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Abstract: This paper is concerned with online parameter identification of milling behavior in
fluidized bed layering granulation with external sieve-mill-cycle. A mill function is approximated
with weighted Gaussian ansatz functions using a Lyapunov-based parameter estimation algo-
rithm with a process model and plant data. The plant data is both generated by simulations
and measured in experiments. In addition to previous work, the asymptotic convergence of
the parameter estimator is proven theoretically. The identified mill function is validated by
simulation of the process. It is shown that the plant and the identified model are in good
agreement near the desired steady state.
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1. INTRODUCTION

Fluidized bed layering granulation (FBLG) is a particle
forming process with a wide range of applications in the
pharmaceutical and food processing industry (Mörl et al.,
2007). In order to produce particles with specified prop-
erties a suspension is sprayed on a particle bed fluidized
with a heated stream of gas. After the evaporation of the
liquid fraction the solid fraction remains on the particles
resulting in layer wise growth.

In the continuous operation mode, which has various ad-
vantages such as higher production rates, particles are
continuously removed from the bed. Therefore, new nu-
clei have to be supplied continuously, which is realized
by grinding of oversized particles. The resulting process
scheme is depicted in Fig. 1. Experimental investigations
have shown self-sustained, non-linear oscillations in the
particle size distribution (PSD) in continuous operation
mode (Schmidt et al., 2015). These instabilities cause
undesired variations in product properties or may even
lead to a shut down of the process. The reasons leading to
these instabilities were investigated in various model based
studies (Radichkov et al., 2006; Dreyschultze et al., 2015).
There it has been shown that operation parameters, in
particular those regarding the milling process, are crucial
for stability. In order to ensure a stable process operation,
either the process conditions have to be chosen carefully
or a stabilizing controller has to be applied. The latter
has been investigated theoretically (Palis and Kienle, 2012,
2014) and experimentally (Neugebauer et al., 2019). The
basis for the aforementioned control strategies has been a
well-tuned process model including the milling process.

Few approaches in this direction have been made so far.
Neugebauer et al. (Neugebauer et al., 2019) established

Fig. 1. Process scheme with granulation chamber, screen-
ing and mill

an empirical model of the grinding process based on
preliminary offline experiments. A Lyapunov-based online
estimation procedure using a low number of basis functions
and simulation data has been proposed in Palis and Kienle
(2017). In this contribution, a generalized version using a
number of Gaussian basis functions will be investigated
using experimental data from a measurement of the PSD.

The paper is structured as follows: In the second section
a mathematical model of the process is presented. The
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third section contains the derivation of the parameter
estimator as well as its application to a simulated and
an experimental case study. The results are summarized
in section 4.

2. PROCESS MODELING

The fluidized bed layering granulation process can be mod-
eled using population balance equations (PBEs). Here,
the polydisperse particle population inside the granulation
chamber is described in terms of the number density distri-
bution n(L, t), where the internal coordinate L represents
the characteristic particle length and t is the time. The
model used here is based on the equations derived in
Heinrich et al. (2002). The following balance equation
represents the dynamic behavior of the particle population

∂n

∂t
= −G∂n

∂L
+ ṅin − ṅout (1)

with growth rate G, particle inlet ṅin and particle outlet
ṅout.

It is assumed that the particles are non-porous spheres
and that the particles and the injected suspension are
distributed homogeneously in the granulation chamber.
According to Mörl et al. (2007) the size-independent
growth rate can be described as

G =
2ṁinj

ρπµ2(n)
(2)

with the injection rate of solid material ṁinj and the
second moment of the number density distribution

µ2(n) =

∫ ∞
0

L2n(L, t) dL (3)

which correlates to the total particle surface.

The particle outlet is assumed to be classified with clas-
sification function Tout(L). The drain K determines the
amount of discharged particles.

ṅout(L, t) = ToutKn (4)

After the discharge the particle population is divided into
an oversized fraction ṅover, a product fraction ṅprod and
fine population ṅfine using two screens. The three fractions
are given by

ṅover(L, t) = Tsc1ṅout

ṅprod(L, t) = Tsc2(1− Tsc1)ṅout

ṅfine(L, t) = (1− Tsc2)(1− Tsc1)ṅout

(5)

with screening functions Tsc1/sc2(L). The oversized parti-
cles are ground up and then fed back into the granulation
chamber together with the fine fraction

ṅin = ṅmill + ṅfine (6)

while the product fraction is removed from the process.
Both the classification function Tout and the screen func-
tions Tsc1,sc2 are given by cumulative Gaussian distribu-
tions

Tj(L) =

∫ L
0

exp
(
−(L−Lj)2

2σ2
j

)
dL∫∞

0
exp

(
−(L−Lj)2

2σ2
j

)
dL

(7)

with j = {out, sc1, sc2} and the separation diameters Lj
and variances σj Neugebauer et. al. (Neugebauer et al.,
2019).

The milling can be modeled as a static process by

ṅmill = ϕ(L)

∫ ∞
0

L3ṅover dL (8)

with the normalized PSD of the milled particles ϕ(L)
and the total volume of oversized particles

∫∞
0
L3ṅover dL.

Although experimental investigations (Neugebauer et al.,
2016) suggest that ṅmill can be described as the sum of
three distributions, their specific shape is in general not
known in advance and may vary during process operation.
Therefore, the weighted sum of some Gaussian ansatz
functions ϕi(L) is used in this contribution.

ϕ(L) =

N∑
i=1

aiϕi(L) (9)

Due to the mass-conservation of the milling processes, i.e.∫ ∞
0

L3ṅover dL =

∫ ∞
0

L3ṅmill dL (10)

an additional constraint on the weights ai results∫ ∞
0

L3
N∑
i=1

aiϕi(L) dL = 1. (11)

Solving this equation for the N -th parameter gives

aN =
1−

∫∞
0
L3
∑N−1
i=1 aiϕi(L) dL∫∞

0
L3ϕN (L) dL

(12)

which allows us to rewrite the mill fraction depending only
on N − 1 parameters as follows

ṅmill =

(
N−1∑
i=1

aiφi(L) + ϕ̄(L)

)∫ ∞
0

L3ṅover dL (13)

with

φi(L) = ϕi(L)−
∫∞

0
L3ϕi(L) dL∫∞

0
L3ϕN (L) dL

ϕN (L) (14)

and

ϕ̄(L) =
ϕN (L)∫∞

0
L3ϕN (L) dL

(15)

To ensure constant bed mass mbed, which is crucial to a
continuous operation of the process, the drain K is chosen
such that µ̇3 = 0 holds, where µ3 corresponds to the total
particle volume

µ3(n) =

∫ ∞
0

L3n(L, t) dL . (16)

The drain K is thus given by

K =
µ3(−G ∂n

∂L )

µ3 (ToutTsc2(1− Tsc1)n)
(17)

resulting in the following process model:

∂n

∂t
=−G∂n

∂L
+ (Tsc1Tsc2 − Tsc2 − Tsc1)ToutKn

+

(
N−1∑
i=1

aiφi(L) + ϕ̄(L)

)∫ ∞
0

L3ṅover dL .
(18)

3. LYAPUNOV-BASED PARAMETER
IDENTIFICATION

As has been mentioned above, the shape of the particle size
distribution resulting from the mill and thus appropriate
weights ai are in general unknown and may vary over time.
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Fig. 2. Parameter estimation scheme

Therefore, a Lyapunov-based online parameter estimation
procedure proposed in (Krstic, 2006) and successfully ap-
plied to other particle processes in (Dürr et al., 2015;
Golovin et al., 2019) or to simulated granulation processes
(Palis and Kienle, 2013, 2017) will be applied for the
parameters ai. In contrast to previous contributions, the
parameter estimation is not only investigated theoretically
but also applied to actual measurement data. Here, the
estimation scheme, as depicted in Fig. 2, consists of a mod-
ified plant model running in parallel to the actual plant
and a parameter estimator adapting unknown parameters
in the parallel model.

3.1 Design of the parameter estimator

In order to derive a parameter estimator, the modified
parallel model is designed as follows

∂n̂

∂t
=−G∂n

∂L
+ (Tsc1Tsc2 − Tsc2Tsc1)ToutKn

+

(
N−1∑
i=1

âiφi(L) + ϕ̄i(L)

)∫ ∞
0

L3ṅover dL

− c(n̂− n)

(19)

where n̂ and âi are the estimates of the number density
distribution n and the mill coefficients ai respectively. The
parameter c acts as an additional tuning parameter for
the observer term. Accordingly, the estimation errors are
defined as

e = n̂− n (20)

ãi = âi − ai (21)

Based on the process and parallel model, i.e. eq. (18) and
(19), the error system dynamics are given as follows.

∂e

∂t
=

(
N−1∑
i=1

ãiφi(L)

)∫ ∞
0

L3ṅover dL− ce (22)

˙̃ai = ˙̂ai (23)

To determine the unknown parameters ai, update laws
for âi have to be found such that the error system
described by equations (22) and (23) is asymptotically
stable. Choosing the following positive definite candidate
Lyapunov functional

V =
1

2

∫ ∞
0

e2 dL+

N−1∑
i=1

1

2γi
ã2
i (24)

where γi are additional tuning parameters, the error sys-
tem is stable if the time derivative of V along the system
trajectories is negative definite.

V̇ =

∫ ∞
0

eė dL+

N−1∑
i=1

1

γi
ãi ˙̂ai

=

∫ ∞
0

e

(
N−1∑
i=1

ãiφi(L)

∫ ∞
0

L3ṅover dL− ce

)
dL

+

N−1∑
i=1

1

γi
ãi ˙̂ai

(25)

Here, the following update laws for âi

˙̂ai = −γi
∫ ∞

0

eφi(L) dL

∫ ∞
0

L3ṅover dL (26)

result in a negative semi-definite time derivative of the
Lyapunov functional

V̇ = −c
∫ ∞

0

e2 dL ≤ 0, (27)

proving stability. However, for convergence of the param-
eter estimation errors towards zero, asymptotic stabil-
ity has to be shown. According to LaSalle’s invariance
principle (Khalil, 2015) the error system converges to-
wards the smallest invariant subset MI of the set M =
{(e, ã1, . . . , ãN−1) | V̇ = 0}. For e = 0 and the linear
independence of Gaussian functions with different mean
values from equation (22) follows that ∂e

∂t = 0 only holds if
ãi = 0 for all i. Hence, MI = {(0, 0, . . . , 0)} is the smallest
subset invariant of the error system dynamics, resulting in
asymptotic convergence of the parameter estimation errors
towards zero.

Compared to other parameter estimation strategies, the
theoretical proof of convergence even for the nonlinear
process model is besides its simplicity a major advantage
of the presented scheme. For a practical implementation
of the update scheme the estimates âi are restricted to
positive values. The measurement of the particle size
distribution n has been performed using an inline probe
(IPP 70-s, Parsum GmbH Chemnitz, Germany). Due to
the considerable noise corruption of the measurement
signals, the convergence rate has to be restricted, which
was ensured by choosing the tuning parameters c and
γi appropriately.Generally, the influence of noise on the
parameter estimation still has to be investigated.

3.2 Simulation

The parameter estimation scheme depicted in Fig. 2 has
been implemented in Matlab, where the population bal-
ance model has been discretized along the property coor-
dinate using the finite volume method (first-order upwind
scheme with 200 equidistand grid points). The mill func-
tion is modeled as the sum of three weighted Gaussian
functions (Neugebauer et al., 2016).

ϕ(L) =

3∑
i=1

aiϕi(L) =

3∑
i=1

ai exp

(
(L− µi)2

σ2
i

)
(28)

The process and mill parameters used for simulation are
presented in Table 1 and 2 respectively.

Table 1: Process parameters

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11564



0 0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Convergence of the unknown parameters âi (black)
to the actual parameters ai (red)

Fig. 4. PSD of the simulated process

Par. Value Par. Value
ṁinj 0.0336 g s−1 ρ 0.014 g mm−3

Lsc1 1.18 mm σsc1 0.055 mm
Lsc2 0.8 mm σsc2 0.065 mm

σout 0.5 mm

Table 2: Parameters of the mill
Par. Value Par. Value Par. Value
a1 0.745 µ1 0.5 mm σ1 0.2 mm
a2 0.186 µ2 0.8 mm σ2 0.1 mm
a3 0.559 µ3 1.1 mm σ3 0.1 mm

As can be seen in Fig. 3, all three parameter estimates
converge within roughly 3h, which is reasonable for the
slow process behavior depicted in Fig. 4. In addition, as
is shown in Fig. 5, the normalized L2-norm of e also
converges to zero in the same time frame.

3.3 Experimental validation

In this section the parameter estimation algorithm is ap-
plied to real process measurement presented in Neuge-
bauer et al. (Neugebauer et al., 2019), covering T = 19.7h
with a sampling rate of 20 minutes. For the mill model
20 weighted Gaussian normal distributions with equal
standard deviation σi and equidistant mean value

µi = 0.1 + 0.1i for i = 1, . . . , 20. (29)
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Fig. 5. Convergence of the normalized error L2-norm
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Fig. 6. Temporal evolution of the parameter estimates âi

turned out to be a suitable number of ansatz functions con-
sidering compuational effort and accuracy of the results.
The initial parameter guesses and tuning parameters are
given in Tab. 3. The tuning parameters were determined
iteratively and are chosen, such that convergence speed of
the estimator is reasonably fast without being too sensitive
to measurement and process noise.

Table 3: Parameters parameter estimation
Par. Value Par. Value
âi(0) 0.0171 σi 0.05
γi 10−14 c 0.03

The adaption of the parameter estimates over time is
depicted in Fig. 6 for 4 selected parameters. As can been
seen, measurement noise and inner process variations do
have a significant influence on the convergence behavior,
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Fig. 7. Normalized L2-norm of the plant-model-error e real
(black) and averaged (red)
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Fig. 8. Identified (black) and initial (red) mill function

especially for parameters connected to small particles size
classes, exemplified by parameter estimate â4. In contrast
to this, parameter estimate â19, which is connected to
bigger particle size classes, clearly converges. The bigger
influence of process noise on smaller particles can be an
explanation for this phenomenon. The influence of noise
is also clearly visible in the L2-norm of the error depicted
in Fig. 7. Nevertheless, the mill function identified for the
final time point shown in Fig. 8 looks reasonable.

In order to further validate the parameter estimates,
simulation results of a model using the identified mill
function have been compared to the measurement data.
Fig. 9 shows the respective particle size distributions over
time. Both graphs suggest that the process will reach a
stable equilibrium distribution. To validate the quality of
the simulated plant model, the L2-norm of PSD difference

eval(L, t) = nmeas(L, t)− nsim(L, t) (30)

is computed for every time step. Furthermore, it is com-
pared to a simulation using initial guesses for the mill
parameters. As shown in figure 10 the error L2-norm
decreases over time, which indicates good model-plant
agreement near the steady state. Furthermore, the dif-
ference between simulated and measured plant is nearly
always smaller compared to the simulation using the initial
parameter guesses. For a more convenient representation,
the respective PSDs are presented at four selected time
instants in Fig. 11. While the simulation and measurement
differ noticeably during the transitional phase, there is

Fig. 9. Measured (top) and simulated (bottom) particle
size distributions nmeas(L, t) and nsim(L, t)
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Fig. 10. Normalized L2-norm of the validation error
eval(L, t) with identified mill parameters (black) and
using initial guesses (grey)

nearly perfect agreement between plant and simulation at
t ≈ 20h.

4. CONCLUSION AND OUTLOOK

In this contribution a Lyapunov-based online parameter
estimation scheme for identifying mill function parameters
in a fluidized bed layering granulation process was derived
and tested in a simulation environment and with real mea-
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Fig. 11. Particle size distributions n(L,t) measured (red),
simulated with estimated parameters (black, dotted)
and simulated with parameter initial guesses (grey,
dashed)

surement data. In the first case the parameter estimates
converge towards the desired values as the theoretical
derivation predicts. In the case of the measured data the
convergence of the parameters is not as obvious due to
measurement noise and inner process variations. To verify
the quality of the identification, the plant was simulated
using the identified mill function and then compared to
the measurements.

In future contributions the estimation scheme can be used
to identify time varying mill models capturing the non-
steady state dynamics of the process. Furthermore, the
proposed parameter estimation method can be used as a
basis for an adaptive controller design.
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