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Abstract: For highly precise motion of a galvanometer scanner that tracks a periodic motion
reference, learning control significantly decreases the tracking error. To achieve higher quality
motion by reducing the angular sensor noise, this paper investigates inversion-based iterative
control (IIC) that can learn only at the fundamental and harmonic frequencies of the periodic
motion reference. This enables to separate the compensable tracking error from the noise to be
eliminated during learning in the frequency domain. The analysis in the paper reveals a tradeoff
for the noise reduction in the IIC design, and this paper proposes an equation to quickly tune a
design parameter in the tradeoff for better performance. Furthermore, the effectiveness of the IIC
algorithm is experimentally demonstrated for a galvanometer scanner. When the galvanometer
scanner tracks a 20Hz triangular motion of ± 10 degrees, the IIC successfully decreases the
residual tracking error by 41% to 2.83×10−4 deg, by utilizing the noise reduction.

Keywords: Galvanometer scanner, Motion control, Learning algorithms.

1. INTRODUCTION

Highly precise fast scan is indispensable in many appli-
cations. To print 3-D objects, for example, a resin is
polymerized by scanning a laser spot in the case of direct
laser writing [Stampfl et al. (2016)] and stereolithography
[Yoo et al. (2019)]. For imaging, a laser spot is scanned
over a sample in a confocal microscopy [Pawley (2006)]. In
such opto-mechatronic systems, galvanometer scanners are
most commonly used to rotate a mirror redirecting a laser
beam. A galvanometer scanner consists of a mirror and
shaft that are supported by roller bearings and rotated
by an electromagnetic actuator with an angular sensor
[Matsuka et al. (2016)]. For inspection, the angular motion
is usually periodic (e.g. for raster scan) and desired to be
highly precise at a high scanning frequency for the high
throughput of the system.

There are several challenges to realize the desired scanning
motion. Some of them are the nonlinear bearing friction,
the mechanical dynamics that limit the control bandwidth,
the sensor noise that is typically random to degrade the
motion resolution, and the generated heat that increases
model uncertainty [Matsuka et al. (2016)]. In order to
compensate them, motion control has been proposed for
galvanometer scanners. Among different types of motion
control for galvanometer scanners (e.g. iterative learning
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control (ILC) [Yoo et al. (2016)], adaptive control [Zaeh
and Pieczona (2018)], and repetitive control [Feng and
Zhi (2011)]), inversion-based iterative control (IIC) [Tien
et al. (2005); de Rozario et al. (2016)] has advantages for
periodic scanning motion.

IIC learns from the motion in the previous trials and
updates the control input for the next trial, reducing the
motion error, similar to ILC. Unlike ILC, IIC learns in
the frequency domain by using discrete Fourier transform
(DFT) or Fourier series. Since their coefficients represent
signals also in the future, IIC is free from the causality
problem and handles scanners’ nonminimum phase zeros
without restrictions (cf. Yoo et al. (2016)). Furthermore,
IIC enables to set the frequencies where the learning takes
place in detail. As a result, instead of learning in the entire
frequency range, the learning frequencies can be set at
the fundamental and harmonic frequencies of the scanning
motion. This design freedom is mainly utilized for the
reduction of the learning algorithms and the required com-
putation power [Hehn and D’Andrea (2014)] and for stable
fast learning of modeling-free IIC [Kim and Zou (2013);
Ito et al. (2017)], which is able to compensate for system
nonlinearity and model uncertainty [Ito et al. (2019)]. In
this paper, another important aspect of learning at the
selected frequencies is focused, which is the elimination
of the sensor noise between the selected frequencies in
learning for high-precision motion. Although this aspect
was pointed out [Ito et al. (2017)], the effectiveness has
not been investigated for IIC in detail.

This paper proposes a design guideline that takes account
of the noise reduction of IIC explicitly, for high-precision
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Fig. 1. Photograph of the galvanometer scanner for the
experiments.

periodic scanning motion. For detailed evaluations, this
paper compares two IIC designs for a galvanometer scan-
ner. The first design is full-spectrum IIC, where the learn-
ing takes place for the entire frequency range, and the
second design is harmonic-frequency IIC, which learns only
at the fundamental frequency of the periodic trajectory
and its harmonics.

Section 2 introduces and analyzes a galvanometer scanner,
for which IIC is designed and analyzed for the noise
reduction in Section 3. Section 4.2 experimentally verifies
the the effectiveness of the noise reduction, which is
followed by the conclusion in Section 5.

2. SYSTEM DESCRIPTION AND ANALYSIS

2.1 Architecture

Fig. 1 shows the galvanometer scanner (6870M, Cambridge
Technology, Bedford, USA) for the experiments. The shaft
of the scanner is supported by bearings and rotated by an
electromagnetic motor. The motor is driven by a custom-
made current amplifier with a bandwidth of about 10 kHz.
A mirror is attached on one end of the shaft for steering
the laser. On the other end, the motor is attached together
with a capacitive angular sensor that measures the shaft
angle.

The motion control is implemented by a rapid prototyp-
ing control system (DS1005, dSpace GmbH, Paderborn,
Germany) at a sampling frequency of 20 kHz. The rapid
prototyping control system is also used for data acquisition
at the same sampling frequency. The amplifier and the
angular sensor are connected to the rapid prototyping
control system via a 16-bit DAC (DS2102, dSpace) and 16-
bit ADC (DS2004, dSpace), respectively. The resolution of
the angular measurement due to least significant bit (LSB)
of the ADC is 3.73× 10−4 deg.

2.2 Feedback control and modeling

Due to the bearings’ friction force that is nonlinear and
uneven dependent on the rotational angle [Armstrong-
Hélouvry et al. (1994)], the shaft can drift away during
scanning. In order to prevent it, feedback control is used to
stabilize the scanner without a steady-state tracking error.
Fig. 2(a) shows a block diagram of the closed-loop system,
where C(s) is a phase lead compensator cascaded with a PI
controller [Ito et al. (2017)]. The controller feeds back the
measurement noise nm of the angular sensor, fluctuating
the actual shaft angle θ. For high positioning resolution,
the open-loop cross-over frequency is set to a low frequency
of 150Hz in the design of C(s), which is then discretized by
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Fig. 2. Block diagram of (a) the galvanometer scanner
stabilized by the feedback controller C(s) and (b)
the augmented closed-loop system P (s) with the
equivalent noise n, where u is the input, and θn is
the angular sensor output.
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Fig. 3. Measured Bode plot of the stabilized galvanometer
scanner P (s) from its input u to the output θn. Curve
fitting is used to capture the response by a transfer
function P̂ (s).

the bilinear transformation for implementation. In the rest
of the paper, the augmented closed-loop system is denoted
by P (s) with the input u, as shown in Fig. 2(b). The sensor
output θn contains the equivalent measurement noise n, to
which the measurement noise nm is lumped.

To model P (s), a Bode plot from u to θn is measured, as
shown in Fig. 3. It can be seen that the -3 dB bandwidth
of the stabilized system is 225Hz. For the IIC design
in Section 3, the frequency response function (FRF) is

captured by fitting an 8th-order transfer function as P̂ (s),

as shown in Fig. 3. Due to its high order, P̂ (s) captures
the parasitic dynamics beyond 1 kHz, which may include
the torsional mode of the shaft, for the convergence of IIC.

2.3 Measurement noise and ensemble average

For the analysis of the IIC comparison, the noise n is
investigated by setting the input u to 0 deg and measuring
the sensor output θn as n. The results are shown by
the blue-solid lines in Fig. 4, where the root-mean square
(RMS) value of n is 1.25× 10−3 deg. The power spectral
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Fig. 4. Measured equivalent noise n and its PSD with and
without 100-time ensemble average.

density (PSD) of n is roughly about 10−10 deg2/Hz at low
frequencies in Fig. 4(bottom).

For further evaluation, the random components in n are
decreased by ensemble average [Karadeniz et al. (2013)].
For this purpose, n is recorded for 0.5 s, and this is
repeated Nen times. By averaging the Nen data points
at each sampled time, because the random components
are mutually independent for each data set, their PSD is
decreased as follows (cf. Jabben and van Eijk (2011))

PSDr,avg(jω) = PSDr(jω)/Nen, (1)

where PSDr(ω) and PSDr,avg(ω) are the PSD of the
random signal before and after the Nen-time ensemble av-
eraging, respectively. Consequently, the RMS is decreased
to

RMSr,avg = RMSr/
√
Nen, (2)

where RMSr and RMSr,avg are the RMS of the random
signal before and after the ensemble average at the fre-
quency ω, respectively.

The red-dashed lines in Fig. 4 show the results of ensemble
average for Nen =100. The RMS of the noise is decreased
by a factor of 10 to 1.25× 10−4 degrms, and the PSD is
entirely lowered to the level of about 10−12 deg2/Hz. Since
the noise floor is decreased, a peak is clearly visible at
50Hz, which would be due to the noise from the AC mains.

3. IIC DESIGN AND ANALYSIS

As commonly used for raster scan in imaging systems, a
triangular wave with a period of Tr is used as the reference
trajectory r(t) in the IIC designs. The block diagram
of IIC is shown in Fig. 5. The measured tracking error
en is recorded for a duration of TDFT and stored in a
memory. The buffered data set is used to calculate the
discrete Fourier transform (DFT) En,i(jω) of en for the
frequency ω at the i-th iteration. From the error in the
frequency domain, the control input Ui+1(jω) is generated
for the next iteration. By applying the inverse discrete
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Fig. 5. Block diagram of IIC implemented in the frequency
domain. The input noise and the measurement noise
are lumped as the equivalent noise n.

Fourier transformation (IDFT), u(t) is obtained in the
time domain.

3.1 Full-spectrum IIC

The learning law of typical IIC [Tien et al. (2005); Wu and
Zou (2007)] is

Ui+1(jω) = Ui(jω)+ρ(jω)P̂−1(jω)En,i(jω) for ω ≤ 2πfB ,
(3)

where P̂ (jω) is the plant model, and fB denotes the band-
width. The parameter ρ(jω) is the frequency-dependent
learning gain, which is tuned for the convergence of IIC
[Wu and Zou (2007)]. As the initial condition, U0(jω) is
set to zero in this paper. Because the IIC in (3) is active for
the entire spectrum up to the bandwidth fB , it is referred
to as full-spectrum IIC hereafter.

3.2 Harmonic-frequency IIC

Since r, u, and θ are correlated, when r is periodic, so is
u without the noise n, as follows

u(t+ Tr) = u(t). (4)

Thus, u has frequency components at the fundamental
frequency fr =1/Tr and its harmonic frequencies for the
tracking error compensation. This implies that IIC cor-
rectly learns at those frequencies only. The problem of
full-spectrum IIC is that the frequency components of
θn and en between the harmonic frequencies contain no
useful information for learning, but measurement noise.
As a result, the IIC erroneously learns from the noise
between the harmonic frequencies, degrading the tracking
performance.

To solve the above problem, the noise is eliminated by the
following learning law (cf. [Hehn and D’Andrea (2014)]):

Ui+1(jω) = α(jω)
{
Ui(jω) + ρ(jω)P̂−1(jω)En,i(jω)

}
,

(5)
using the noise filtering gain α(jω)

α(jω) =

{
1 for ω = 2πfr, 4πfr, ..., 2πlfr,

0 otherwise,
(6)

where l is a positive integer given by fB/fr. Since the IIC is
active at the fundamental and harmonic frequencies only,
it is referred to as the harmonic-frequency IIC hereafter.

3.3 Tracking error due to noise

The actual tracking error e = r−θ at the (i+1)-th iteration
is given from (3) by
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Ei+1(jω) = Φi+1(jω)E0(jω) +

i∑
k=0

Φk(jω)Ψ(jω)Ni−k(jω)

(7)
where Ei and Ni are the DFT of e and n at i, respectively.
The parameter Ψ(jω) and Φ(jω) are

Ψ(jω) = ρ(jω)P (jω)P̂−1(jω), Φ(jω) = 1−Ψ(jω). (8)

When the convergence criterion (|Φ(jω)| < 1) is satisfied,
the first term in the right-hand side of (7) decays away,
and the rest of the terms indicate the magnitude of the
tracking error due to the noise n, from which the power
spectral density of the actual tracking error PSDe at the
(i+ 1)-th iteration is given by

PSDe,i+1(jω) =

i∑
k=0

|Φ|2k(jω)|Ψ|2(jω)PSDn(jω). (9)

Eq. (9) converges to

PSDe(jω) =
|Ψ|2(jω)

1− |Φ|2(jω)
PSDn(jω), (10)

where PSDn is the PSD of n evaluated in Sec. 2.3.

3.4 Noise reduction

When full-spectrum IIC is implemented by (3), the RMS
of the converged e is given by

RMSfull =

√∫ 2πfB

0

PSDe(jω)dω, (11)

In the case of harmonic-frequency IIC with (5), the IIC
learns only at the frequencies selected by α, and the RMS
of the converged e is approximated by

RMSharm =

√√√√ l∑
k=1

∆fPSDe(j2πkfr), (12)

using the equivalent noise bandwidth ∆f [Harris (1978)]
given with the recording time TDFT of the data set for the
DFT as follows

∆f = ∆ENBW /TDFT , (13)

where ∆ENBW is the normalized equivalent noise band-
width. Dependent on the window function used for the
DFT, ∆ENBW typically takes a value between 1 and 2
[Harris (1978)]. For the best noise reduction performance,
the rectangle window function is selected, minimizing
∆ENBW to 1 in this paper.

By dividing (12) by (11), the noise reduction ratio Rn in
the tracking error by harmonic-frequency IIC is defined by

Rn = RMSharm/RMSfull. (14)

By assuming that PSDe(jω) approximates PSDe in the
vicinity of ω, (14) is simplified by

Rn =

√√√√∑l
k=1 ∆fPSDe(j2πkfr)∑l
k=1 frPSDe(j2πkfr)

=

√
Tr

TDFT
=

1√
NDFT

(15)
A concern of the selected window function is the spectral
leakage of the tracking error [Verhaegen and Verdult
(2007)]. To prevent it, NDFT in (15) should be a positive
integer, and it is the number of the r’s periods used for
the DFT in Fig. 5.
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Fig. 6. Conceptual PSD of the measured error en around
the k-th harmonic frequency of the trajectory r, in
the case that en includes white Gaussian noise with
PSDn. Periodic noise appears as a line spectrum.
The red lines are the compensable tracking error by
IIC that occurs at harmonic frequencies of fr. The
signal components in the yellow bands are picked up
by harmonic-frequency IIC.

Eq. (15) can be utilized to determine the recording time
of en in harmonic-frequency IIC. If the buffered data
has a length of only one period (NDFT =1), harmonic-
frequency IIC attains no noise reduction effect. This is
because ∆f is equal to the fundamental frequency fr,
and the noise between the harmonic frequencies cannot be
removed. In contrast, harmonic-frequency IIC can theoret-
ically eliminate all the random noise if the recorded data is
infinitely long. In reality, however, a design tradeoff exits
to determine NDFT between the noise reduction and the
implementable buffer size. In order to quickly achieve a
good performance in the tradeoff, (15) is proposed for the
tuning of the recording time.

The noise reduction concept is illustrated in Fig. 6, where
the compensable tracking error appears as line spectra at
harmonic frequencies of fr. The signal components in the
yellow bands are picked up by harmonic-frequency IIC. By
increasing NDFT , the yellow bands get narrower for better
noise reduction.

4. EXPERIMENTS

4.1 Trajectory and IIC settings

A triangular wave of ± 10 deg and 20Hz is selected as
the motion trajectory r of the galvanometer scanner. To
prevent the input saturation of the amplifier, r includes
the first 20 harmonics of the triangular wave, as given by
the following Fourier series

r(t) = Ar

20∑
k=1

bk sin(2πfrkt), (16)

using

bk =
8

π2k2

{
(−1)(k−1)/2 for odd k

0 for even k,
(17)

where the amplitude Ar and the frequency fr take a value
of 10 deg and 20Hz, respectively. Notice that fr = 20Hz
is advantageous in that harmonic-frequency IIC does not
pick up the 50Hz mains noise (Fig. 4).

The modeled frequency response P̂ (jω) in Section 2.2 is
used in the learning law (3) and (5) for full-spectrum

IIC and harmonic-frequency IIC, respectively. Since P̂ (jω)
captures the measured frequency response well (Fig. 3), the
learning gain ρ(jω) is set to one in the entire frequency
range.
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Because the system nonlinearity can deform the scanning
motion and create higher harmonics in the tracking error
e [Ito et al. (2019)], the IIC bandwidth fB is set to a
sufficiently high frequency of 900Hz. Since fr is 20Hz,
this corresponds to l=45 in (6). As a case study, the
period number for the DFT is set to NDFT =10 at the
implementation.

4.2 Experimental results

Due to the sensor noise, the actual tracking error e cannot
be directly obtained for the evaluation of the IICs. Since
the tracking error e resulting from the IIC is periodic, 100-
time ensemble average is used for θn and en to improve
the signal-to-noise ratio. This ensemble average is used for
the evaluation only, and not for the control of the mirror
motion.

Fig. 7 shows the measured learning transient of the first
15 iterations, comparing harmonic-frequency IIC and full-
spectrum IIC. In both cases, the RMS error quickly con-
verges, and it is smaller than the equivalent noise level.
After the convergence, harmonic-frequency IIC shows
a smaller error than full-spectrum IIC. The minimum
RMS error of harmonic-frequency is 2.83×10−4 degrms

at the 12th iteration, while that of full-spectrum IIC
is 4.82×10−4 degrms at the 14th iteration. Reducing the
tracking error by 41.3%, the experiment demonstrates the
effectiveness of harmonic-frequency IIC.

The recorded signals at the 12th iteration of the harmonic-
frequency IIC and the 14th iteration of the full-spectrum
IIC are shown in Fig. 8. The PSD of the control input u
in Fig. 8(e) shows that the signal components between the
harmonic frequencies are removed by harmonic-frequency
IIC, as intended. Fig. 8(b) shows that the tracking error
with full-spectral IIC is limited to ± 2×10−3 deg, which
is successfully decreased by half by harmonic-frequency
IIC. Fig. 8(d) reveals that the reduction is realized by
removing the error between the harmonic frequencies.
More importantly, the plot also demonstrates that the
deactivation of the learning in the frequency bands does
not influence the compensation of the deterministic motion
error.
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Fig. 8. Measured signals of harmonic-frequency IIC and
full-spectrum IIC, respectively: (a) the mirror angle,
(b)(c) the tracking error, and (d)(e) the PSD of
the tracking error and the control input. Only for
evaluation purposes, 100-time ensemble average is
applied to θn and en.

Overall, harmonic-frequency IIC successfully decreases the
tracking error by filtering the measurement noise in learn-
ing, which is realized by disabling the unnecessary learning
within the frequency bands between the harmonic frequen-
cies of the scanning motion.
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5. CONCLUSION

This paper investigates the reduction of the measure-
ment noise in IIC by disabling the learning between the
harmonic frequencies of a desired periodic motion. For
this purpose, standard full-spectrum IIC and harmonic-
frequency IIC are analytically and experimentally com-
pared for a galvanometer scanner. The analysis reveals
that the noise reduction is related to the recording time
of the measured data for the IIC training. Furthermore,
the experiments clearly confirm the effectiveness of the
learning deactivation between the harmonic frequencies.
When a data set of 500ms is used at each iteration to track
a 20Hz triangular trajectory of ± 10 deg, full-spectrum
IIC achieves a tracking error of 4.82×10−4 degrms. By
using harmonic-frequency IIC, the residual tracking error
is successfully reduced by 41.3% to 2.83×10−4 deg.
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