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Abstract: As many disorders have been correlated with dysfunctional biophysical rhythms,
new therapies based on the control of clock functions are emerging for the slowdown of disease
progression. In this context, a general disrupted biological clock is modeled by the canonical
form of a genetic negative feedback loop. When the unique fixed point of this N -dimensional
non-linear differential system is stable, the model reproduces accurately the damped oscillations
observed in a damaged oscillator. First, a synthetic modification of the network is proved to
generate sustained oscillations and allow to recover a functional clock. The desired periodic
trajectories are obtained by destabilizing the fixed point of the model and monotone properties
are applied for global results. In a limit case, this modification of the loop is shown to
be equivalent to an external piecewise constant control law, supporting the conjecture that
simple qualitative control strategies may be able to guarantee sustained oscillations. From the
perspective of a biological implementation, this result is promising as these types of control are
well adapted to experimental constraints. To support this theoretical work, the methods are
applied to the disrupted circadian clock observed in human cancer cells.
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1. INTRODUCTION

Gene regulatory networks ensure function, development,
and survival of cells in living organisms. Despite their
apparent complexity, a small number of reduced and
recurrent patterns allow to explain their main functions.
Among these building blocks, negative feedback loops are
known to be essential for homeostasis (the capacity of an
organism to keep an internal parameter constant), and the
emergence of sustained oscillations.

Many endogenous biological clocks have been shown to
play essential roles, such as the cell cycle and the circadian
clock. This latter is essential for an organism to anticipate
and adapt its behavior and its physiology to environmen-
tal perturbations. Importantly, it has been observed that
many diseases such as cancers (Kiessling et al., 2017) or
neurodegenerative disorders (Musiek, 2015) are susceptible
to cause a disruption of the circadian clock. Alternatively,
the synthetic generation of circadian rhythms in disrupted
organisms has been proved to be efficient for the slowdown
of disease progression (Kiessling et al., 2017). For these
reasons, the circadian clock is now considered as a promis-
ing tool for therapeutic progress, and especially for cancer
treatments. In this context, finding new strategies for the
control of biological clocks seems of really high interest.
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For this purpose, a large number of biological methods
have been developed in the recent years. Besides intrinsic
modifications of the genome with engineering tools such
as Crispr-Cas9, a lot of external control methods have
been created in order to perturb the natural behavior of a
genetic network. For example, the introduction of inducer
molecules (Lugagne et al., 2017) or the modification of
environmental conditions such as the temperature or the
osmotic pressure (Uhlendorf et al., 2012) may allow to
interfere with the genes and proteins of interest. A more
recent technique, called optogenetics, uses modified genes
sensitive to specific wavelength of light (Milias-Argeitis
et al., 2016) in order to control cells in living tissues. Most
of the time, a prior mathematical study has been used in
these experiments in order to avoid tedious, repetitive, and
onerous biological trials.

Non-linear ordinary differential equations are frequently
used for the modeling of gene regulatory networks. In
particular, negative feedback loops are conveniently de-
scribed by “Monotone dynamical systems” as defined in
Mallet-Paret and Smith (1990) (see also the Goodwin
oscillator in Goodwin et al. (1963)). This class of model
has restrictive dynamics, and a lot of results about stability
and convergence exist, even in high dimension. Regarding
biological control modeling, usual tools and frameworks
from classical control theory may not be well adapted
due to experimental designs and constraints. Indeed, while
classical control strategies require a precise and quantita-
tive knowledge of the system, genetic measurement tools
and techniques, such as fluorescent microscopy, can only
provide qualitative information of the genetic expression.
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In this context, the resulting differential controlled systems
may have discontinuous right-hand sides, and the theory
of Filippov (Filippov, 1988) generalizes the definition of
solutions.

In this paper, two different control strategies are designed
in order to generate sustained oscillations in a disrupted
clock that shows arrhythmic behavior. In section 2, the role
and the disruptions of the circadian clock are summarized
and give a concrete biological motivation for this work.
The canonical form of a biological oscillator is modeled
in section 3.1 by a non-linear differential system that is
also well adapted for the circadian clock (section 3.2). A
synthetic modification of the network is shown to gener-
ate sustained oscillations in section 4. The local results
obtained with the analysis of the corresponding Routh
table and the monotone properties of the controlled system
allow to show the emergence of global periodic orbits.
In section 5, this modified system is proved to converge
towards a switching system with discontinuous right-hand
side, strengthening the conjecture that periodic orbits may
emerge with a simple piecewise constant (PWC) control
strategy. To support this hypothesis, this qualitative con-
trol method is illustrated in section 6 with the disrupted
circadian clock observed in human melanoma cells.

2. A BIOLOGICAL MOTIVATION: THE CIRCADIAN
CLOCK

Circadian rhythms are present in many organisms such as
plants, molds, insects, and mammals. From the macro-
scale (human sleep-wake cycles, body temperature) to
the micro-scale (genes, metabolism), these 24-hour self-
sustained oscillations are observed everywhere and have
been shown to be essential for the anticipation and adap-
tion to environmental changes. In mammals, natural dark-
light cycles generate circadian rhythms in a region of the
brain called Suprachiasmatic nucleus, and these oscilla-
tions are maintained in the whole organism by a group of
genes referred as “clock genes”.

It is well known that several diseases, such as sleep
disorders (Lippert et al., 2014), cancers (Kiessling et al.,
2017) and neurodegenerative diseases (Musiek, 2015), lead
to the disruption of circadian oscillations. Conversely, it
has been shown more recently that an altered rhythmicity
may have several harmful consequences at the metabolic
(Staels, 2006) and central nervous system level (Musiek,
2015). These two observations highlight the promising role
of circadian rhythms in therapeutic research, especially for
cancer treatments. In Kiessling et al. (2017) for example,
the authors have developed a new strategy based on
the circadian clock to inhibit a tumor growth. Their
experiments were based on the observation that clock
genes (such as Cry1 or Per2) show arrhythmic expression
in human B16 melanoma cells, while they normally exhibit
24-hour oscillations in healthy cells. By enhancing these
disrupted genes with different control strategies, such as
heat shocks or Dexamethasone introductions, they have
been able to restore their rhythmicity, which in turn
induced a strong reduction of cancer cells proliferation.

This striking example emphasizes the importance of de-
veloping strategies for the control of disrupted biophysical

Fig. 1. Left: Directed graph of a canonical negative feed-
back loop. Right: Directed graph of the reduced mam-
malian circadian clock model.

clocks. For this purpose, next section presents a canonical
model for biological oscillators.

3. GENETIC NEGATIVE FEEDBACK LOOP MODEL

It is now well established that genetic negative feedback
loops are responsible for biological rhythms and their
structural diversity is captured by a standard mathemati-
cal model.

3.1 The canonical model

Canonical negative feedback loops in genetics can be
modeled by the following non-linear ordinary differential
system (see Lugagne et al. (2017) for example):{

ẋ1(x1, xN ) = κ01 + κ1h−(xN , θN , nN )− γ1x1,
ẋi(xi, xi−1) = κ0i + κih

+(xi−1, θi−1, ni−1)− γixi,
(1)

∀i ∈ {2, ..., N}. Each variable xi ∀i ∈ {1, ..., N} represents
the concentration of a protein produced with a basal rate
κ0i ≥ 0 and degraded with a rate γi > 0. Moreover, ∀i ∈
{2, ..., N} the production of xi is activated by the protein
xi−1, while the production of x1 is repressed by the protein
xN . The sigmoid Hill functions κh+(x, θ, n) = κxn/(θn +
xn) and κh−(x, θ, n) = κ(1 − h+(x, θ, n)) respectively
model these two types of interactions with steepness n ≥ 2,
threshold θ > 0, and strength κ > 0. As biologically
required, system (1) is positively invariant.

The structure of these networks is conveniently summa-
rized in a directed graph (see Fig. 1). Importantly, sys-
tem (1) is considered as the canonical form of negative
feedback loops as any loop composed of an odd number of
inhibition is fully equivalent to it through a simple change
of variable (Mallet-Paret and Smith, 1990). It follows that
all the results presented in this paper perfectly apply to
this more general class of systems.

It is well known that these negative feedback loops are
part of “Monotone dynamical systems” as defined in
Mallet-Paret and Smith (1990) for which solutions are
restricted to either fixed points or periodic orbits. More
precisely, it is possible to show that system (1) has a
unique fixed point called x̄, and it is numerically observed
that either x̄ is globally asymptotically stable, or the
trajectories converge towards a unique periodic orbit.
However, this result has not been shown analytically up
to now without restricted hypothesis (see Poignard et al.
(2018) for example). From a biological point of view,
these dynamics are consistent with the two behaviors
that emerge from negative feedback loops in cells, namely
homeostasis and sustained oscillations.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16961



10040 60 8030 50 70 90

1

0.4

0.6

0.8

1.2

1.4

Fig. 2. Calibration of model (2): the black star-plain
line is the Per2 arrhythmic data points provided by
Kiessling et al. (2017). The blue curve is a simulation
of model (2) with κ0i = 0.18, κi = 5, θi = 0.38, ni = 4,
and γi = 0.36 ∀i ∈ {1, 2, 3}. The initial condition at
t0 = 24.4 is x0 = (0.81, 1.12, 1.015).

In the context of a disrupted clock as explained in the
introduction, x̄ is considered stable in the rest of the paper
such that system (1) generates undesired homeostasis. In
sections 4 and 5, two biologically adapted control laws are
designed in order to recover a functional biological clock
that shows sustained oscillations. These strategies will be
illustrated with the circadian clock, for which a reduced
model is presented below.

3.2 A reduced circadian clock model

In order to explain and reproduce the oscillatory behavior
of circadian clock genes introduced in section 2, quite a few
models have been developed. However, the huge number
of elements and interactions involved in the network make
their mathematical analyses difficult. For this reason, an
effort has been made to find reduced models composed of a
minimal number of genes and interactions that accurately
reproduce the 24-hour oscillations observed biologically.
In Pett et al. (2016), a simple negative feedback loop
composed of the three clock proteins Cry1, Per2, and
Rev-erb-α, is shown to be essential for the emergence of
periodic orbits (see Fig. 1). With three inhibitions, this
network is equivalent to the canonical structure presented
in the previous section and can then be modeled by a
generalization of system (1):

ẋi = κ0i + κih
−(xi−1, θi−1, ni−1)− γixi, (2)

∀i ∈ {1, 2, 3} where x0 = x3 and x1 = Cry1, x2 = Per2,
x3 = Rev-erb-α.

The parameters of model (2) are calibrated to the Per2 ar-
rhythmic data points measured in B16 melanoma cells dur-
ing the experiments conducted in Kiessling et al. (2017).
For the sake of simplicity, the model is considered symmet-
ric: the parameters κ0i, κi, θi, ni, and γi are supposed to be
equal for any i ∈ {1, 2, 3}. The regression is performed by
a standard least square routine and the result is shown is
Fig. 2: as observed biologically, the oscillations of protein

Per2 are damped and converge towards a steady state.
This calibration confirms that model (2) is able to capture
the dynamics of a disrupted circadian clock.

In section 6, the analytical results will be illustrated with
this calibrated model.

4. A SYNTHETIC MODIFICATION OF THE LOOP

In order to obtain sustained oscillations, the desired con-
trol law must at least destabilize the fixed point x̄. The
first selected control leads to the following system:{

ẋ1(x1, xN ) = κ01 + u(x)κ1h−(xN , θN , nN )− γ1x1,
ẋi(xi, xi−1) = κ0i + κih

+(xi−1, θi−1, ni−1)− γixi,
(3)

∀i ∈ {2, ..., N}, where

u(x) = umin + (umax − umin)h−(xN , ω,m), (4)

and

ω =

(
1− umin

umax − 1

)1/m

x̄N , umin < 1, umax > 1. (5)

For convenience, system (3) will also be noted ẋ =
F (u(x), x). For purposes of biological application and in
order to facilitate the biological setups, the control law is
kept as simple as possible: it only acts on the production of
the first protein x1 and only depends on the concentration
of xN . Moreover, u(x) stays positive and bounded as
biologically required. Finally, this control may be inter-
preted as a synthetic modification of the network. Indeed,
the genetic regulation resulting from the multiplication
of u(x) = umin + (umax − umin)h−(xN , ω,m) with the
original decreasing interaction function κ1h−(xN , θN , nN )
may be produced by multiple and close identical binding
sites specific to the transcription factor xN (Ezer et al.,
2014).

For the emergence of oscillations, the steady states of this
new synthetic system are identified and analyzed.

Proposition 1. The fixed point x̄ of system (1) is also the
unique fixed point of system (3) under control law (4).

Indeed, it is easy to see that u(x̄) = 1. Moreover, the
monotonic properties of the nullclines allow to prove the
uniqueness of the fixed point.

Remark 2. System (3) under control (4) is bounded: x1 ∈
]κ01/γ1, (κ01 +umaxκ1)/γ1] and xi ∈ [κ0i/γi, (κ0i +κi)/γi[
∀i ∈ {2, ..., N}.

The local stability of x̄ is investigated with the Jacobian
matrix:

Definition 3. The Jacobian matrix of system (1) evaluated
on x̄ is:

J(x̄) =



−γ1 0 · · · · · · · · · 0 J1
J2 −γ2 0 · · · · · · · · · 0
0 J3 −γ3 0 · · · · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · · · · 0 JN −γN


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where J1 = κ1h−
′
(x̄N , θN , nN ) < 0 and ∀i ∈ {2, ..., N}

Ji = κih
+′(x̄i−1, θi−1, ni−1) > 0. For system (3) under

control (4), the Jacobian matrix Ju(x̄) evaluated on x̄ is
the same as J(x̄) where J1 is replaced by J1 + J1u with
J1u = κ1u′(x̄)h−(x̄N , θN , nN ) < 0.

Proposition 4. The characteristic polynomial associated
to J(x̄) is:

P (X) =

N∏
i=1

(X + γi)−
N∏
i=1

Ji,

while the one associated to Ju(x̄) is:

Pu(X) = P (X)− J1u
N∏
i=2

Ji, where J1u

N∏
i=2

Ji < 0.

When the control parameters umin, umax, and m are fixed,
the polynomial Pu(X) is shifted up with respect to P (X).
This observation will greatly simplify the determination
of the roots of Pu(X): indeed, the addition of the positive

term −J1u
∏N

i=2 Ji to P (X) provokes the propagation of
a perturbation in its Routh table, which is investigated in
what follows.

From the hypothesis of disrupted biological clock, the
fixed point x̄ of the uncontrolled system (1) is supposed
to be stable as explained in the previous section. As a
consequence, P (X) has only roots with negative real part.
Moreover, all the coefficients of P (X) are positive, leading
to the following proposition:

Proposition 5. All the terms in the first column of the
Routh table of P (X) are strictly positive.

From this proposition, a first Lemma can be stated:

Lemma 6. There exists Ã > 0 such that ∀A > Ã, there is
at least one sign change in the first column in the Routh
table of the polynomial R(X) = P (X) +A.

This first lemma easily induces a second lemma:

Lemma 7. There exists m̃ > 0 such that ∀m > m̃, the
Jacobian Ju(x̄) of system (3) under control (4) has at least
two complex conjugate eigenvalues with positive real part.

Importantly, this synthetically modified network is part
of monotone dynamical systems as defined in Mallet-
Paret and Smith (1990), for which strong global dynamical
results can be inferred from these two lemmas.

Lemma 8. System (3) under control (4) is an analytic
monotone negative cyclic feedback system as defined in
Mallet-Paret and Smith (1990).

Proof. With the notations of Mallet-Paret and Smith
(1990), system (3) under control (4) can be rewritten:

ẋi = f i(xi, xi−1), i ∈ {1, ..., N} (6)

where x0 = xN . It is easy to check that:

δi
∂f i(xi, xi−1)

∂xi−1
≥ 0 i ∈ {1, ..., N} ,

with δ1 = −1, δi = +1 otherwise, and the product
∆ = δ1δ2...δN verifies ∆ = −1. Moreover, the functions f i

are only composed of polynomials and rational functions
that do not vanish on R+. It follows that system (3)
under control (4) is an analytic monotone negative cyclic
feedback system.

Finally, these three Lemmas allow the statement of the
main result of this section:

Theorem 9. There exists m̃ > 0 such that ∀m > m̃, sys-
tem (3) under control (4) has one orbitally asymptotically
stable non trivial periodic orbit.

Proof. This proof is based on “Theorem 4.3” found in
Mallet-Paret and Smith (1990) that can be applied to
system (3) under control (4). First, from Lemma 8, this
system is an analytic monotone cyclic feedback system
with ∆ = −1 in RN

+.
Moreover, from Remark 2, this modified system has a com-
pact attractor: B = {x1 ∈]κ01/γ1, (κ01 + umaxκ1)/γ1]} ∪
{xi ∈ [κ0i/γi, (κ0i + κi)/γi[ ∀i ∈ {2, ..., N}} ⊂ RN

+. From
Proposition 1, A contains a single equilibrium x̄ and
−det(−Ju(x̄)) = −Pu(0) < 0 from Proposition 4. Finally,
from Lemma 7, there exists m̃ > 0 such that ∀m > m̃, the
Jacobian Ju(x̄) of system (3) under control (4) has at least
two complex conjugate eigenvalues with positive real part.
Hence, from Theorem 4.3 introduced in Mallet-Paret and
Smith (1990), Theorem 9 is proved.

This theorem is convenient as it mainly needs local re-
sults on the eigenvalues to deduce global dynamics. The
local existence of periodic orbits could have been inferred
easily through the emergence of a Hopf bifurcation, but
the monotone properties of the modified system greatly
improve this result and justify the global emergence of pe-
riodic orbits. However, Theorem 9 does not state whether
the limit cycle is unique or not. This may be proved with
the results presented in Poignard et al. (2018) by replacing
Hill functions in system (3) with appropriate saturated
functions, and assuming restrictions on the parameters,
such as γi = γ ∀i ∈ {1, ..., N}.
From a biological point of view, this result suggests that
an appropriate synthetic modification of the first gene
promoter may be a good strategy in order to induce
oscillations in a disrupted biological clock. However, due to
the tight constraints on the control parameters such as ω,
this strategy may be difficult to implement in practice.
For this purpose, an extension and a generalization of
this result, more adapted for a biological application, is
presented in next section.

5. A PWC CONTROL STRATEGY

In order to comply with experimental measurements and
inputs constraints, the switching properties of Hill func-
tions are exploited:

Proposition 10. For m → +∞, control law (4) tends to
the following PWC control strategy:{

u(x) = umax ∀xN < x̄N ,

u(x) = umin ∀xN > x̄N .
(7)

System (3) under control law (7) is part of differential
systems with discontinuous right-hand side for which so-
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Fig. 3. For all plots, the parameters are the same as in Fig. 2 and the initial condition is x0 = (0.9, 0.91, 0.89).
Without control (depicted by plain lines), the three clock genes x1 = Cry1 (in green), x2 = Per2 (in blue), and
x3 = Rev-erb-α (in red) of system (2) show a constant non-cycling expression as expected in the context of a
disrupted clock: the system globally converges towards its unique fixed point x̄ = (0.91, 0.91, 0.91). With control,
the trajectories are depicted by dashed lines. Four left plots: simulation of system (2) under control (4) with
m = 20, umax = 2 and umin = 0.5. Four right plots: simulation of system (2) under control (7) with umax = 2 and
umin = 0.5. As expected from Conjecture 11, the three clock genes start to oscillate around their steady state.

lutions are defined in the sense of Filippov as the solutions
of the following differential inclusion (Filippov, 1988):

ẋ ∈ H(x)

such that H(x) = F (umax, x) when xN < x̄N , H(x) =
F (umin, x) when xN > x̄N , and on the switching domain
xN = x̄N , H(x) = c̄o{F (umin, x), F (umax, x)}, where c̄o
is the closed convex hull of the set of vector field. The
properties of these types of systems are different from
classical smooth dynamical systems and must be analyzed
carefully with adapted tools and theory.

Theorem 9 proves that the trajectories of system (3) under
control (4) oscillate even when the control parameter m
is arbitrarily large. Hence, with m → +∞, it sounds
reasonable to infer that control (7) induces oscillations as
well, leading to the following conjecture:

Conjecture 11. With umax > 1 and umin < 1, the trajec-
tories of system (3) under control law (7) converge towards
a periodic orbit.

From a biological point of view, this PWC control strategy
seems promising and adapted to different biological con-
straints. Indeed, the measurements of xN are considered
to be of qualitative nature in accordance with partial in-
formation provided by biological devices: xN can either be
detected weakly expressed (xN ≤ x̄N ) or highly expressed
(xN ≥ x̄N ). Moreover, the two inputs umin and umax are
relevant with the nature of the synthetic control means
available in biology that often lead to constant inputs.

6. APPLICATION TO THE CIRCADIAN CLOCK

This PWC strategy is illustrated with the calibrated
circadian clock model presented in section 3.2. When
m is large enough, the trajectories of system (2) under
control (4) (four left plots of Fig. 3) are numerically very

similar to the ones emerging under control (7) (four right
plots of Fig. 3), corresponding to the following simple
control method: if the gene Rev-erb-α is detected highly
expressed (resp. weakly expressed), its inhibition on Cry1
must be decreased (resp. increased).

The influence of umin and umax on the characteristics of
the oscillations, namely the amplitude and the period, is
an interesting open problem. Intuitively, as the parameter
umax increases (resp. umin decreases), the x1-nullcline is
shifted up (resp. down): this may induce an increase in the
maximum value (resp. a decrease in the minimum value)
of the x1-oscillations, and an increase of the period. This
prediction is illustrated in Fig. 4. It is interesting to note
that couples of umin and umax can be determined in order
to generate 24-hour oscillations, as desired for circadian
rhythms.

7. CONCLUSION

In the context of a disrupted biological clock, a synthetic
modification of a negative feedback loop has been formu-
lated for the emergence of sustained oscillations. From the
local instability of the fixed point, the existence of global
limit cycles has been inferred with monotone properties.
In a limit case, this synthetic strategy has been shown to
be equivalent to a PWC control strategy, resulting in a
differential system with discontinuous right-hand side. It
has been conjectured that this qualitative method, nicely
adapted to biological constraints, is indeed able to generate
sustained oscillations in the N -dimensional disrupted neg-
ative feedback loop. This method has been numerically il-
lustrated with data providing from melanoma mammalian
cells that exhibit arrhythmic clock genes expression.

The control strategies presented in this paper were de-
signed in order to stabilize specifically the unstable fixed
point of the differential system, inducing tight constraints
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Fig. 4. Influence of the control parameters umin and umax on the amplitude and the period of the oscillations in model (2)
with control (7). The parameters are the same as in Fig. 2. Left plot: an increase of umax (resp. umin) increases
(resp. decreases) the amplitude of the x1-oscillations. Right plot: an increase of umax (resp. umin) increases (resp.
decreases) the period of the oscillations. The influence of umin seems really limited compared to umax probably
due to the fact that umax can be chosen in an unbounded range while umin ∈ [0, 1[. Couples of umin and umax can
be obtained such that the period of the oscillations reaches 24 hours (depicted by the dark line).

on the control parameters. It is important to note that
these constraints may be relaxed by considering the stabi-
lization of other points, which may not be necessarily the
fixed point.

Another extension of this work may be to rigorously show
that Theorem 9, proved for the synthetically modified
system, applies to the differential system with discontin-
uous right-hand side. Moreover, it may be interesting to
demonstrate that the periodic orbit is unique, and to find
an explicit relation between the control parameters and
the properties of the orbit, namely its amplitude and its
period. Due to the key roles of biological clocks in therapy,
it may be really useful to find a simple control strat-
egy capable of independently tuning these two oscillatory
properties.

Finally, this study may also apply to different types of
biological clocks, such as the cell cycle for example. Just
as the circadian clock, this oscillator has been shown to
be highly perturbed in the case of various diseases (for
example in many cancers) and conversely, its disruption
often induces severe damages: its control may be really
promising from a therapeutic perspective.
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