (7) and (14) coincide for X0 as ordered
normal Lyapunov basis, see Adrianova (1995). Forward
regularity allows to approximate the Lyapunov exponents
without explicitly computing the (possibly diverging) so-
lution X(t) or R(t).

Definition 2. (Forward regularity). The Lyapunov expo-
nent λsi is called forward regular, if

lim sup
t→∞

1

t

∫ t

0

bii(s)ds = lim inf
t→∞

1

t

∫ t

0

bii(s)ds (17)

holds with bii(t) as the corresponding main diagonal
element of B(t). System (5) is called forward regular if
all Lyapunov exponents are forward regular.

If the system is forward regular, then, for any ordered
normal Lyapunov basis V = [v1 v2 . . . vn] of Rn,

χ(Φ(t, 0)vi) = λsi = lim
t→∞

1

t

∫ t

0

bii(s)ds

= lim
t→∞

1

t

∫ t

0

qT
i (s)A(s)qi(s)ds,

(18)

see Barreira and Pesin (2002); Tranninger et al. (2020).
Hence, the Lyapunov exponents can be approximated by
only computing the solution for the orthogonal matrix
Q(t) and evaluating the time average of the diagonal
elements bii = qT

i Aqi on a sufficiently large time interval.
Typically, only Lyapunov exponents corresponding to un-
stable or slowly converging modes are of interest. They can
be obtained via the reduced QR-decomposition by only
considering the first k ≤ n columns of X = QR according
to

Ṙ1 = B1R1, R1(0) = R1,0 ∈ Rk×k (19)

B1 = Q̄TAQ̄− S1 (20)

˙̄Q =
(
I− Q̄Q̄T

)
AQ̄ + Q̄S1, Q̄(0) = Q̄0 ∈ Rn×k. (21)

The matrix Q̄ corresponds to the first k columns of Q
in (15) and hence the elements sij of S1 are given according
to (16) with i, j ≤ k. To approximate the k largest Lya-
punov exponents, one thus has to solve (21) numerically,
compute the diagonal of B1 and approximate the time
average of the diagonal elements on a finite time horizon.
Moreover, the columns of Q̄ span an orthogonal comple-
ment of the subspace Vk+1(t), i.e. V⊥k+1(t), as discussed
in Tranninger et al. (2020).

4. EXTENDED SUBSPACE OBSERVER DESIGN

In this section, the subspace observer for LTV systems
presented in Tranninger et al. (2020) is recapitulated.
Moreover, the (continuous-time) extended Kalman-Bucy
filter as an observer for non-linear systems is briefly dis-
cussed. Both ideas are combined for the extended subspace
observer design in the last part of this section in order to
obtain a computationally efficient observer for a class of
nonlinear systems.

4.1 Subspace Observer for LTV Systems

The idea for the observer design is to compute the feedback
gain only for the subspace V⊥k+1(t), which, loosely speak-

ing, can be interpreted as the unstable or slowly converging
part of the system. Let the LTV system

ẋ(t) = A(t)x(t) + B(t)u(t) (22a)

y(t) = C(t)x(t) (22b)

be defined on the time interval J = [0,∞) with the state
x(t) ∈ Rn, the input u(t) ∈ Rm and the output y(t) ∈ Rp.
It is assumed that the matrices A(t), B(t) and C(t)
of appropriate dimension are continuous and uniformly
bounded . It is furthermore assumed that the autonomous
system ẋ(t) = A(t)x(t) is forward regular and that the
pair (A(t),C(t)) is uniformly completely observable.

Definition 3. (Uniform Complete Observability). The pair
(A(t),C(t)) is uniformly completely observable if there
exist constants β1, β2, T > 0 such that for all t0 ∈ J
it holds that

β1I �M(t0 + T, t0) � β2I (23)

with the observability Gramian

M(t, t0) =

∫ t

t0

ΦT(τ, t0)CT(τ)C(τ)Φ(τ, t0)dτ. (24)

Uniform complete observability is a standard assumption
in Kalman filtering in order to guarantee a uniformly
bounded solution of the corresponding filter Riccati equa-
tion

Ṗf = APf + PfA
T −PfC

TCPf + Gf (25)
with Gf � 0 and Pf (t0) = Pf,0 � 0, see Bucy (1972).
The observer proposed in Tranninger et al. (2020) can be
summarized as follows. Assume that k∗ ≤ n is the number
of non-negative Lyapunov exponents of ẋ = A(t)x. Then,
for any k ≥ k∗ the proposed observer reads as

˙̂x = Ax̂ + Bu + Q̄PQ̄TCT(y −Cx̂), x̂(t0) = x̂0, (26a)

˙̄Q =
(
I− Q̄Q̄T

)
AQ̄ + Q̄S1, Q̄(t0) = Q̄0 (26b)

Ṗ = B1P + PBT
1 −PQ̄TCTCQ̄TP + G, P(t0) = P0

(26c)

with
B1 = Q̄TAQ̄− S1 ∈ Rk×k (26d)

and a skew-symmetric S1 = −ST
1 with elements sij

according to (16). It is shown in Tranninger et al. (2020)
that with this choice of the observer gain, the estimation
error e(t) = x(t) − x̂(t) converges to zero exponentially
fast, i.e., the estimation error dynamics

ė(t) =
[
A(t)− Q̄(t)P(t)Q̄T(t)CT(t)C(t)

]
e(t) (27)

is exponentially stable.

The matrices Q̄ and P have dimensions n × k and k ×
k, respectively. Note that (26c) is a Riccati equation
on a reduced k-dimensional subspace with P0 � 0 and
G � 0 considered as tuning parameters. The initial
condition condition Q̄0 is chosen as a random orthogonal
matrix, see Tranninger et al. (2020). It is crucial to
maintain orthogonality of Q̄. Hence, for solving (26b)
numerically, a so-called projected integrator as introduced
in Dieci et al. (1994) is employed. This is a standard
numerical integration scheme combined with a modified
Gram-Schmidt algorithm to preserve the orthogonality of
Q̄.

4.2 Extended Kalman-Bucy Filter

For a nonlinear system of the form

ẋ = f(x,u), x(t0) = x0 ∈ Rn (28)
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with a linear time-varying measurement

y = C(t)x, y(t) ∈ Rp (29)

the considered version of the Extended Kalman-Bucy
Filter (EKBF) reads as

˙̂x = f(x̂,u) + PCT(y −Cx̂), x̂(t0) = x̂0 (30)

Ṗ = Df(x̂,u)P + PDf(x̂,u)T −PCTCP + G, (31)

with the matrices G � 0 and P(t0) of dimension n×n con-
sidered as tuning parameters like, e.g., in Krener (2003).
The matrix Df(x̂,u) is the Jacobian of f evaluated at x̂
and u. Details on the EKBF can be found in (Simon, 2006,
Ch. 13.2). Note that in general, only local convergence
of the EKBF can be guaranteed, see Krener (2003) for
a convergence analysis. To guarantee boundedness of the
solution of the corresponding Riccati differential equation,
uniform complete observability of (Df(x̂,u),C) is typi-
cally required, which is hard to verify in practice. Suf-
ficient conditions for uniform observability are discussed
in Krener (2003), but they are still hard to check for
practical large order problems.

4.3 Extended Subspace Observer Algorithm

Combining the ideas of the subspace observer for LTV
systems and the EKBF from the previous sections allows
to propose the extended subspace observer (ESO). The
basic idea is to apply the subspace observer to the linear
time varying system obtained via the linearization along
the estimated trajectory. It is assumed that k∗ is the
number of non-negative Lyapunov exponents of all tra-
jectories of system (28). For some k ≥ k∗, the extended
subspace observer (ESO) for the nonlinear system (28)
with output (29) is then proposed according to

˙̂x = f(x̂,u) + Q̄PQ̄TCT(y −Cx̂), x̂(t0) = x̂0 (32)

and the matrices Q̄(t) and P(t) as in (26b) and (26c),
respectively, where A(t) is replaced by Df(x̂,u). The
choice of the initial conditions is already discussed in
Section 4.1. As a consequence, the dimension of the Riccati
differential equation can be drastically reduced if k is small
compared to the system order n.

It should be remarked that regularity of the nonlinear sys-
tem guarantees that the Lyapunov exponents are indepen-
dent of the specific trajectory, see Frank and Zhuk (2018).
Hence, the number of non-negative Lyapunov exponents
k∗ can be estimated in an off-line simulation.

5. TEMPERATURE PROFILE ESTIMATION AND
EXPERIMENTAL RESULTS

Simulation studies showed that system (1) possesses
only negative Lyapunov exponents. This allows to im-
plement a trivial observer (TO) without measurement
injection.However, the performance of this observer is not
satisfying because the convergence behavior cannot be
influenced. Moreover, it does not yield an estimate for
the total emissivity. The observers presented in Section 4
are thus implemented for the nonlinear model (3). Due to
the structure, this model possesses a Lyapunov exponent
at zero, which has to be modified in the observer error
dynamics. In the following, the extended subspace observer
in various configurations is compared with the EKBF. All

0 20 40 60 80 100 120
0

2

4

t [s]

u
[W

]

u1 (zone 1)
u2 (zone 2)
u3 (zone 3)
u4 (zone 4)

Fig. 2. Electrical power (input) for the four heating zones.

algorithms are implemented in Matlab/Simulink with
the fixed step-size solver ode2 (Heun) and a step-size of
Ts = 0.1 s. The ESO is implemented for k = 6, k = 3
and k = 1. The tuning parameters are parametrized via
scalars according to G = gI and P(t0) = p0I and identity
matrices of appropriate dimensions. For the EKBF and the
ESO with k = 3 and k = 6, the parameters are chosen as
g = 10−3 and p0 = 1; for the ESO with k = 1, p0 = 1 and
g = 1 was chosen to obtain a similar convergence speed as
for the other observers.

The experiments are conducted with a pseudo-random
electrical heat power input as depicted in Fig. 2. The
obtained measurements are fed offline into the Simulink
model with the implemented observer algorithms. In Fig. 3
the temperature estimates in the four heating zones for the
different observers are compared with the measurements
of the pyrometers. Note that below 300 ◦C, the pyrom-
eters do not provide reliable measurements due to their
measurement principle. One can see that the temperature
estimates are qualitatively comparable for all implemented
observers. The emissivity estimates are depicted in Fig. 4.
The estimates are reasonable because the experiment was
carried out with a highly doped wafer with an emissivity
of approximately 0.85.

Remarkably, the ESO for k = 1 requires to solve a scalar
Riccati differential equation only but still delivers reason-
able temperature and emissivity estimates. In contrast to
the extended Kalman-Bucy filter, which requires to solve a

differential equation of order n+(n
2−n
2 +n) = 1

2n
2+ 3

2n, the
proposed ESO requires to solve a differential equation of

order n+nk+
(
k + k2−k

2

)
= n+k(n+1+k−1

2 ). For the ESO

with k = 1, this reduces to a differential equation of order
61 compared to 495 for the EKBF. The whole temperature
profile estimate for the ESO with k = 1 is depicted in
Fig. 5 together with all pyrometer measurements. This also
shows the satisfying performance of the proposed observer
design technique.

6. DISCUSSION AND OUTLOOK

This paper presents a computationally efficient observer
concept for the temperature profile estimation of silicon
wafers. The observer feedback gain is computed via a
reduced order Riccati differential equation. The proposed
observer is compared to a classical extended Kalman-Bucy
filter and shows comparable performance at a drastically
reduced computational cost. A future research direction
is the investigation of convergence conditions for the pro-
posed observer for general nonlinear estimation problems.
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Fig. 3. Comparison of estimates and measurements in the
four zones.
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Fig. 4. Comparison of emissivity estimates for different
observers.

Also the comparison of different solvers and discrete time
implementations may be subject of future research.
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Fig. 5. ESO estimation results together with the pyrometer
measurements for k = 1.
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