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Abstract: Nowadays, robots are an essential part of modern production lines, usually working
in a designated area since they can pose a threat to human workers. The so-called soft robots
constitute a human-friendly alternative to classic industrial robots, even allowing for human-
machine collaboration. This is possible due to their soft and therefore inherent safe structure.
In this paper we consider quasi continuum manipulators (QCMs), a special kind of soft robots.
Their dynamic behavior is affected by friction as well as their soft materials. Dynamical models
are thus hard to identify, suffering from imperfections and uncertainties. To overcome these
flaws we propose a disturbance observer (DOB) based controller using an extended Kalman
filter (EKF). We show superior performance on a real robot compared to an existing benchmark
concept based on a PID-like controller. The generalization of this approach is demonstrated by
implementing our method on two QCMs with different kinematics.
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1. INTRODUCTION

In the developing area of robots designed for interaction
with humans, rigid structures are not the first choice
anymore. Incompliant structures include a high risk of
injury, which is why current research tends to a domain
called ’soft robotics’. Early approaches in this domain were
to use compliant joints within rigid-link robots, either
based on variable stiffness, on compliance or impedance
control (Albu-Schaffer et al. (2008)). Nowadays, the trend
is towards bioinspired continuum manipulators (CM). The
CMs are made of fully elastic structures instead of rigid
links (Laschi et al. (2016)). In this paper we consider
quasi continuum manipulators (QCMs) which were first
described in our previous work (Müller et al. (2020)). They
consist of pneumatic bellows, supported by a joint chain
that allows quasi continuous bending – motivating the
notion quasi continuum manipulator. Finding a suitable
model which can be calculated online is a difficult task for
these manipulators. Furthermore, the model identification
is nontrivial due to the friction and material properties
changing over time. This leads to unavoidable and notable
imperfections in the dynamical model. Thus, controlling
the continuum manipulator (CM) proves to be a difficult
problem (Polygerinos et al. (2017)).

1.1 Literature Review and Previous Work

The review paper by Webster and Jones (2010) gives a
good introduction on CMs and their kinematic models.
Over the last couple of years, the constant curvature ap-
proach has emerged as the state of the art technique for
modeling CMs.
Most of the existing controllers for CMs are based on
? The authors gratefully acknowledge support of this work by the
German Research Foundation (DFG) under grant SA 847/20-1.

Fig. 1. Bionic Soft Arm. Displayed is the latest quasi con-
tinuum manipulator with seven degrees of freedom.
Source: Festo

this kinematic model. Thuruthel et al. (2018) gives an
overview of the various approaches for controlling CMs. It
is stated that model-based dynamical controllers are still
in their nascent stage, possibly due to the hard derivation
of dynamical models and their uncertainties. According to
Thuruthel et al. (2018) current research trends go towards
learning-based methods, thus avoiding tedious modeling.
Nevertheless, model-based dynamical controllers find wide
application in the industry, therefore the authors think
that for an application outside of laboratories, this might
be the way to go.
QCMs are not the first systems which suffer from unmod-

eled effects and disturbances, nearly all dynamical systems
do. A common approach to deal with these effects is to
simply use an integrator in the controller, as it has been
done in our previous work (Müller et al. (2020)). However,
this might lead to problems, especially since the behavior
of the integrator during dynamical transitions is often
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poor. To increase performance, we implemented a gain
scheduling scheme for the proposed integral controller.
Thus, a PID-like controller was the result of Müller et al.
(2020).
An alternative to an integrator is a disturbance observer
(DOB). The main idea is to transfer the concept of con-
ventional state observers, which reconstruct missing state
information by knowledge of input and output to distur-
bances (Luenberger (1964)). This idea first arose in 1983
for torque-speed regulation of a DC motor (Ohishi (1983))
and has been widely extended since. The implementation
of a so-called disturbance observer results in being able
to estimate and compensate unknown disturbances. Once
the compensation is done, regular control strategies can be
applied in a cascaded fashion. The utilization of a DOB for
control tasks has proven its worth in many different appli-
cations as mechatronics, chemical and aerospace systems
and can be further extended (Chen et al. (2016)). Taking
uncertainties in modeling or unmodeled effects, especially
friction, as disturbances, one can achieve more robustness
when using a DOB. The difficulty of the design of a robust
controller is shifted to the design of the DOB.
An overview over DOB-based control is given in Chen
et al. (2016). It shows that various kinds of disturbance
and uncertainty estimation and attenuation exist, such
as extended state observer or active disturbance rejection
control. Successful implementations for rigid robotic ma-
nipulators are presented in Chen et al. (2000).

1.2 Contribution

The estimation and attenuation of disturbances and, more
importantly uncertainties, in modeling is crucial in the
domain of soft robotics, since the exact modeling of
compliant structures proves difficult. In this paper, we
address these issues by proposing a DOB-based control
structure using an EKF which is successfully implemented
on two QCMs. We further show that our approach has
superior performance compared to a previously developed
benchmark concept which uses a PID-like controller. To
the best knowledge of the authors this has not been done
for CMs.
The remainder of this paper is organized as follows. In
Section 2 we state our problem formally. Afterwards, we
present our solution in Section 3. Experimental results for
two real QCMs are shown in Section 4 and are discussed in
Section 5. Section 6 concludes the paper and states further
research directions.

2. PROBLEM FORMULATION

In the following we state the problem addressed in this
paper in a formal way. The original idea of the dynamical
model is presented in Falkenhahn et al. (2014) for CMs. An
adaption for QCMs with n degrees of freedom is given in
(Müller et al. (2020)), which yields the mechanical model

M(q)q̈ +C(q, q̇)q̇ +N(q) = τ + τ ext, (1)

whereM(q) ∈ Rn×n is the inertia matrix,C(q, q̇) ∈ Rn×n

describes the Coriolis terms and N(q) ∈ Rn denotes
the gravitational forces. The generalized coordinates are
denoted by q ∈ Rn and the generalized momentum, which
is also the input for the mechanical plant, is expressed by
τ ∈ Rn. External disturbances such as friction and other

effects are summed up in τ ext ∈ Rn.
Since one of the considered robots has rotational actua-
tors as well as continuum actuators, q either denotes a
rotational angle or a curvature of a continuum actuator.
Furthermore, we assume that we can measure q directly,
i.e. y = q. In Falkenhahn et al. (2015) it was shown that for
low values of q̇ the Coriolis term C(q, q̇) only has a small
effect on the total energy of the bionic handling assistant.
Based on these findings and the results of Müller et al.
(2020), we conclude that this term can be neglected for
the QCMs as well.
We further assume that model-plant mismatch is additive,
i.e.

M(q) = M̂(q) + ∆M̂(q), (2)

where M(q) is the real, M̂(q) the modeled and ∆M̂(q)
the error inertia matrix. The same is assumed for the
gravitational forces, which yields

N(q) = N̂(q) + ∆N̂(q), (3)

where the notation is respectively the same as for (2).
As already stated in Section 1, the dynamic behavior of
CMs is influenced by a wide variety of effects which are
hard to capture by a model. These effects are summarized
by the input disturbance ξ ∈ Rn. This yields the system
considered in this paper, i.e.

M̂(q)q̈ + N̂(q) = τ + ξ, (4)

with

ξ = τ ext −∆M̂(q)q̈ −∆N̂(q)−C(q, q̇)q̇. (5)

We can now state our problem in two parts.

Problem 1. Design an observer where its estimation ξ̂
converges to ξ.

Problem 2. Control the system (4) using ξ̂.

3. SOLUTION APPROACH

The solution approach can be divided into two parts. First,
we show observability of the disturbance ξ and estimate
it using an EKF. In a second step, we propose a control
structure using the estimation ξ̂ of ξ to impose the nominal
behavior on the plant.

3.1 Disturbance Observer

In preparation for the disturbance observer (DOB), the

dynamical model is extended by a disturbance state ξ̂.
Since there is no information on how the disturbance state
ξ changes over time it is assumed that its estimate ξ̂ has
no momentum. This yields the dynamics of the extended
state x̂ ∈ R3n as

ˆ̇x =

 ˆ̇q
ˆ̈q
ˆ̇ξ

 =

 ˆ̇q

M̂
−1

(q̂)(τ + ξ̂ − N̂(q̂))
0

 = f(x̂, τ ),

(6)

where q̂, ˆ̇q and ˆ̈q are estimates of the generalized coordi-
nates, their velocities and accelerations respectively. The
measurement equation is expressed by

y = g(x) = ( I 0 0 )x. (7)

Calculating the derivative of the right hand side of (6)
yields
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∂f(x̂, τ )

∂x̂
=

 0 I 0

p̂(x̂, τ ) 0 M̂
−1

(q̂)
0 0 0

 , (8)

where

p̂(x̂, τ ) =
∂M̂

−1
(q̂)

∂q̂
(τ+ξ̂−N̂(q̂))−M̂−1

(q̂)
∂N̂(q̂)

∂q̂
(9)

and I ∈ Rn×n denotes the identity matrix. Note that
∂
∂q̂M̂

−1
(q̂) can be easily obtained using the chain rule,

i.e.
∂M̂

−1
(q̂)

∂q̂
= M̂

−1
(q̂)

∂M̂(q̂)

∂q̂
M̂

−1
(q̂). (10)

Observability The condition for observability is given by

rank (QObs(x)) = rank


∂L0

fg(x)

∂x
...

∂Lm−1
f

g(x)

∂x

 = 3n, (11)

where m = 3 is the number of required derivatives. We can
calculateQObs(x) for the original system using (7) and (8)
with the original functions instead of its estimates. This
yields

QObs(x) =

 I 0 0
0 I 0

p(x, τ ) 0 M−1(q)

 . (12)

Since the inertia matrix M(q) has to be a positive definite
matrix, its inverse exists and is also positive definite. Thus,
M−1(q) has full rank. It follows that x is observable and
so is ξ.

Extended Kalman Filter The EKF is a widely used
technique for estimating states of nonlinear systems. It
is an recursive algorithm that can be divided into a
predictor and a corrector stage. We consider the discrete
time implementation with the sample time ∆t. Instead
of restating the whole algorithm we want to point out
that there exists plenty of tutorials on EKFs. A good
introduction is given by Terejanu et al. (2008).
For sake of completeness, we state the necessary equations
for implementing the EKF in the following: The process
equation for the state x̂k in the kth step is obtained using

x̂k = fd(x̂k−1, τ k−1) = x̂k−1 + ∆tf(x̂k−1, τ k−1) (13)

and its derivative is

∂fd

∂x̂k−1
=

 I ∆tI 0
∆tp̂(x̂k−1, τ k−1) I ∆tM−1(q̂k−1)

0 0 I

 ,

(14)
where we omitted the arguments of fd for reasons of space.
The output function is simply the discrete version of (7),
i.e. yk = g(xk) = ( I 0 0 )xk and its derivative results in

∂g(xk)

∂xk
= ( I 0 0 ) . (15)

The covariance matrices of process noise Q, measurement
noise R and the initial covariance matrix P 0 are empiri-
cally determined. Given that, the EKF is fully defined.

3.2 Control structure

The overall structure is illustrated in Figure 2. We divide
the control law in multiple parts. The control action τ ctrl

PD+
NFF

FF

DOB

System

DOB

System

Nominal System

−

τ ctrl + τNFF τ

ξ̂

τ FFqdes, q̇des, q̈des q

Fig. 2. Control Structure.

generated by the PD-Controller and the nominal feed
forward (NFF) control τNFF is taken from Müller et al.
(2020) with

τ ctrl = M̂(q̂)(KPe+KDė) (16)

and
τNFF = M̂(q̂)q̈des + N̂(q̂) (17)

where e = qdes − q̂ is the error between the desired and
the estimated general coordinates.
Furthermore, we have a feed forward (FF) part compen-
sating friction and other effects which can be identified and
compensated. Note that these effects are not part of the
nominal model and might differ between various robots.
An example for the manipulator displayed in Figure 1 is
given in Müller et al. (2020). We collect these terms in
τFF. The input of the plant results in

τ = τ ctrl + τNFF + τFF − ξ̂ (18)

Note that according to Figure 2 the generalized moment
input to the DOB is different from the input to the system
(18). The input to the DOB lacks the extra τFF part and

is given by τ ctrl + τNFF − ξ̂.
If the control error is artificially maintained over a longer
period of time, e.g. if the robot gets stuck, the disturbance
state ξ̂ grows beynod limits. Thus, we modify the EKF by

saturating the disturbance state, i.e. ξ̂i ∈ [−cmax, cmax],

where ξ̂i is the i-th entry of ξ̂. The constant cmax limits
the effects of the DOB on the plant. This value should
be in the same order of magnitude as the control action
τ ctrl. Note that this saturation is easily implemented and
improves the safety of the overall system. It can especially
prevent harm in scenarios where the error e is artificially
maintained over a long period, e.g. someone holding back
the manipulator.

4. EXPERIMENTAL RESULTS

We present two experiments. The first experiment shows
a SCARA-like QCM, displayed in Figure 3. Its purpose
is to give an indication on the behavior of the algorithm.
For the second experiment we implemented the proposed
algorithm on a seven degree of freedom QMC.
We used a DSpace rapid prototype system. The proposed
control structure is running at 1 kHz using a DS1007
board. The MATLAB code is online available on Müller
(2020).

4.1 SCARA-like QCM

The considered robot is shown in Figure 3. For a better
understanding of the controller, we decided to have a series
of step signals as an input qdes with its derivatives set to
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Fig. 3. SCARA-like QCM. The displayed robot has four
degrees of freedom and can only move in a plane.

0 2 4 6 8 10 12 14 16 18 20

−10

0

10

q 1
in

ra
d

m

0 2 4 6 8 10 12 14 16 18 20

−10

0

10

q 2
in

ra
d

m

0 2 4 6 8 10 12 14 16 18 20

−10

0

10

q 3
in

ra
d

m

0 2 4 6 8 10 12 14 16 18 20

−10

0

10

t in s

q 4
in

ra
d

m

Fig. 4. Experimental data for the SCARA-like QCM. De-
picted is the step response of the proposed controller.
Reference signal: . DOB-based controller: .

zero. Although it is self evident that the system is unable to
follow the input signal, since it has no direct feed through,
the behavior of the overall system is indicated by the step
response.

Figure 4 shows the desired input and output of its
generalized coordinates. These coordinates correspond to
the curvatures of the four segments, beginning with q1
at the base of the robot and ending with q4 right before
the tool center point. For a better visualisation we also
uploaded videos online (Müller (2019)).

4.2 QCM with Seven Degrees of Freedom

We consider the Bionic Soft Arm which was originally
developed by Festo and is shown in Figure 1. It has four
continuum actuators and three rotational swivel drives,
thus resulting in a QCM with seven degrees of freedom. We
let the robot follow a given trajectory and compare its per-
formance with the previous proposed PID-like controller
given in Müller et al. (2020). The results are separated
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Fig. 5. Experiment data for the Bionic Soft Arm.
Swivel drives following a given trajectory. Refer-
ence signal: . DOB-based controller: . PID-like
controller: .
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Fig. 6. Experiment data for the Bionic Soft Arm. Con-
tinuum actuators following a given trajectory. Refer-
ence signal: . DOB-based controller: . PID-like
controller: .

in rotational swivel drives in Figure 5 and continuum
actuators in Figure 6. The separation was made because
both drive concepts have different scales. A visualisation
of the trajectory of both control concepts is uploaded as a
video and can be found on Müller (2019).
We compute the mean absolute error of all swivel drives
eSD and all continuum actuators eCA, i.e.
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Fig. 7. Mean absolute error of swivel drives and contin-
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controller: .

eSD =

3∑
j=1

1

3
|ej |, (19)

eCA =

7∑
j=4

1

4
|ej |, (20)

where ej is the j-th entry of e. The results over time
are presented in Figure 7. The average error over time
of the swivel drive ESD and continuum actuators ECA is
displayed in Table 4.2, where

ESD =

∫ T

0

1

T
eSDdt (21)

ECA =

∫ T

0

1

T
eCAdt (22)

and T is the duration of the trajectory.

ESD ECA

PID-like 0.0458 0.6388
DOB 0.0205 0.2716

A comparison of τ ctrl of the continuum actuators for the
DOB-based and the PID-like controller over time is shown
in Figure 8.

5. DISCUSSION

In this section we discuss the experimental results first.
Afterwards, we make comments on the implementation
regarding computational time and tuning.

5.1 Discussion of the Experimental Results

The result presented in Figure 4 shows the overall behavior
of the proposed control structure. We can see that, within
3 s, the controller is able to reach the desired state. Ad-
ditionally, overshoots are within a reasonable range. The
proposed controller converges to the desired value and can
deal with external disturbances, which is backed up by the
additional video material presented online (Müller (2019)).
From the experimental results presented in Section 4.2 it
is clear that the proposed DOB-based control structure
shows superior performance in comparison to the PID-like
controller presented in our previous work (Müller et al.
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Fig. 8. Comparison of τ ctrl for the continuum actuators for
both concepts. Control action τ ctrl of the DOB-based
controller: . Control action τ ctrl of the PID-like
controller: .

(2020)).
According to the Table 4.2, the performance of the ro-
tational drives improves by 55% and the performance of
the continuum actuators improves by 57%. Note that the
parameters for the PD controller in our method are same
as for the PID-like controller.
Taking a closer look at Figure 5, it can be observed that
both the PID-like controller as well as the DOB-based
controller have difficulties following the desired movements
of the first joint q1. However, the DOB-based controller
shows a better performance for small movements, as it can
be seen by q1 from second 5 to 15. Additionally, during
dynamical movements it can track its desired value better
than the benchmark controller.
The same applies even stronger for the quasi continuum
actuators presented in Figure 6, where we can see that
the DOB-based controller reacts faster and with better
precision compared to the PID-like controller. This is
additionally emphasized by Figure 7, which clearly shows
that the mean error of the DOB-based controller is almost
always smaller. It comes as no surprise that the PD con-
troller action τ ctrl for our method is small compared to
the benchmark PID-like controller as it is shown in Figure
8. The reason for this effect is the DOB. The behavior of
the nominal system is forced onto the real plant by the
DOB. Thus, a FF control for the nominal system is more
likely to have the desired effect on the real system.
From Section 4.1 and 4.2 we conclude that the method
can be applied on multiple QCM with different kinematics
and a different sensor concept. Thus, we suppose that the
presented approach is not only tailored for one particular
QCM but it will generalize to a variety of CMs.
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5.2 Computational Burden and Practical Implementation

For the Bionic Soft Arm with seven degrees of freedom
the computational burden is quite high. The derivative
∂
∂qM

−1(q) used in (10) requires the second derivative of

the kinematics. Computing these terms online is expensive
as it has been discussed in Falkenhahn et al. (2015). Fur-
thermore, the proposed EKF has 21 states. Since, the com-
plexity of the EKF grows exponentially with the dimension
of the observer states, the extra 7 disturbance states ξ̂
drastically increase the computational effort. Although,
this was not a problem for the Rapid Prototype DSpace
used in our experiments, it might be a problem for weaker
embedded controllers.
Besides the additional computational power required for
the EKF, its difficulty of the practical implementation lies
in the choice of the covariance matrices Q and R. It is
well known that EKFs are sensitive to their parameters. If
we assume that Q and R are diagonal matrices, which is
often done for EKF tuning, we are left with 28 tunable pa-
rameters. Since the ratio between Q and R determines the
behavior of the EKF we need to determine 21 parameters.
Tuning the proposed EKF was perceived as difficult due
to the amount of parameters. A remedy in case of having
trouble finding the right parameters could be Schneider
and Georgakis (2013), since they proposes a systematic
way of tuning the EKF as well as pointing out pitfalls.

6. CONCLUSION AND FUTURE WORK

A DOB-based control structure was proposed. We showed
that the disturbance state ξ is observable. The DOB was
realized using an EKF and the disturbance state was added
to the control input. We implemented the control structure
on two real robots, thus showing that our approach gen-
eralizes to multiple robots with different kinematics and
sensors. The proposed controller structure outperformed
a previous approach presented in Müller et al. (2020),
which was based on a PID-like controller. We elaborated
the significant improvements by the proposed structure
and discussed the weaknesses of this method. These are in
particular the computational burden and the difficulties
in tuning the EKF since it is sensitive to its parameter
choice.
There are multiple research directions to go from here.
Obviously, a more efficient implementation and realiza-
tion of the algorithm is desired. This might go together
with a more straightforward tunable algorithm, which is
either more robust to parameter variations or has fewer
parameters. Another direction is to improve the proposed
method itself. Yet, no assumptions have been made on the
dynamics of the disturbance. We believe that an identi-
fied underlying behavior of the disturbance dynamic can
improve the performance of the proposed controller even
more.
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