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Abstract: This paper presents an implementable framework of output probability density
function (PDF) control for a class of stochastic nonlinear systems which are subjected to
non-Gaussian noises. The statistical properties of the system outputs can be adjusted by
shaping the dynamic output probability density function to track the reference stochastic
distribution. However, the dynamic probability density function evolution is very difficult to
obtain analytically even if the system model and the stochastic distributions of the noises
are known. Motivated by Monte Carlo simulation, the dynamic probability density function
can be estimated by sampling data which forms the contribution of this paper. In particular,
the sampling points are generated following the stochastic distribution of the noise for each
instant. These points go through the system and generate the histogram for system outputs,
then the dynamic model can be established based on the dynamic histogram which reflects the
randomness and the nonlinear dynamics of the investigated system. Based on the established
model, the output probability density function tracking can be achieved and the simulation
results and discussions show the effectiveness and benefits of the presented framework.

Keywords: Probability density function control, stochastic nonlinear systems, non-Gaussian
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1. INTRODUCTION

A probability density function reflects the complete
stochastic properties of a random variable. It is an im-
portant research topic of the extended form of the tra-
ditional stochastic control such as minimum variance
control(Åström (2012)), covariance control(Zhang et al.
(2016),) etc. Since many practical industrial processes
are subjected to non-Gaussian noises(Wang (2012)), the
Gaussian-assumption-based stochastic control methods
cannot be adopted properly. Therefore, investigating the
probability density function control problem for non-
Gaussian stochastic system is significant both for con-
trol theory and real applications (Ren et al. (2019)). In
particular, the probability density function control would
influence many theoretical research topics such as min-
imum entropy control(Ren et al. (2013)), non-Gaussian
filtering(Yin et al. (2020)), particle filtering(Liu et al.
(2019)), probabilisitic decoupling(Zhang et al. (2017)),
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performance enhancement(Zhou et al. (2017)), etc. As an
example of real application, the probability density func-
tion control would improve the product quality of paper
making process (Wang et al. (2001)).

To control the output probability density function, the
analytical formulation of the probability density function
has to be obtained for each instant. There are two different
approaches: 1) Guo and Wang (2010) presented the model-
based direct evolution method where the output proba-
bility density function can be formulated using Jacobian
matrix. The shortcoming of this method is that only a
class of system model satisfies the evolution condition and
the inverse calculation is expensive for high-dimensional
model. And 2) Estimating the probability density func-
tion using probability density estimation (Zhang and Hu
(2018)) with the collected output data along the instant,
where the accuracy cannot be guaranteed as the dynamic
system would lead to an un-stationary process thus the
estimation performance will deteriorate. As a summary of
the aforementioned methods, the problem can be solved
if the dynamic probability density function can be repre-
sented by the estimable form for each instant.

Monte Carlo methods have been widely used as an effective
numerical estimation(see Rubinstein and Kroese (2016)).
For dynamic systems, the randomness can be simulated by
Monte Carlo simulations where the sampling points can
be generated for each instant. Recursively, the dynamics

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1310



of the system can be characterised by these sampling
points. Since the sampling points can be used to estimated
the stochastic distribution, Monte Carlo methods would
supply a fast solution for probability density function
control implementation. In particular, the sampling points
can be generated for each instant following the known
distribution of random noise. Using these sampling points
and the system model, the numerical simulation can be
done for each instant thus the histogram of the system
output can be obtained in real-time. The segments of the
histogram can be considered as various events and the
events can be re-used as the states of the probability
density function model. In other words, the dynamic
histogram results in a state-space model to describe the
dynamics of the output probability density function.

Following the idea above, the histogram can be used to
establish a model while the parameters of the model can be
identified using the least-square method directly with the
obtained dynamic information of the histogram. Thus the
control design can be achieved using any existing methods.
In this paper, the parametric state feedback has been
adopted as a case demonstration of the presented frame-
work. The effectiveness of the presented framework is also
demonstrated by the simulation results with a numerical
example. In addition, discussions are given after the sim-
ulation to analyse the performance of the present frame-
work, including convergence, direct optimisation method,
and the relationship to the B-spline neural network model,
etc.

The rest of this paper has been organised as follows: The
problem has been described and formulated in Section 2,
where the histogram-based representative has been devel-
oped. In Section 3, the modelling procedure has been given
using the calculated histogram. The probability density
function tracking algorithm has been achieved in Section
4 as the main result of the presented framework and the
pseudo-code is also given for implementation. The simu-
lation and discussion have been shown in Section 5 and
Section 6, respectively. In particular, the validation has
been demonstrated and the theoretical analysis has been
analysed, e.g. convergence, optimisation and discussion
about B-spline neural network model. In the end, section
7 summarises this paper as conclusion.

2. FORMULATION

Considering the following general stochastic nonlinear sys-
tem model:

xk+1 = f (xk, uk, wk)

yk = h (xk) (1)

where x ∈ Rn, y ∈ R, u ∈ R denote the n-dimensional
vector-valued system state, system output and control
input. w stands for the non-Gaussian random noise and
k denotes the index for discrete-time sample instant.
Suppose that the nonlinear functions f (·) and h (·) are
known. The stochastic distribution of the random noise w
is known as γw.

The sampling points following γw can be described as
{σ1,k, σ2,k, . . . , σN,k} where positive integer N denotes the
size of the sampling set of γw for each k. Therefore,
the samples for system output yk can be described by

a data set as {yσ1,k, yσ2,k, . . . , yσN ,k}. In practice, the
events can be pre-defined based on the boundary values
αi. In particular, α1 < α2 < · · · < αm results in m + 1
segments in sample space of yk. Then the histogram can
be obtained while the probability values can be calculated
as P (y < α1), P (α1 < y < α2), . . ., P (αm < y). P (·)
stands for the probability value which can be obtained by
counting the number of the sampling points in the segment
dividing N .

Fig. 1. The histogram of Gaussian distribution, where
α1, . . . , α7 denotes the pre-specified segments. In
particular, m = 7 and the point numbers within the
segments result in the probabilities.

For each instant, the histogram can be generated and an
example is shown by Fig.1, where the probability value can
be calculated simply. Notice that the integral of probability
density function over the sample space is equal to 1, we
have

P (y ≤ α1) + P (αm < y) +

m−1∑
i=1

P (αi < y ≤ αi+1) = 1

(2)

which indicates that there are m events which are indepen-
dent out of m + 1 events defined by segments. Therefore,
the probability density function can be represented by m
probability values. Furthermore, the stochastic properties
of the system output yk for each instant k can be charac-
terised by a probability vector as follows:

Wk = [P (y ≤ α1) , . . . , P (αm−1 < y ≤ αm)]
T

(3)

Based on the pre-specified m + 1 segments, the reference
vector can be converted from the reference probability
density function, for example,

P (αm−1 < y ≤ αm) =

∫ αm

αm−1

γref (y) dy (4)

where γref denotes the reference probability density func-
tion. Thus, the reference vector Wref can be obtained
from γref . Note that the reference is a vector which is
independent of k.

To track the given reference, the following equation should
be achieved using the controller design,

lim
k→∞

(Wk −Wref ) = 0 (5)
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which forms the objective of the investigated framework.
In particular, the distribution tracking error can be repre-
sented by the vector error.

3. HISTOGRAM-BASED MODELLING

Based on Kolmogorov forward equation, the stochastic
distribution is governed by a stochastic partial differential
equation, which can be simplified as a stochastic differen-
tial equation for each instant. As a discrete-time form, the
following equation can be generated.

W̄k+1 = g
(
W̄k, uk

)
(6)

where g (·) denotes an unknown differentiable nonlinear

function and W̄ =
[
WT , P (αm < y)

]T
. Basically, the

vector W̄ stands for the complete information of the
output probability density function.

Eq. (6) leads to the following equation using linearisation
operation,

W̄k+1 = AkW̄k +Bkuk + ḡ
(
W̄k

)
(7)

where Ak ∈ R(m+1)×(m+1) and Bk ∈ R(m+1) are the time-
variant coefficient matrices for instant k. Nonlinear func-
tion ḡ (·) denotes the un-modelled dynamics. In particular,
we have

{Ak, Bk} =

{
∂g

∂W̄
,
∂g

∂u

}∣∣∣∣
W̄=W̄k,u=uk

(8)

Note that the dimension of the state vector can be reduced
to m based on Eq.(2). The following decomposition can be
considered[

Wk+1

P (αm < yk+1)

]
=

[
A11,k A12,k

A21,k A22,k

] [
Wk

P (αm < yk)

]
+

[
B1,k

B2,k

]
uk + ḡ

(
W̄k

)
(9)

Thus the reduced-order model can be obtained as follows:

Wk+1 = A11,kWk +A12,kP (αm < yk) +B1,kuk + ḡm(W̄k)
(10)

where A11,k ∈ Rm×m, Bk ∈ Rm, and ḡm denotes the sub-
function of ḡ with m-dimensional outputs.

To generalise and simplify the expression, the following
equation can be used as the complete form of the presented
histogram-based model.

Wk+1 = ĀkWk + B̄kuk + δ(W̄k) (11)

where δ(W̄k) = A12,kP (αm < yk) + ḡm(W̄k), Āk = A11,k,
and B̄k = B1,k.

Note that the value of function δ(W̄k) can be arbitrarily
small if the dimension number m goes sufficiently large.
Moreover, the P (αm < yk) can be very close to zero
with the pre-specified event boundaries. The nonlinear
function δ(W̄k) can be considered as a disturbance of the
model while the robustness of the controller design would
eliminate the effect of this nonlinear function. The matrix
Āk can be considered as a probability transition matrix.
It implies that the presented model is given with explicit
physical meaning.

The parametric identification is the next step for complet-
ing the modelling procedure. Since the presented model is
linear, the model can be rewritten as follows:

Wk+1 = θkΦk (12)

where θk =
[
Āk, B̄k

]
denotes the unknown parameter

matrix and Φk =
[
WT
k , uk

]T
stands for the known infor-

mation for parameter identification.

Based upon Eq.(12), the recursive least square (RLS)
method (see Björck (1996)) can be adopted directly. In
particular, the algorithm has been recalled as follows:

θk+1 = θk +
Pk−1Φkεk

1 + ΦTk Pk−1Φk
εk = Wk+1 − θkΦk

Pk =

(
I − Pk−1Φk

1 + ΦTk Pk−1Φk

)
× Pk−1 (13)

4. PDF TRACKING

To track the given reference distribution, the error model
can be defined comparing the reference Wref and the state
Wk. An integrator has been introduced into the control
design where we have ek+1 = ek + Wref − Wk. Thus e
can be considered as the extended state for the model
and the complete form of the error model is obtained by
substituting the integrator.[

ek+1

Wk+1

]
= Ae,k

[
ek
Wk

]
+Be,kuk +

[
0

δ(W̄k)

]
+

[
Wref

0

]
(14)

where Ae,k =

[
I −I
0 Āk

]
and Be,k =

[
0
B̄k

]
.

Using the developed model (14), any existing control meth-
ods can be inserted into this framework. As a case study,
the parametric state feedback method has been used in this
paper as the design parameters can be further optimised
to increase the robustness of the control strategy.

In particular, the controller can be obtained as follows:

uk = Kk

[
eTk ,W

T
k

]T
(15)

where Kk ∈ R2m denotes the gain vector of the state
feedback.

Based on the parametric state feedback, which was pre-
sented by Roppenecker (1986), the feedback gain Kk can
be calculated as follows:

Kk = [M1f1, . . . ,M2mf2m]

×
[
(λ∗1I −Ae,k,1)

−1
Be,k,1f1, . . . ,

(λ∗2mI −Ae,k,2m)
−1
Be,k,2mf2m

]−1

(16)

In the case of a common open-loop and closed-loop eigen-
value, other parameters in Eq.(16) can be determined as
follows:

Ae,k,i = Ae,k + v0
j s

0
j
T

Mi = I −
dk̄s

0
j
T
Be,k

s0
j
T
bk̄

Be,k,i = Be,kMi + v0
jd
T
k̄ (17)

where v0
j and s0

j (j = 1, . . . , 2m) denote the open-loop
eigenvectors and eigenrows of the model (14). bk̄ is the
k̄-th column of the matrix Be,k. dk̄ is a unit vector where
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the k̄-th element is 1. In the other case, there is no common

eigenvalue, s0
j
T
bk̄ = 0, so that the equations (17) can be

simplified as follows:

Ae,k,i = Ae,k
Mi = I

Be,k,i = Be,k (18)

Based on the control design, the error vector between
the reference Wref and Wk will converge to zero with
arbitrary parameters f1, f2, . . . , f2m and the probability
density function tracking will be achieved. To summarise
the presented framework, the following block diagram (see
Fig.2) is given with pseudo-code for implementation.

Fig. 2. The block diagram for the presented probability
distribution tracking framework.

5. SIMULATION

To validate the presented framework, the following system
model can be considered as a numerical example.

xk+1 = 0.5xk sinxk + uk + wk
yk = 2xk (19)

where wk is random noise subjected to Gamma distribu-
tion with shape and scale factors are equal to 2.

For tracking purpose, the reference distribution can be
given using a set of pre-specified probabilities where
Wref = [0, 0, 0, 0, 0, 0.05, 0.1, 0.15, 0.6] while the segment
boundaries are defined as [−4,−3,−2,−1, 0, 1, 2, 3, 4].

To obtain the histogram of the system output, 500 points
have been generated using Monte Carlo simulation. Based
on the design procedure, the simulation results can be
indicated here by the following figures. In particular, Fig.
3 shows the vector value goes to the reference vector along
the instant k which implies that tracking of the given
probability density function is achieved. Meanwhile, the
histograms of vector Wk and tracking error ek are also
given in Fig. 4 and Fig. 5, respectively. The figures demon-
strate that the tracking error has been controlled within
an acceptable error and the tracking performance has been
achieved. In addition, the state value of the investigated
system as indicated by Fig. 6 shows the system state is
not convergent as the reference probability-based vector
does not have zero mean value, however the system state
is still bounded which means that the real implementation
is feasible and the stability of the investigated system can
be guaranteed. Further information on convergence will be
analysed in next Section.

Algorithm 1 Pseudo code for implementing the presented
probability density function tracking framework

Require: System model (1) and the distribution of the
noise w

Input: The pre-specified segments/events with given
boundaries α1, . . . , αm and the point number N for
Monte Carlo simulation

Output: The final histogram of the system output yk

Initialisation: Setup the operation time ts and initial
value for the system model.
for k ≤ ts do

Generating the point set obeys the given stochastic
distribution of the noise.

for i ≤ N do
Put the point through the system model and update

the data set for system output yi.
end for
Obtain the histogram of the system output at instant

k using the collected N points for system output.
Calculate the probability values for the pre-specified

segments and form them as a vector Wk.
Using the recursive least square method to identify

the probability model.
Based on the parameters of the identified model

construct the parametric controller.
Select one sampling point as the measured noise wk
Substituting the control input value uk into the inves-

tigated system model with wk and update the system
states and output.
k ← k + 1

end for
Obtain the actual final state Wk and convert Wk to
probability density function.

0
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0 -4

Fig. 3. The value of the state vector Wk where the
probability for each segment/event is shifting along
sampling instant k.

6. PERFORMANCE ANALYSIS

6.1 Convergence

Firstly, we can assume that the identified model (11)
is equivalent to the investigated system model (1) in
terms of the output probability density function. Thus
the convergence of the system output analysis can be re-
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Fig. 4. The histogram of the probabilities where the result
is consistent with the result shown by Fig. 3.

20

-1

15

0

-4
-3

-2

1

10
-1

0
1

52
3

4

Fig. 5. The histogram of the tracking error e, the tracking
performance can be validated as e has been attenu-
ated very close to zero
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Fig. 6. The state value of the investigated system (19) is
shown by curve where the bounded state implies the
bounded system output y.

expressed as the stability analysis for closed-loop system
model with control law (15).

Based on Eq.(14), the investigated stochastic system has
been converted to deterministic system. Furthermore, the
control law can be decomposed as follows:

uk =
[
Ke,k, K̄k

]
×
[
eTk ,W

T
k

]T
(20)

where implies that

Be,kuk =

[
0
B̄k

] [
Ke,k, K̄k

] [ ek
Wk

]
=

[
0

B̄kKe,kek + B̄kK̄kWk

]
(21)

Substituting the above equation, the closed-loop formula-
tion can be simplified as follows:

Wk+1 =
(
Āk + B̄kK̄k

)
Wk + δ

(
W̄k

)
+ B̄kKe,kek (22)

Notice that the parametric feedback can be designed as
Ae,k Hurwitz then the variable ek is convergent. In other
words, there always exists a positive real upper limit Θ1,
such that, ‖ek‖ ≤ Θ1 ‖Wk‖. In addition, as aforementioned
above, δ

(
W̄k

)
can be bounded as arbitrary small number.

Similarly, there also exists another positive real upper limit
Θ2, such that,

∥∥δ (W̄k

)∥∥ ≤ Θ2 ‖Wk‖.
As a result, we have

‖Wk+1‖ ≤
(∥∥Āk + B̄kK̄k

∥∥+ Θ2 +
∥∥B̄kKe,kΘ1

∥∥) ‖Wk‖
(23)

which leads to the following convergence condition.∥∥Āk + B̄kK̄k

∥∥+ Θ2 +
∥∥B̄kKe,kΘ1

∥∥ ≤ 1 (24)

Note that Āk, B̄k and Kk are bounded thus the condition
is implementable.

The convergence also implies that the moment of the inves-
tigated output yk is bounded. It shows that yk is bounded
as a random variable which completes the analysis of the
output convergence.

6.2 Direct optimisation

Note that the controller design is still based on the iden-
tified model which leads to two main problems: 1) the
identification error has to be introduced into the controller
design, and 2) the computational loading has been in-
creased strongly which reduces the on-line performance of
the implementation in real time. To solve the problems,
the direct optimisation can be considered.

The control problem is also an optimisation problem which
can be described as searching for the optimal control input
signals to minimum the tracking error, where the cost
function can be formulated as follows:

Jk = min
uk

{Wref −Wk} (25)

To achieve the minimisation, the gradient descent algo-
rithm can be used with a pre-specified learning rate ε.

uk = uk−1 + ε
∂J

∂u

∣∣∣∣
J=Jk,u=uk

(26)

In practice, a penalty term would be added into the cost
function to guarantee the local convergence of the gradient
descent searching, moreover, the difference operation can
be used to replace the differentiation using the discrete-
time format.

uk = uk−1 + ε
∂J̄k−1 − J̄k−2

∂uk−1 − uk−2
(27)
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where

J̄k = Jk +
1

2
Ru2

k (28)

while R ∈ R denotes the penalty weight of the control
input uk.

Using the direct numerical optimisation, the control input
can be calculated for each instant however the convergence
analysis is difficult to obtain and only local optimisation
will be achieved since the states Wk are governed by the
nonlinear dynamics of the investigated stochastic systems.

6.3 B-spline neural network model

Wang (2012) presented a decoupled model using a B-spline
neural network, where the probability density function has
been rewritten as follows based upon a set of weight values
v with B-spline base functions B (·).

γ (y) =

m∑
i=1

viBi(y) (29)

As a result, the dynamics of the investigated system has
been reflected by the dynamics of the weight vector which
leads to the dynamic model for the probability density
function.

Vk+1 = AVk +Buk
γ (y) = CVk (30)

where C = [B1 (y) , . . . , Bm (y)]. A and B are the para-
metric matrices. Based on this format, the rational PDF
model, square-root PDF model, etc. can be obtained. The
implementation for the control design using these models
need to identify the weights for each instant which restricts
the real-time requirements.

Note that the histogram is the zero-order estimation of
the probability density function using a B-spline function
which means that the histogram-based model in this
paper is a special case of the B-spline neural network
model. However the Monte Carlo simulation gives the
histogram directly without identification and achieves the
fast implementation which shows the novelty of this paper.

7. CONCLUSION

The output probability density function control problem
has been investigated in this paper. Comparing with all the
existing results, the probability-based state space model
has been developed as a fast implementation for proba-
bility density function control where the explicit physical
meaning is also obtained. The complete model can be
established with parametric identification then the con-
trol methods can be inserted into this new framework
to achieve the design objective. As a demonstration, the
parametric state feedback method has been used for con-
troller design due to the fact that the free design pa-
rameters would supply more flexibilities for robustness re-
quirements. Moreover, the performance analysis has been
given. In particular, the stability of the presented algo-
rithm has been analysed briefly and a direct optimisation
method has been discussed. In addition, we claim that the

presented model is a special case of B-spline model for
fast implementation. To validate the effectiveness of the
presented probability density function control framework,
the numerical simulation results have been obtained where
all the curves and figures show that the novel design has
achieved the design objective.
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