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Abstract: The problem of infinite-horizon multi-agent differential games is investigated, where
the process can be modeled by a set of uncertain linear dynamics. The players are divided
into two teams, one of which consists of a fixed number of follower agents while the other
has one leader agent. The two teams constitute the adversaries. The multi-agent differential
games can be transformed into a two-player game. The dynamics of the agents are subjected to
norm-bound model uncertainties. Based on quadratic stabilization techniques, a set of saddle
point strategies of the game is designed to stabilize the closed-loop multi-agent system, where
the weighting matrices of the cost function are properly selected. For any given cost function,
by modifying the solution of the linear quadratic differential game of the nominal model, the
sufficient conditions are presented such that the stabilization of the system is guaranteed and
the uncertainties are compensated. It is proved that the modified solution achieves optimality.
A numerical example is given to verify the effectiveness of the theoretical results.

Keywords: multi-agent system, leader-following consensus, differential games, model
uncertainties, Nash solution.

1. INTRODUCTION

The researches of multi-agent systems have received sig-
nificant attention in the past several decades. The critical
research motivation is that a large amount of simple agents
can collectively perform massive and complicated missions,
with extensive applications such as transportation, wire-
less communication and navigation, unmanned vehicles
formation flight (Li et al. (2010)), Dong et al. (2015)).
In the literature, the terms such as distributed control,
cooperative control, consensus problems and collaborative
control represent multi-agent control problems. The agents
can be categorized as leaders and followers, where the
followers try to achieve consensus with the states of the
leaders. Many scenarios can be attributed leader-following
problems. For example, in the formation tracking control,
the followers are desired to track the trajectory generated
by the leader or leaders (Dong and Hu (2017), Liu et al.
(2019)).

In some applications, the agents try to collaborate to
complete a task, however, sometimes the agents may have
different goals, which are reflected in the cost function de-
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signed in the game theory or differential games framework.
The agents in the game seek to attain best individual
goals, while in the process there exists cooperation or
completion (Mylvaganam et al. (2017)). Linear quadratic
differential games have been extensively studied, which
can be traced to the researches of Ho-Bryson-Baron in
1965 (Ho et al. (1965)) about the classical pursuit-evasion
problem. Then, many results have been obtained, such
as the existence of the saddle point under open-loop and
closed-loop conditions, and the linear quadratic differential
games in the finite or infinite horizon case, and so on
(Engwerda (2009)). In the field of guidance, guidance laws
based on linear quadratic differential games were applied
effectively in target interception problem, variants of which
are the state-dependent Riccati equation based differential
games guidance (Ratnoo and Ghose (2009)) and coopera-
tive linear quadratic differential games(Jha et al. (2019)).

In recent years, the research of multi-agent differential
games has been a fast-emerging topic in control and
electronic engineering. A promising and prevalent method
to multi-agent differential games is adaptive dynamic
programming, which applies the reinforcement learning
algorithms and neural networks to solve the Hamilton-
Jacobi-Isaacs equation (Vamvoudakis and Lewis (2011)).
Under the circumstance that the Nash equilibrium may
not exist, a neural network approximator was proposed to
obtain a mixed optimal solution of game in (Zhang et al.
(2011)), where a policy iteration method was designed to
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solve the game. Moreover, data-driven approaches based
on adaptive dynamics programming were developed to
solve the differential games online (Zhang et al. (2017),
Zhang and Zhao (2018)), where the current data and
history data can be concurrently used to train the neural
network and relax the persistence of excitation condition
(Modares et al. (2014)). Adaptive dynamic programming
based methods are able to solve affine nonlinear differential
games, however, it should be noted from a practical
standpoint that it may take much time to converge and
the required initial admissible control policies are usually
difficult to be obtained (Wei et al. (2016)).

Due to the uncertainties in reality, accurate system model
will be complicated and can barely be established. Be-
sides, a practical system always deviates from an ideal
too-detailed model in the course of time because of the
unpredicted bias and faults. Therefore, in the differential
games, the players evaluate their optimal strategies on the
basis of uncertain model and a robust strategy insensitive
to the deviations could be more valuable. In robust H-
infinity control theory, lots of results are related to systems
with norm-bounded uncertainties, many of which were ob-
tained from 1960s to 1980s (Jia (2007)). When considering
the disturbances, the control and the disturbances consti-
tute the adversaries. N-players non-coorperative differen-
tial games were considered in (Cruz and Jimenez-Lizarraga
(2017)) and coupled Riccati differential equations were
solved to find the robust equilibrium strategies. In (Am-
ato et al. (2002)), two-player zero-sum linear quadratic
differential games were studied with the system subject
to norm-bounded, one-block form uncertainties, where the
cost of the players are guaranteed to be limited. Sun et al.
(2017) transformed the uncertainties in a redesigned cost
function and the robust control was turned into a two-
player zero-sum differential game problem. To the best
of out knowledge, the multi-agent differential games with
model uncertainties has not been studied extensively.

Motivated by the facts stated above, this paper studies
multi-agent differential games where the followers attempt
to achieve consensus with the leader, whereas the leader
tries to avoid it. While the agents adopt the equilibrium
point strategies, conditions that guarantee the achieve-
ment of leader-following consensus are obtained. Compar-
ing with the existing results, the main contributions of
this paper are twofold. Firstly, model uncertainties are
considered in multi-agent differential games with the cost
function in quadratic form. The uncertainties exist in the
control distribution matrices, making it difficult to deter-
mine the optimal strategies. In (Sun et al. (2017)), the
uncertainties influence the control input while the system
dynamics remain intact. Although Amato et al. (2002)
considered model uncertainties, only the circumstance of
perturbation in the system matrix was dealt with. Sec-
ondly, based on robust control theory, uncertainties in the
control distribution matrix are compensated by modifying
the Nash solution of the nominal system. The strategies are
proved to be optimal and guarantee the quadratic stability
of the system.

The rest of the paper is organized as follows. The problem
formulation is presented in Section 2. The main results
about the differential games solution with uncertainties are

given in Section 3. A simulation example and the results
are provided in Section 4. Section 5 concludes the paper.

2. PROBLEM FORMULATION

In this section, the model of multi-agent differential games
subjected to model uncertainties is introduced.

The agents are classified into N followers and one leader.
Each agent can access the states of the rest. All of
the followers are described by uncertain general linear
dynamics, i.e.,

ẋi = Axi + (Bi + ∆Bi)ui, i = 1, 2, ..., N, (1)

where xi ∈ Rn is the state of the ith follower, A ∈ Rn×n ,
B ∈ Rn×m are constant matrices, ui ∈ Rm is the control
input of the ith follower. ∆Bi = EΣ(t)Fi is the uncertainty
matrix influencing the control distribution. E and Fi are
known predetermined matrices with proper dimensions,
and the unknown matrix Σ(t) is norm-bounded, belonging
to the set

Ω = {Σ(t)|ΣT (t)Σ(t) ≤ I, ∀t}. (2)

The state of the leader is denoted as x0 ∈ Rn, with the
dynamics given by

ẋ0 = Ax0 + (C + ∆C)u0 (3)

where C ∈ Rn×m is a constant matrix, ∆C = EΣ(t)F0.
The tracking error of follower i is defined as ei = xi − x0.
From (1) and (3), the dynamics of the tracking error ei is
given by

ėi = Aei + (Bi + ∆Bi)ui − (C + ∆C)u0. (4)

Definition 1. The multi-agent system (1) and (3) are said
to achieve leader-following consensus if for any given
bounded initial states, lim

t→+∞
ei → 0, i = 1, 2, ..., N .

Let Ē = diag{E,E, ..., E}, Σ̄(t) = diag{Σ(t),Σ(t), ...,Σ(t)},
F̄ = diag{F1, F2, ..., FN}, F̃ = [FT0 , F

T
0 , ..., F

T
0 ]T . The

dynamics of tracking error in a compact form is

ė = Āe+ (B̄ + ∆B̄)u− (C̄ + ∆C̄)u0, (5)

where e = [eT1 , e
T
2 , ..., e

T
N ]T is the tracking error vector,

Ā = diag{A,A, ..., A}, B̄ = diag{B1, B2, ..., Bn}, ∆B̄ =

ĒΣ̄(t)F̄ , C̄ = [CT , CT , ..., CT ]T , ∆C̄ = ĒΣ̄(t)F̃ are
dynamic matrices, u = [uT1 , u

T
2 , ..., u

T
N ]T is the control

input of the followers.

The nominal system related to (5) without considering the
uncertainties is obtained as

ė = Āe+ B̄u− C̄u0. (6)

For the nominal system, considering the uncertainties as
defined in (5), one objective is to find the control strategies
of the followers u∗ that minimizes the infinite-horizon cost
function and the control strategy of the leader u∗0 that
maximizes the cost function

J(u, u0) =
1

2

∫ ∞
0

(Q(e) + uTRFu− uT0 RLu0)dt, (7)

with Q(e) = eTQ0e, where RF , RL Q0 are positive definite
matrices.

Such policy pair u∗ and u∗0 are saddle point strategies of
the game, and comparing with any other strategies u and
u0, the following relation holds: J(u∗, u0) ≤ J(u∗, u∗0) ≤
J(u, u∗0) .
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This paper mainly focuses on two aspects of the multi-
agent problem. One is to find the control strategies of
agents that stabilize the system and achieve consensus,
since the dynamics is of infinite horizon. The other is to
solve the differential games and ensure the optimality of
the strategies under uncertainties.

3. MAIN RESULTS

In this section, inspired by results in robust control theory,
the sufficient conditions are derived to achieve quadratic
stability of the system. Control strategies of the agents are
proposed and the proof of optimality is presented.

Lemma 2. (Jia (2007)) Let G(s) = C(sI −A)−1B + D ,
then A is stable and ‖G‖∞ < γ if and only if ‖D‖ < γ
and the following Riccati inequality has a positive definite
solution P :

(A+BD̄−1DTC)TP + P (A+BD̄−1DTC)
+PBD̄−1BTP + CT (I +DD̄−1DT )C < 0,

(8)

with D̄ = γ2I −DTD.

Consider the uncertain system

ẋ = (A+ ∆A)x, x(0) = x0, (9)

where ∆A = EΣ(t)F , Σ(t) ∈ Ω.

Lemma 3. (Jia (2007)) The necessary and sufficient con-
dition for the quadratic stabilization of system (9) is that

A is stable and
∥∥∥F (sI −A)

−1
E
∥∥∥
∞
< 1.

3.1 Quadratic stability of the system

When the competition between the followers and the
leader is neglected, the control input u and u0 that ensures
the quadratic stability of the tracking error system (5) can
be obtained based on Lemma 2 and Lemma 3. The control
inputs are designed in feedback form as{

u = K1e,
u0 = K2e,

(10)

where K1 ∈ RNm×Nn, K2 ∈ Rm×Nn. Substituting (10)
into (5), the closed-loop dynamics of the tracking error
becomes

ė = (Ā+ B̄K1 − C̄K2 + ĒΣ̄(t)(F̄K1 − F̃K2))e. (11)

From Lemma 2 and the fact that Σ̄(t) ∈ Ω, system (11)
achieves quadratic stabilization if and only if Ā+ B̄K1 −
C̄K2 is stable and the condition

∥∥(F̄K1 − F̃K2)(sI −
Ā − B̄K1 + C̄K2)−1Ē

∥∥
∞ < 1 is satisfied. The design of

feedback gains K1 and K2 can be obtained in the next
lemma.

Lemma 4. If Fc = [F̄ ,−F̃ ] is of full column rank, for a
given system (5), the state feedback controller (10) makes
the system quadratically stable if and only if the Riccati
inequality (12) has a positive definite solution P

ĀTP + PĀT + PĒĒTP − PBc(FTc Fc)−1BTc P < 0. (12)

If such a solution P exists, then the controller feedback
gain can be chosen as

Kc = −(FTc Fc)
−1BTc P, (13)

with Kc = [KT
1 ,K

T
2 ]T , Bc = [B̄,−C̄].

Proof. Let Ac = Ā+ B̄K1− C̄K2 and Cc = F̄K1− F̃K2.
The quadratic stability of the uncertain system requires

that Ac is stable and
∥∥∥Cc(sI −Ac)−1Ē∥∥∥

∞
< 1. From

Lemma 2, the necessary and sufficient condition is that
there exists a positive definite matrix P satisfying

ATc P + PAc + PĒĒTP + CTc Cc < 0. (14)

Note that Ac = Ā+BcKc and Cc = FcKc. It follows from
(14) that

ĀTP+PĀT+PĒĒP−PBc(FTc Fc)−1BTc P+HT
c Hc<0, (15)

where Hc = Fc(Kc + (FTc Fc)
−1BTc P ).

Therefore, if Riccati inequality (14) holds with a solution
P , then (12) also holds because of the equivalence of
(14) and (15). Conversely, if Riccati inequality (12) has
a solution P and K is given as (15), then Hc = 0.
Consequently, inequality (14) holds, and Ac is stable and∥∥∥Cc(sI −Ac)−1Ē∥∥∥

∞
< 1 in view of Lemma 2. This

completes the proof of the lemma.

Necessary and sufficient condition for the quadratic sta-
bility of the tracking error system is given in Lemma 4.
However, the differential games between the followers and
the leader are not considered. The designed controller feed-
back gain in (13) only ensures the stability of the system
without minimizing or maximizing the cost function (7).
Moreover, the quadratic stability of the system requires
the existence of the full rank of the matrix Fc. When
including the differential games between the agents, the
condition (12) would be too strict. The results will be
shown in the next section.

3.2 Quadratic stability of the system with differential
games solution

In this subsection, a set of controllers for the agents
will be given. Besides, a theorem will be presented to
show that the controllers are solutions of some quadratic
differential games and guarantee the quadratic stability of
the uncertain system (5).

The feedback gains of the proposed controllers are given
as 

K1 = − 1

β2
1

(F̄T F̄ )
−1
B̄TP ,

K2 = − 1

β2
2

(F̃T F̃ )
−1
C̄TP ,

(16)

where P satisfies the following matrix inequality

ĀTP + PĀ+ PĒĒTP − 1

β2
1

PB(F̄T F̄ )−1BTP

+
1

β2
2

PC̄(F̃T F̃ )−1C̄TP + JTc Jc < 0,
(17)

with 0 < η < 1, β2
1 = 1 − η2, β2 = −(1 − 1

η2 ) and

Jc = ηF̄K1 + 1
η F̃K2.

Theorem 5. If the Riccati inequality (17) holds and the
feedback gains for the agents are designed as (16), then
the system (5) is quadratic stabilized and the controllers
are solutions to some linear quadratic differential games of
the nominal system.
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Proof. From Lemma 4, if (14) is satisfied, then the
quadratic stability of the closed-loop uncertain system (11)
is achieved.

Substituting the explicit definitions of Ac and Cc into (14),
one gets

ĀTP+PĀ+PĒĒTP− 1

β2
1

PB(F̄T F̄ )−1BTP +
1

β2
2

×PC̄(F̃T F̃ )−1C̄TP+JTc Jc+M
T
c Mc+N

T
c Nc < 0.

(18)

When the feedback gains are given as (16), then Mc = 0,
Nc = 0. Consequently, (17) is obtained and the uncertain
system achieves quadratic stability. Considering a multi-
agent differential game with a quadratic cost function as
(7) and constant weighting matrices, the min-max cost is
as follows

min
u

max
u0

J(u, u0)

= min
u

max
u0

1

2

∫ ∞
0

(Q(e) + uTRFu− uT0 RLu0)dt.
(19)

The Hamiltonian associated with the min-max problem of
the nominal system (6) is

H(e, u, u0, λ) =
1

2
(Q(e) + uTRFu− uT0 RLu0)

+λT (Āe+ B̄u− C̄u0),
(20)

where λ ∈ RNn is the costate vector.

Define the value function

V (e, u, u0) =
1

2

∫ ∞
t

(Q(e) + uTRFu− uT0 RLu0)dt. (21)

The differential game has a unique solution if a game
saddle point exists, which means the value function yields

V ∗(e0) = min
u

max
u0

J(u, u0) = max
u0

min
u
J(u, u0). (22)

According to Bellman’s principle of optimality, the opti-
mality condition can be derived as

min
u

max
u0

H(e, u, u0, λ) = 0. (23)

The optimal solutions satisfies the stationarity conditions,
which are

∂H(e, u, u0, λ)

u
= 0, (24)

∂H(e, u, u0, λ)

u0
= 0, (25)

where the costate vector is defined as λ = ∂V ∗

∂e .

The optimal value function V ∗(e) for the linear quadratic
differential game is of the form V ∗(e) = 1

2e
TPe for some

symmetric definite positive matrix P .

Then in (24) and (25), the costate vector is λ = Pe, and
the optimal controllers are obtained as

u∗ = −R−1F B̄TPe, (26)

u∗0 = −R−1L C̄TPe. (27)

Substituting (26) and (27) into (23), the Hamilton-
Jaccabi-Isaacs equation is given as

eT (ĀTP + PĀ− PB̄R−1F B̄TP + PC̄R−1L C̄TP
+Q0)e = 0.

(28)

Since e 6= 0, then from (28), the Riccati equation is
obtained as

ĀTP +PĀ−PB̄R−1F B̄TP +PC̄R−1L C̄TP +Q0 = 0 (29)

Since (17) is satisfied, a positive definite matrix ∆ can be
found such that

ĀTP +PĀ+ PĒĒTP − 1

β2
1

PB(F̄T F̄ )−1BTP

+
1

β2
2

PC̄(F̃T F̃ )−1C̄TP + JTc Jc + ∆ = 0.
(30)

Let Q0 = ∆ + JTc Jc, RF = β2
1 F̄

T F̄ , RL = β2
2 F̃

T F̃ , then
the controllers (16) satisfying (17) are solutions of the
differential game (19) regarding to the nominal system (6).
This completes the proof of the theorem.

Remark 6. From the proof of Theorem 5, the policy pair
(u, u0) is a saddle point solution to a differential game.
However, the cost function is dependent on the information
of the system uncertainty matrices, which limits the ap-
plication of the results. It is necessary to find the solution
of a differential game with any given cost function.

With regards to a determined cost function (7), the opti-
mal controllers are calculated as (26) and (27) by Theorem
5. The controllers are the unique saddle point strategies of
the nominal system. In the presence of uncertainties, the
players are unable to evaluate their optimal saddle point
strategies because of the stochastic influences on the model
dynamics. In this case, the optimal controllers (26) and
(27) of the nominal system are modified as follows

ū = −γ1R−1F B̄TPe, (31)

ū0 = −γ2R−1L C̄TPe, (32)

where γ1 > 0 and γ2 > 0.

The next theorem gives the sufficient conditions that the
modified controllers (31) and (32) stabilize the system and
posses the optimality. For system (5), a new cost function
transformed from (7) is defined as

J(u, u0)=
1

2

∫ ∞
0

(Q̄(e)+
1

γ1
uTRFu−

1

γ2
uT0 RLu0)dt. (33)

where P is the solution of (29) and Q̄(e) = eT (Q0 + (γ1 −
1)PB̄B̄TP + (1− γ2)PC̄C̄TP )e,

The scalars γ1 and γ2 should be chosen such that Q0 +
(γ1 − 1)PB̄B̄TP + (1− γ2)PC̄C̄TP is positive definite.

Theorem 7. Consider system (5) with cost function (33),
the controllers (31) and (32) are stabilizing Nash solutions
of the differential game problem if the following inequality
holds

−Q̄+ P (ĒĒT + Y ZY T )P < 0. (34)

where Y = [B̄R−1F ,−C̄R−1L ] and

Z =

[
γ21 F̄

T F̄ + (1− 2γ1)RF −γ1γ2F̄T F̃
−γ1γ2F̃T F̄ γ22 F̃

T F̃ − (1− 2γ2)RL

]
.

Proof. Firstly, the stability of the system will be proved.
The quadratic stability of the uncertain system is achieved
if (14) holds with a positive definite matrix P .

Assumed that P is obtained from (29). Under the modified
controllers (31) and (32), it follows from (14) that

ĀTP + PĀT + P (ĒĒT − 2γ1B̄R
−1
F BT

+ 2γ2C̄R
−1
L C̄T + (−γ1F̄R−1F B̄T − γ2F̃R−1L C̄T )T

× (−γ1F̄R−1F B̄T − γ2F̃R−1L C̄T ))P < 0. (35)
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Considering (29), equation (35) becomes

−Q0+P (ĒĒT +(1−2γ1)B̄R−1F BT−(1−2γ2)C̄R−1L C̄T

+ (−γ1F̄R−1F B̄T − γ2F̃R−1L C̄T )T

× (−γ1F̄R−1F B̄T − γ2F̃R−1L C̄T ))P < 0. (36)

The second term of the left hand of (36) can be presented
as

P (ĒĒT + (1− 2γ1)B̄R−1F BT − (1− 2γ2)C̄R−1L C̄T

+ (−γ1F̄R−1F B̄T − γ2F̃R−1L C̄T )T

× (−γ1F̄R−1F B̄T − γ2F̃R−1L C̄T ))P

= P (ĒĒT + Y TZY T )P. (37)

Recalling that (34) holds, we can obtain (36). Therefore,
the matrix P is a solution of (14) and the quadratic
stability of the system is proved. The Hamiltonian function
of the nominal system associated with the cost function
(33) is

H(e, ū, ū0, λ) =
1

2
(Q̄(e) +

1

γ1
ūTRF ū−

1

γ2
ūT0 RLū0)

+ λT (Āe+ B̄ū− C̄ū0). (38)

Using (29), (31) and (32), it can be further obtained
that H(e, ū∗, ū∗0, λ) = 0, which indicates that (31) and
(32) achieve optimality with cost function (33) of the
differential game. And the optimality is about the nominal
system. For the uncertain system, the quadratic stability
is ensured if the conditions in the theorem is satisfied. The
proof of the theorem completes.

4. NUMERIAL EXAMPLE

In this section, a numerical example is presented to show
the effectiveness of the theoretical results.

Consider a second-order system of three followers and
one leader, with dynamics described by (1) and (3),
respectively. The nominal system dynamics of the agents
are described by

A =

[
0 1 0
0 0 1
2 −4 −1

]
, B1 =

[
1 0
1 1
1 −1

]
,

B2 =

[
1 1
1 2
1 1

]
, B3 =

[
0 0
1 −1
2 −1

]
, C =

[
0 0
0 1
1 1

]
.

(39)

And the uncertainties in the system dynamics are de-
scribed by the following matrices

E =

[
0.2 0 0
0 0.2 0
0 0 0.2

]
,Σ(t) =

[
sin(t) 0 0

0 cos(2t) 0
0 sin(t) cos(t)

]

F0 =

[
0 0
0 0.5

0.5 −0.5

]
, Fi =

[
0 0.5

0.5 −0.5
0.5 0.5

]
(i = 1, 2, ..., N).

(40)

The weighting matrices in the cost function are chosen as
Q0 = 2× I6×6, RF = I6×6,RL = 20 × I2×2. It can be
verified that (29) has a solution P > 0. To ensure that
(34) holds and Q̄ is positive definite, the feedback gains in
(31) and (32) are selected as γ1 = 2, γ2 = 0.7.

When all of the agents choose their optimal controls, the
results about state trajectories are given from Fig. 1 to
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Fig. 1. Plot of trajectories of xi1
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Fig. 2. Plot of the trajectories of xi2
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Fig. 3. Plot of the trajectories of xi3

Fig. 4. The first, second and third state component are
shown in Fig. 1, Fig. 2 and Fig. 3, respectively, both of
which illustrate that the followers achieve leader-following
consensus with the leader despite of the existence of
uncertainties in the dynamics. The 3-D phase plane plot is
given in Fig. 4, where the initial positions of the followers
are denoted by circles and that of the leader is denoted by
a pentagram.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6777



Fig. 4. 3-D plot of trajectories of agents in the phase plane

5. CONCLUSION

An approach to the linear quadratic differential games
about centralized multi-agent system leader-following con-
sensus problem was investigated in the presence of model
uncertainties. The quadratic stabilization of the multi-
agent system was firstly discussed without considering the
differential games. Then the proposed control strategies
were proved to be the optimal strategies of a certain
differential games with the weighting matrices related to
the system uncertainties. To solve a linear quadratic dif-
ferential games with given cost function and deal with the
uncertainties, the optimal solutions of the nominal system
were modified and the modified solution was proved to
be a Nash solution to a differential game. The conditions
on the parameters of the modified solution were given to
ensure the quadratic stability of the system. A numerical
example was finally presented.
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