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Abstract: In this paper we propose a model predictive control (MPC) scheme for solving
mean-field control problems. To this end, the MPC scheme is applied to a controlled Fokker-
Planck equation. We test our algorithm by means of a numerical example, both with and without
nonlinear coupling. We also provide numerical evidence that MPC indeed delivers approximately
optimal trajectories for this example.
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INTRODUCTION

Mean-Field optimal control problems appear in stochas-
tic control systems, in which the overall behaviour of a
population of agents affects the dynamics of the single
agent as well as the optimization objective, see Bensoussan
et al. (2013). They have various applications in control
engineering, e.g., for consensus problems, cf. Nourian et al.
(2013), and for the management of large populations of
flexible electric loads, see Grammatico et al. (2015).

It is well known that mean-field optimal control problems
can be solved in the framework of Fokker-Planck equa-
tions, see Bensoussan et al. (2013) or Annunziato and
Borz̀ı (2018). One of the benefits of this approach is that
the original stochastic optimal control problem is turned
into a deterministic PDE optimization problem, for which
powerful numerical solution techniques are available. How-
ever, when the time horizon of the problem is variably or
infinitely long, as in typical regulation problems in control
engineering, this approach is subject to severe numerical
difficulties.

In this situation, Model Predictive Control (MPC) has
turned out to be a valid alternative. In MPC, an optimal
control problem on a long, possibly infinite time horizon
is split up into the consecutive solution of problems on
relatively short finite time horizons. Due to the repeated
optimization, MPC yields a feedback control, which is why
we refer to the solution trajectories generated by MPC as
the MPC closed-loop solutions.

There is by now an established theory that explains when
MPC gives approximately optimal closed-loop solution,
see, e.g., Grüne (2016). The main structural property
that is needed for this approximation is the so called
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turnpike property, which in turn is closely connected to
a dissipativity property, see Grüne and Müller (2016).

In this paper, we propose to use MPC for obtaining
approximately optimal solutions for mean-field optimal
control problems. After describing the MPC scheme as
well as some of the necessary theoretical background,
we provide a numerical study by which we explore the
capability of MPC for solving mean-field control problems.
Besides simulation results, we provide numerical evidence
that the MPC solution indeed gives approximately optimal
solutions. This is done, on the one hand, by numerically
exploring the objective value and, on the other hand,
by numerically verifying the occurence of the turnpike
property.

1. MEAN-FIELD CONTROL PROBLEMS

In this section we describe the class of stochastic optimal
control problems that we want to address. In order to
keep the presentation technically simple, we leave out sev-
eral technical details. Interested readers may consult the
monograph by Bensoussan et al. (2013) for the necessary
mathematical background. We also refer to the recent
survey by Annunziato and Borz̀ı (2018), which discusses
mean-field control problems in the context of control of
the Fokker-Planck equation.

In mean-field problems, one considers an infinite number
of agents with identical dynamics, which is governed by the
n-dimensional Itô-stochastic differential equation (SDE)

dx(t) = g(x(t),m(t), v(t, x(t)))dt+ σ(x(t))dW (t) (1)

with initial condition x(0) = x0. Here x(t) is the state
of the agent at time t and v(t, ·) is the feedback control,
that is assumed identical for all agents. The vector valued
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function g describes the drift and the matrix valued
function σ the diffusion of the SDE, and W (t) is an n-
dimensional standard Wiener process. The set of all agents
is assumed to have the initial distribution m0 and the
quantity m(t) with m(0) = m0 describes the evolution
of this distribution over time. Note that the evolution of
m(t) depends on the choice of the control v(t, ·).
Given an initial distribution m0, the goal of the mean-field
control problem is to find a control v and an evolution of
the associated distribution of the agents m such that the
functional

J(v,m) = E

[∫ T

0

h(x(t),m(t), v(t, x(t)))dt

]
is minimized for a given cost function h, where E denotes
the expectation operator. Observe that through this opti-
mization criterion the optimal control v∗(t, ·) depends on
m(t), i.e., the dependence on t is actually a dependence on
t and on m(t). Thus, v∗ is a state feedback law depending
on the local state x(t) and on the infinite dimensional state
m(t). In particular, these two functions are coupled and
this coupling may induce nonlinearities into the problem
even if g and σ in (1) are linear functions.

We note that this stochastic functional involving the ex-
pectation operator can be rewritten in a purely determin-
istic form as

J(v,m) =

∫ T

0

∫
Ω

h(x,m(t), v(t, x))m(t, x)dxdt, (2)

where m(t, x) denotes the evaluation of the distribution
function m(t) in x ∈ Ω.

Given the control v, the evolution of the probability distri-
bution m is characterized by the Fokker-Planck equation

∂tm(t, x)− 1

2

n∑
i,j=1

∂2
xixj

(aij(x)m(t, x)) (3)

+

n∑
i=1

∂xi
(gi(x,m(t, x), v(t, x))m(t, x)) = 0,

with initial conditionm(0, x) = m0(x) and suitable bound-
ary conditions,

aij =

p∑
k=1

σikσjk,

and g and σ from (1). Using the Fokker-Planck equation
as dynamics and (2) as cost functional, we have rewritten
the mean-field control problem as a purely deterministic
problem.

The mean-field formulation describes the probability den-
sity of N interacting agents when N tends to infinity (An-
nunziato and Borz̀ı, 2018, Section 3). It can thus be seen as
a model reduction technique for a problem which otherwise
becomes numerically intractable already for moderate size
of N . The interaction between the agents induces the m-
dependence of g in (1), which makes the solution of the

problem analytically and numerically challenging, because
the Fokker-Plank equation (3) is nonlinear. However, this
dependence is important in order to obtain a realistic
modelling in many applications. We will illustrate this in
our numerical example at the end of this paper.

We note that mean-field type control problems are differ-
ent from mean-field games. While in mean-field games a
Nash equilibrium for the objectives of the agents is studied,
in a mean-field control problem the overall optimum (i.e.,
the optimum over v and m) is sought. Hence, mean-
field games try to explain the interaction between the
members of a large population of non-cooperative agents,
while mean-field control problems aim at finding the best
possible solution depending on the current distribution of
the agents. This enables us to find the best way of action
for a large population of agents (which are approximated
by the infinite population in the mean-field formulation)
and is fundamental for problems, e.g., in crowd dynamics
or traffic control, see Roy et al. (2016); Herty and Pareschi
(2010). Our proposed method thus gives new algorithmic
approaches for problems in these application areas.

The usual way to solve the mean-field control problem is
to couple the Fokker-Planck equation (3) with a Hamilton-
Jacobi-Bellman equation for computing the optimal feed-
back control v. The solution of this McKean-Vlasov type
coupled system of nonlinear PDEs (for details see, e.g.,
(Bensoussan et al., 2013, Eq. (4.12)), Annunziato et al.
(2014) or (Annunziato and Borz̀ı, 2018, Section 4)) then
characterizes the optimal solutions and can be used in
order to compute the optimal feedback control. However,
the solution becomes numerically very challenging in case
of very long or even infinite time horizons T , which we
want to consider in this paper.

2. MODEL PREDICTIVE CONTROL

A remedy for these difficulties is the use of Model Pre-
dictive Control (also called receding horizon control). In
this approach, the problem on a long or infinite horizon
is split up into the consecutive solution of problems on
shorter time horizons, which are thus much easier to solve.
In practical applications, MPC is often used as an online
optimization method for computing a feedback law and
the analysis of MPC in this context is typically focused on
stability and feasibility questions. Another, equally useful
aspect of MPC is that it provides approximately optimal
solutions to the original problem. It can thus be regarded
as a model reduction technique in time for solving optimal
control problems on long or infinite horizons. We mention
again that we have rewritten the stochastic mean-field
problem as a purely determinstic problem. This means
that we can use standard determinstic MPC schemes for its
solution, which is advantageous in two aspects: on the one
hand, determinstic schemes are much easier to implement
as there is no need to resort to stochastic optimization.
On the other hand, while some results on approximate
optimality of MPC are available in the stochastic setting,
e.g., in Chatterjee and Lygeros (2015), there are a much
more rich and general results guaranteeing approximate
optimality for deterministic MPC schemes.

MPC can be formulated in continuous time or in discrete
time. Since more general and powerful analysis results for
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MPC are available in discrete time, we will present it
in this form. To this end, we sample the solution of the
Fokker-Planck equation in time by introducing a discrete
time scale tk := kh, h > 0, k ∈ N, and defining z(k) =
m(tk, ·) as the state of a discrete time model

z(k + 1) = f(z(k), u(k)) (4)

with initial condition z(0) = z0. Equation (4) constitutes
an infinite-dimensional discrete-time control system on a
suitable Banach space Z with f being the solution operator
of the controlled Fokker-Planck equation. The discrete
time control u(k) is given by the continuous time control
v(·, t)|[tk,tk+1), i.e., each control value for the discrete-time
system is a piece of a control function for the continuous-
time system. The functional J(v,m) can then be rewritten
as

JN (z(0), u) =

N−1∑
k=0

`(z(k), u(k)), (5)

where Nh = T and

`(z(k), u(k)) =

∫ tk+1

tk

∫
Ω

f(x,m(t), v(t, x))m(t, x)dxdt,

In this way we obtain an exact representation of the contin-
uous time PDE optimization problem. Note thatm|[tk,tk+1]

is determined by m(tk) = z(k) and v(·, t)|[tk,tk+1) = u(k),
thus ` is well defined as a function of z(k) and u(k).

In MPC, (5) is minimized with optimization horizon
N ∈ N satisfying Nh � T . Moreover, typically state
constraints z ∈ Z and control constraints u ∈ U are
imposed. In detail, MPC computes a feedback controller
µ : Z→ U for the closed loop system

zµ(n+ 1) = f(zµ(n), µ(zµ(n))) (6)

in the following way.

0. Given an initial value zµ(0) ∈ Z, fix the optimization
horizon N ∈ N and set n := 0.

1. Measure the current state zµ(n) and minimize (5)
with respect to u(·) ∈ UN subject to the constraints
z(0) = zµ(n), z(k) ∈ Z for all k = 1, . . . , N and (4).
Denote the resulting optimal control sequence by
u? ∈ UN and set µ(zµ(n)) := u?(0).

2. Compute zµ(n+1) according to (6) and set n := n+1.
If (n+N)h < T , then go to 1, else stop.

For general optimal control problems, it is not clear
whether this algorithm gives an approximately optimal
trajectory. In what follows, we explain an approach for
guaranteeing this property for the infinite horizon case.
Clearly, some redundancy is needed in the optimal so-
lutions on large or infinite time horizons, which allows
to solve problems on shorter and finite horizons and still
obtain approximate optimality. It turns out that the so-
called turnpike property provides this kind of redundancy.

Definition 1. Let (ze, ue) ∈ Z × U be an equilibrium of
(4), i.e., f(ze, ue) = ze.

(i) The infinite horizon optimal control problem for stage
cost `(z, u)−`(ze, ue) has the turnpike property at xe

if the following holds: there exists ρ ∈ L such that for
each optimal trajectory z∗ and all P ∈ N there exists

a set Q(z∗(0), P,∞) ⊆ N0 with #Q(z∗(0), P,∞) ≤ P
and

‖z∗(k)− ze‖ ≤ ρ(P )

for all k ∈ N0 with k 6∈ Q(z∗(0), P,∞). Herein,
#Q(z∗(0), P,∞) denotes the number of elements of
the set Q(z∗(0), P,∞).

(ii) The finite horizon optimal control problems have the
turnpike property at ze if the following holds: there
exists σ ∈ L such that for each optimal trajectory z∗,
x ∈ Z and all N,P ∈ N there is a setQ(z∗(0), P,N) ⊆
{0, . . . , N} with #Q(z∗(0), P,N) ≤ P and

‖z∗(k)− ze‖ ≤ σ(P )

for all k ∈ {0, . . . , N} with k 6∈ Q(z∗(0), P,N).

Summarizing, the turnpike property says that any optimal
solution “most of the time” stays close to the equilibrium
ze. This has two consequences: first, the initial pieces for
solutions for different optimization horizons are similar,
because they all approach the optimal equilibrium xe in
an optimal way. Second, after a suitable period of time the
effect of the initial condition becomes negligible, i.e., all
optimal solutions z∗ look roughly the same independent
of z∗(0). These properties are both easily recognized in
numerical simulations of optimal trajectory, which is why
it is easy to find numerical evidence for the turnpike
property. This is also the way we pursue in Section 3 of
this paper. A rigorous verification of the turnpike property
is most easily done via dissipativity arguments. For a class
of (linear) Fokker-Planck equations, such an analysis was
performed in Fleig and Grüne (2019).

Many optimal control problems exhibit the turnpike prop-
erty and we refer to Dorfman et al. (1958); McKenzie
(1986) for classical and to Faulwasser et al. (2017); Grüne
and Müller (2016); Trélat et al. (2018) for recent results
in this field. If the turnpike property is satisfied, we can
make an approximate optimality statement. Let

JclM (z(0), µ) =

M−1∑
k=0

`(zµ(k), µ(z(µ(k)))) (7)

denote the cost of the trajectory generated by MPC and

V∞(z(0)) := inf
u∈U∞,z(k)∈Z

∞∑
k=0

`(z(k), u(k))− `(ze, ue)

denote the infinite horizon optimal value function of the
problem with stage cost ` − `(xe, ue), i.e., the best value
that can be acheived on the infinite horizon. We remark
that V∞(z(0)) need not be finite, however, in many optimal
control problems it is, at least for initial values z(0) near
ze. In this case, the following theorem holds. Its proof is
based on the similarity of the initial pieces of the optimal
trajectories and can be found in Grüne (2016), Theo-
rem 4.4. This theorem holds for those initial conditions
for which the problem is recursively feasible. We refer to
Faulwasser and Bonvin (2015) for an analysis of this set.

Theorem 2. If the optimal control problem has the turn-
pike property for finite and infinite horizon and the optimal
value functions satisfy suitable continuity and bounded-
ness conditions, then there is a function δ ∈ L such that
the inequality

JclM (z(0), µ) + V∞(zµ(M)) ≤ V∞(z(0)) +Mδ(N) (8)

holds for all M ∈ N and all sufficiently large N ∈ N.
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Fig. 1. Transport of the initial density into [30, 40] using MPC without density dependent speed constraint

Fig. 2. Transport of the initial density into [30, 40] using MPC with density dependent speed constraint

The interpretation of (8) is as follows: the left-hand side
can be seen as the value obtained if we follow the MPC
trajectory for M steps and then continue in an infinite
horizon optimal fashion. The inequality hence says that
the cost of this trajectory is at most by Mδ(N) larger
than the value of the exact optimal trajectory. At the first
glance, the fact that the error term Mδ(N) grows with
M may seem to indicate that the estimate deteriorates as
M → ∞. However, for typical problems, the modulus of
the optimal finite horizon cost also grows with the length
of the horizon M . Thus, if we consider the error relative to
the optimal finite horizon cost, then it is constant in M .

3. NUMERICAL EXAMPLE

With the help of a numerical example we will explore
whether the proposed approach to use MPC for mean-
field control problems is valid. To this end, we study
a prototypic problem, in which the task is to steer a
distribution of agents following the 1d SDE

dx(t) = v(t)dt+ 0.75dW (t)

from the interval [0, 30] into the interval [30, 40], which is
achieved by using the stage cost f(x,m, v) = m(x) + λv2

for x ∈ [0, 30] and f(x,m, v) = λv2 for x ∈ [30, 40] with
a very small λ = 10−4. The control input is limited to
v ∈ [−2.1, 10].

For the numerical simulations, we first discretized the
Fokker-Planck equation using the established combina-
tion of the conservative and positivity-preserving Chang-
Cooper scheme in space (Chang and Cooper (1970)) and
the BDF2 scheme in time, see Mohammadi and Borz̀ı
(2015). Our spatial domain was the interval [0, 40], which

we approximated using 201 equidistant grid points. The
temporal discretization step size in the numerical scheme
was ∆t = 0.005 while the sampling time in the MPC
scheme was set to h = 0.25. Unless otherwise indicated, the
optimization horizon in MPC was chosen as N = 15 sam-
pling intervals. For the numerical optimization we used the
Projected Gradient method to take into account control
constraints. To compute the gradient, we formally derived
the corresponding adjoint equation, which we discretized
similarly to Annunziato and Borz̀ı (2013).

If we think of the agents as cars on a road, then the speed
of the overall population will depend on the density of the
cars. Without taking this fact into account, the optimal
control will only shift and rescale the initial distribution,
resulting in an unrealistic solution that does not take into
account the need for flattening the distribution in order to
enable the cars to drive at a higher speed, see Figure 1.

In order to incorporate the limited speed at high density
into the model, we impose the density dependent input
constraint v(t) ∈ [−2.1/(1+5m(x(t))), 10/(1+5m(x(t)))],
which induces a density dependent speed limit of a form
that the discretization method described above can han-
dle. This constraint leads to a significantly different and
in particular flatter and skewed shape of the distribution
during the transition, see Figure 2.

In order to verify the occurrence of turnpike behavior in
our example, we perform two experiments. The turnpike
property implies that the initial part of the open-loop
optimal solution is similar for all horizons N that are suffi-
ciently large. Figure 3 shows that this is what happens: for
N ≥ 15, the optimal solutions are virtually indistinguish-
able at times t = 1.00 and t = 2.00. The initial condition
here was chosen as the uniform distribution depicted in the
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N = 10 N = 15 N = 20 N = 25

Fig. 3. Similarity of open-loop optimal solutions for different horizons N = 10, 15, 20, 15 (left to right) after a couple of
time steps, indicating the occurence of turnpike behavior

Fig. 4. Similarity of MPC solutions for different initial conditions (left to right) after a couple of time steps, indicating
the occurence of turnpike behavior

middle of the top row of Figure 4. This figure shows the
second aspect of the turnpike property, namely that after a
certain amount of time the solutions become similar inde-
pendent of the initial condition. This property is true both
for the open-loop and for the resulting MPC closed-loop
trajectories and Figure 4 illustrates that this behaviour
occurs for the MPC closed-loop trajectories for N = 15.
Both experiments together provide a strong indication for
turnpike behavior.

The occurence of the turnpike implies via Theorem 2 that
the closed-loop cost of the MPC trajectory (7) converges
to the optimal value for N →∞. Notice that we evaluate
(7) for M = 30, because for all optimization horizons
N ≥ 8 the support of the PDF zµ(k) was contained in the
interval [30, 40] for all k ≥M = 30, hence for all such k the
cost `(zµ(k), µ(z(k))) is negligible, although not exactly 0,
because some control action is needed in order to prevent
the density from moving back below x = 30. Figure 5
shows the typical behaviour of the closed-loop cost: once
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the optimization horizon N has reached a threshold, the
cost starts decreasing and converges to a value close to
the optimal one. The threshold is related to the time
that is needed to steer (parts of) the density into the
desired region. If the optimization horizon is too short,
the algorithm cannot figure out a strategy for reducing
the stage cost of the problem.

Fig. 5. Closed-loop cost for K = 30 for different optimiza-
tion horizons N = 1, . . . , 30

CONCLUSION

Our numerical results show that MPC is a very promising
solution method for mean-field optimal control problems.
Particularly, the method is perfectly suited to handle the
nonlinear coupling occuring in our model problem. More-
over, the numerical results confirm convergence of the
closed-loop cost and occurence of the turnpike property
that is needed for proving this convergence. The results
strongly motivate further research on MPC for mean-field
optimal control problems, regarding both the derivation of
rigorous theoretical approximation results and the devel-
opment of efficient numerical schemes.
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Grüne, L. (2016). Approximation properties of receding
horizon optimal control. Jahresber. DMV, 118(1), 3–37.
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