
Efficient Iterative Solvers in the Least

Squares Method

Alexander Stotsky ∗

∗ Department of Computer Science and Engineering
Chalmers University and University of Gothenburg, SE-412 96

Gothenburg, Sweden
(e-mail: alexander.stotsky@chalmers.se)

Abstract Fast convergent, accurate, computationally efficient, parallelizable, and robust matrix
inversion and parameter estimation algorithms are required in many time-critical and accuracy-
critical applications such as system identification, signal and image processing, network and big
data analysis, machine learning and in many others.
This paper introduces new composite power series expansion with optionally chosen rates (which
can be calculated simultaneously on parallel units with different computational capacities) for
further convergence rate improvement of high order Newton-Schulz iteration. New expansion
was integrated into the Richardson iteration and resulted in significant convergence rate
improvement. The improvement is quantified via explicit transient models for estimation errors
and by simulations. In addition, the recursive and computationally efficient version of the
combination of Richardson iteration and Newton-Schulz iteration with composite expansion
is developed for simultaneous calculations.
Moreover, unified factorization is developed in this paper in the form of tool-kit for power series
expansion, which results in a new family of computationally efficient Newton-Schulz algorithms.

Keywords: Least Squares Estimation,Power Series Factorization Tool-Kit,Computationally
Efficient High Order Newton-Schulz Algorithm,Simultaneous Calculations,Convergence
Acceleration of Richardson Iteration

1. INTRODUCTION

Least squares method is widely used in control, system
identification, signal processing, statistics as well as in
many computational applications such as emerging big
data applications, machine learning and in many other
areas. For accurate solution many least squares problems
can be associated with calculation of the parameter vector
θ∗, which satisfies the algebraic equation, Ljung (1999):

Aθ∗ = b (1)

where b is the vector, and A is SPD (Symmetric and
Positive Definite) matrix. For example, the matrix A is
SPD for the systems with harmonic regressor, Fomin et al.
(1981), Bayard (2000), Stotsky (2010) and multiplication
of any invertible matrix A by its transpose transforms the
system to the SPD case with the Gram matrix, Björck
(1996). The numerical stability problems associated with
ill-conditioning of the Gram matrix can be solved using
different types of preconditioning techniques, see for ex-
ample, Chen (2005) and Stotsky (2015),(2017) (see also
Section 7 for simulations of the ill-conditioned matrices).
Iterative methods for solving (1) are often preferable (es-
pecially for large-scale systems) due to simplicity, better
accuracy and robustness, less processor time and memory
space compared to direct methods. The most general and
well-known method for iterative calculation of the matrix
inverse is high order Newton-Schulz algorithm, described
by Isaacson et al. (1966), Petryshyn (1967), Stickel (1987),
Pan et al. (2016) and by many others. The second order

version of Newton-Schulz iteration, see for example Schulz
(1933), Demidovich et al. (1962) and Söderström et al.
(1974) is the most known.
High order Newton-Schulz algorithms are well-discussed in
the literature. However, the questions associated with the
relation between high order Newton-Schulz algorithms and
power series expansions were not properly studied. The
paper by Janiszowski (2003), which was the first paper
with the description of the relation between second order
Newton-Schulz algorithm and power series expansion does
not provide the complete solution.
Reduction of the computational complexity of high order
Newton-Schulz algorithm is one of the most important
challenges in this area. The computational complexity can
be reduced via factorizations of the power series, see for
example Stickel (1987), Soleimani et al. (2015), Pan et al.
(2016), Buranay et al. (2019) and many others. Practical
applications of these factorizations (excepting Horner’s
rule) are hampered by the lack of unified description.
Computational resources with high degree of parallelism
(instead of single computing units) will be available in
the future for implementation of numerical methods. The
computational performance of iterative solvers can also be
improved via parallel computing (especially for large scale
systems), achieved for example via multiprocessor systems,
Saad (2003), Peng et al. (2013). In order to improve the
performance a serial algorithm is usually converted to
parallel algorithm. This paper proposes a new approach
for convergence rate improvement where novel iterative

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 901

algorithms are designed with high degree of parallelism
(or enhanced parallelism). In other words, the iterative
algorithm is designed as a number of independent com-
putational parts (the number of parts is associated with
the degree of parallelism) which can be executed simul-
taneously. The challenges associated with computational
efficiency are addressed already on the design level in this
case, providing new opportunities for high performance
parallel processing.
This paper introduces new composite power series ex-
pansion with optionally chosen rates and high degree of
parallelism for further convergence rate improvement in
the unified framework described by Stotsky (2019). New
expansion applied to Richardson iteration resulted in sig-
nificant improvement of the convergence rate. Simulation
results are presented for quantification of the improve-
ments of new algorithms compared to recent algorithms
described by Stotsky (2019). Moreover, explicit transient
models are derived for all new algorithms described in
this paper. In addition, the recursive and computationally
efficient version of the combination of Richardson iteration
and Newton-Schulz iteration with composite expansion is
developed for simultaneous calculations.
Finally, factorization tool-kit is developed in this paper
for general power series expansion, which allows nested
applications and results in a family of new computationally
efficient algorithms.
This paper is organized as follows. The paper starts with
redesign of Newton-Schulz iteration in the form of the
power series expansion in Section 3. Unified power series
factorization in the form of tool-kit for reduction of com-
putational complexity is presented in Section 4. New high
order Newton-Schulz algorithms with composite polyno-
mial is presented in Section 5. Richardson iteration with
high order convergence accelerator is described in Section 6
and compared to existing algorithms by simulation in Sec-
tion 7. The paper ends with brief conclusions in Section 8.

2. SPLITTING & PRECONDITIONING

Numerical solution of the system of linear equations (1)
using power series expansions requires splitting and pre-
conditioning. Any positive definite and symmetric matrix
A, whose inverse should be calculated can be split as
follows, see for example Chen (2005) and references therein

A = S −D (2)

I − S−1A = S−1D (3)

ρ(I − S−1A) = ρ(S−1D) < 1 (4)

where the spectral radius ρ(·) defined in (4) is less than
one for symmetric and positive definite matrices A and S
(where S−1 is the preconditioner), provided that 2S − A
is a positive definite matrix, Hackbusch (1994).
For example, the matrix S can be chosen as a diagonal
matrix, which contains the diagonal elements of SDD
(Strictly Diagonally Dominant) and positive definite ma-
trix A, Horn et al. (1985) and Stotsky (2010).
For positive definite (not SDD) matrix A the simplest
preconditioner can be chosen as S−1 = I/α with α =
‖A‖∞/2+ε, where ‖·‖∞ is the maximum row sum matrix
norm, and ε > 0, Stotsky (2015).
Notice that the spectral radius (4) is very close to one

for ill-conditioned matrix A, which implies the stability
problem. The problem can be solved via application of the
stepwise splitting method, Stotsky (2017).

3. NEWTON-SCHULZ ITERATION AS FAST POWER
SERIES EXPANSION

The results presented in this Section introduce compu-
tationally efficient factorization of the initial power se-
ries and show several steps (step by step) of fast matrix
power series expansion which coincide with Newton-Schulz
iteration. The relation between Newton-Schulz approach
and power series expansion opens new opportunities for
reduction of the computational complexity of Newton-
Schulz algorithms.
The following initial power series factorization :

G0 =

w−1∑
j=0

(S−1D)(p+1)j {
p∑

d=0

(S−1D)d}S−1 (5)

=

h−1∑
j=0

(S−1D)jS−1 = (I − (S−1D)h)A−1 (6)

F0 = I −G0A = (S−1D)h (7)

where (7) defines initial inversion error, and p = 0, 1, 2, ...,
w = 1, 2, 3, ..., and h = w(p + 1) = 1, 2, 3..., gives the
starting point for the following steps of Newton-Schulz
iteration. Step 1:

G1 = {
n−1∑
j=0

F j
0 } G0 = {

n−1∑
j=0

(S−1D)hj} G0

[I + (S−1D)h + (S−1D)2h + ...+ (S−1D)(n−1)h]

[I + (S−1D) + (S−1D)2 + ...+ (S−1D)h−1]S−1

= [I + (S−1D) + ...+ (S−1D)(hn−1)]S−1 (8)

F1 = I −G1A = (S−1D)hn (9)

where G1 in (9) is calculated via (8). Step 2:

G2 = {
n−1∑
j=0

F j
1 } G1 = {

n−1∑
j=0

(S−1D)hnj} G1

F2 = I −G2A = (S−1D)hn
2

(10)

Further evaluation in Step k gives classical high order
Newton-Schulz algorithm (11) and error model (12) :

Gk = {
n−1∑
j=0

F j
k−1} Gk−1 (11)

Fk = I −GkA = Fnk

0 = (S−1D)hn
k

(12)

where Gk is the estimate of A−1, n = 2, 3, ... and k =
1, 2, 3, ...
Notice that the factorization similar to (5) can be applied
to the power series (11) for improvement of computational
efficiency. To this end the unified factorization method is
developed in the next Section.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

902

4. FACTORIZATION TOOL-KIT: A UNIFIED
APPROACH

The following unified framework is presented for factoriza-
tion of the Newton-Schulz iteration :

Z = {
n−1∑
j=0

Y j} X (13)

Y = I −XA (14)

Z = {
w−1∑
j=0

Y (p+1)j} {
p∑

d=0

Y d} X (15)

Y p+1 = I − {
p∑

d=0

Y d} X A (16)

h=w (p+ 1), p = 0, 1, 2, ..., w = 1, 2, 3, ... (17)

Z1 = (I + Y {
w−1∑
j=0

Y (p+1)j} {
p∑

d=0

Y d}) X (18)

h1 = h+ 1 (19)

where the equations (13),(14) represent the Newton-Schulz
iteration of the order n, and the equations (15), (18)
represent factorizations Z and Z1 of orders h and h1
respectively.
The technique is illustrated on the example (described by
Buranay et al., 2019) of the step-wise factorization of the
algorithm of order 45 that requires 10 mmm (matrix-by-
matrix multiplications) only:

Z = (I + Y 9 + ...+ Y 36) [I + Y + ...+ Y 8] X (20)

= (I + Y 9 + ...+ (Y 9)4) [I + Y 3 + Y 6] [I + Y + Y 2] X
(21)

= {I + (I + (Y 9)2) (Y 9 + (Y 9)2)} [I + Y 3 + Y 6]

[3I + (XA) (−3I +XA)] X (22)

Y 3 = I − [

2∑
d=0

Y d] X A, Y 9 = I − [

8∑
d=0

Y d] X A

The factorization (15) is valid for the orders, which are
presented as the composite numbers 1 , h = 2, 4, 6, ...
(excepting h = 2). For the orders which represent the
prime numbers 2 , h1 = 3, 5, 7, ... the factorization (18)
is valid. Factorizations, based on the unified framework
described above for the orders n = 2, ..., 19 are presented
in Table 1.
Notice that the factorization (18) is simple application of
the idea known as Schröder–Traub sequence (Traub, 1964)
to the polynomial factorized in (15). The factorization (18)
increases the order of (15) by one, see (17) and (19).
Notice that the factorizations which require computational
efforts and additional memory may result in error accumu-
lation in finite-digit calculations. The factorizations in high
order Newton-Schulz iterations can be seen as the addi-
tional sub-steps (nested calculations for order reduction).
The idea of order reduction is also associated with the
Newton-Schulz iteration. Therefore Newton-Schulz algo-
rithms of low orders (h = 2, 3) being iterated for a number

1 A composite number is a positive integer that has at least one
divisor other than one and itself
2 A prime number is a positive integer that has exactly two distinct
divisors, namely one and the number itself

Order Unified Factorization Reference

h = 2 Z = (I + Y) X Schulz
p = 1, w = 1 (1933)

h1 = 3 Z1 = (I + Y (I + Y)) X Pan
p = 1, w = 1 et al. (2016)

h = 4 Z = (I + Y 2)(I + Y) X Esmaeilic
p = 1, w = 2 et al. (2017)

h1 = 5 Z1 = (I + Y (I + Y 2)(I + Y)) X Soleimani
p = 1, w = 2 et al. (2015)

h = 6 Z = (I + Y 3)(I + Y + Y 2) X
p = 2, w = 2

h1 = 7 Z1 = (I + (Y +Y 4)(I +Y +Y 2)) X Soleimani
p = 2, w = 2 (2015)

h = 8 Z = (I + Y 4)(I + Y 2)(I + Y)X
p = 3, w = 2

h = 9 Z = (I + Y 3 + Y 6)(I + Y + Y 2) X
p = 2, w = 3

h = 10 Z = (I+Y 5)(I+(Y +Y 2)(I+Y 2))X Soleimani
p = 4, w = 2 et al. (2015)

h1 = 11 Z1 = (I+Y (I+ (Y 2 +Y 4)(I+Y 4)) Stanimirovic
(I + Y)) X et al. (2019)
p = 1, w = 5

h = 12 Z = (I + Y 4 + Y 8) Soleimani

(I + Y + Y 2 + Y 3) X et al. (2015)
p = 3, w = 3

h1 = 13 Z1 = (I + Y (I + Y 4 + Y 8) Soleimani

(I + Y + Y 2 + Y 3)) X et al. (2015)
p = 3, w = 3

h = 14 Z = (I + Y 7) Soleimani

(I+Y +Y 2 +Y 3 +Y 4 +Y 5 +Y 6) X et al. (2015)
p = 6, w = 2

h = 15 Z = (I + (I + (Y 3)2) ((Y 3)2 + Y 3)) Soleimani

(I + Y + Y 2) X et al. (2015)
p = 2, w = 5

h = 16 Z = (I + Y 4 + Y 8 + Y 12) Soleimani

(I + Y + Y 2 + Y 3) X et al. (2015)
p = 3, w = 4

h1 = 17 Z1 = (I + (Y + Y 2 + Y 3 + Y 4) Soleimani

(I + Y 4 + Y 8 + Y 12)) X et al. (2015)
p = 3, w = 4

h = 18 Z = (I + Y 6 + Y 12) Soleimani

(I + Y + Y 2 + Y 3 + Y 4 + Y 5) X et al. (2015)
p = 5, w = 3

h1 = 19 Z1 = (I + (Y + Y 2)(I + Y 2 + Y 4) Soleimani

(I + Y 6 + Y 12)) X et al. (2015)
p = 5, w = 3

Table 1. Factorization of the algorithms of
orders n = 2, ..., 19

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

903

of steps can be applied instead of factorized Newton-Schulz
iterations of higher orders for the sake of robustness and
efficiency. Indeed, two and three steps of the second order
Newton-Schulz iteration are equivalent to one step of the
fourth and eighth order iterations with 4 and 6 mmm
respectively, see Table 1, h = 4 and h = 8. Robustness,
efficiency and accuracy arguments motivate application
of the second order and the third order Newton-Schulz
iterations instead of higher orders in some cases. However,
application of the eleventh order algorithm, see Table 1
requires also 6 mmm and provides faster convergence than
three steps of the second order Newton-Schulz iteration.
Therefore the proper choice of the order and factorization
that is made for each particular application should repre-
sent the trade-off between the robustness and convergence
rate.

5. NOVEL NEWTON-SCHULZ ALGORITHM

The following new composite power series expansion for
Newton-Schulz iteration with different expansion rates
for convergence rate improvement extends the framework
described by Stotsky (2019) as follows :

Gk = Tc︸︷︷︸
Composite
Polynomial

+ Γc︸︷︷︸
Composite
Residual

{
n−1∑
j=0

F j
k−1} Gk−1︸ ︷︷ ︸

Newton-Schulz
Iteration

(23)

Tc =

w∑
i=1

{
i−1∏
p=0

Γp}Ti = T1 + Γ1T2 + ...+

w−1∏
p=1

ΓpTw(24)

Γc =

w∏
p=1

Γp (25)

where Tc is the composite power series expansion and
the composite residual is defined as the product of the
residual terms Γc = Γ1Γ2Γ3...Γw with the spectral radius
ρ(Γi) < 1, and Γ0 = I. Power series expansions Ti satisfy
the following relations:

TiA= I − Γi , i = 1, ..., w (26)

TcA= I − Γc (27)

Multiplication of both sides of equation (23) by A together
with the relation (27) results in following error model:

Fk = ΓcF
n
k−1 (28)

where the spectral radius ρ(Γc) ≤ ρ(Γ1)...ρ(Γw) < 1
according to Gelfand’s formula provided that the matrices
Γi commute.
The power series expansions Ti (which can be calculated
simultaneously on parallel computational units) can be
taken as follows:

Ti = {
xi−1∑
j=0

(S−1D)j}S−1 = (I − Γi)A
−1 (29)

Γi = (S−1D)xi (30)

The rate of expansion xi can be chosen using computa-
tional capacity of each parallel computational unit (fast
power series expansion should be implemented on more
powerful computational unit). For example xi can be taken

as a polynomial which is a function of step number k or as
rapidly expanding power series associated with high order
Newton-Schulz iteration with xi = mk, m = 2, 3, ..., see
for example Stotsky (2019) for this and other choices.

5.1 Newton-Schulz Algorithm with High Order Residual

Fast and computationally efficient algorithms can be de-
signed for a number of the same rapid expansions Ti (high
order Newton-Schulz iterations) with the expansion rate
associated with the order n in (23).
The algorithm (23) with T1 = T2 = ... = Tk, where Tk
and Γk are defined in (29),(30) with w = n and xi = hnk,
h, n = 1, 2, ... has the following form :

Γk = I − Lk−1A (31)

Lk = {
n−1∑
j=0

Γj
k} Lk−1 (32)

Γn
k = I − LkA (33)

Gk = Lk︸︷︷︸
Newton-Schulz
Iteration

+ Γn
k︸︷︷︸

High Order
Convergence
Accelerator

{
n−1∑
j=0

F j
k−1} Gk−1︸ ︷︷ ︸

Newton-Schulz
Iteration

(34)

Fk = I −GkA = Γn
k F

n
k−1 (35)

Fk = (S−1D)h (k nk+1 + nk) (36)

where L0 = {
n−1∑
j=0

Γj
0} T0, Γ0 = I − T0A, and T0 = G0

(G0 is calculated via (5)) are precalculated. The algorithm
(31) - (36) has two Newton-Schulz loops (which can be
calculated simultaneously) of the same order n associated

with inversion errors (31) and (35). The sums
∑n−1

j=0 Γj
k

and
∑n−1

j=0 F
j
k−1 can be calculated recursively.

Remark 1. Comparison of the error model (36) with the
error model (12) of classical high order Newton-Schulz
algorithm shows that the algorithm (31) - (35) has sig-
nificantly higher convergence rate due to the term k nk+1.
Remark 2. The algorithm similar to (31) - (36) was pro-
posed by Srivastava et al. (2014). The algorithm written
in the following form:

Zk =

p−1∑
j=0

(I − Zk−1A)j Zk−1 (37)

Gk =Gk−1 + (I −Gk−1A) Zk (38)

has also two Newton-Schulz loops, where both Zk and Gk

are the estimates of the matrix inverse and p = 2, 3, ...
is the order. Algorithm (37), (38) has the following error
model :

Lk =Lp
k−1, Lk = I − ZkA (39)

Fk = Fk−1L
p
k−1, Fk = I −GkA (40)

where Lk and Fk are the estimation errors. The algorithm
(31) - (36) has faster convergence due to the high order
error Fn

k−1 in the error model (35) compared to algorithm
(37), (38) which has the error model (40) with the first
order error Fk−1.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

904

6. MODIFICATION OF THE RICHARDSON
ITERATION

The parameter vector in (1) can be estimated using com-
bination of the fast matrix inversion algorithm described
above and Richardson iteration as follows:

θk = θk−1 − [Lk + Γn
k {

q−1∑
j=0

F j
k} Gk]︸ ︷︷ ︸

Fast Matrix Inversion
Algorithm

{Aθk−1 − b}︸ ︷︷ ︸
Parameter
Estimation Error

(41)

where θk is the estimate of θ∗ and Γk, Lk, Fk and Gk

are calculated in (31) - (35) and q = 1, 2, ... is the
order of Neumann series. The following model is valid for
estimation error θ̃k = θk − θ∗ :

θ̃k = Γn
k F

q
k θ̃k−1 (42)

θ̃k = (S−1D)h {(k n
k+1 + nk) q + nk+1} θ̃k−1 (43)

The error model has especially simple form for the case
where q = n:

θ̃k = Γn
k F

n
k θ̃k−1 (44)

θ̃k = (S−1D)h (k nk+2 + 2 nk+1) θ̃k−1 (45)

θ̃k = (S−1D)γk θ̃0 (46)

γk = h n2 (k nk+2 − (k − 1) nk+1 − 2 nk − n+ 2)

(n− 1)2
(47)

where n > 1, h = 1, 2, ..., θ̃0 = θ0 − θ∗ and θ0 = L0b.
For development of the computationally efficient version
the algorithm (41) is presented in the following form:

θk = θk−1 − ωk (Aθk−1 − b) (48)

ωk =Lk + Γn
k {

n−1∑
j=0

F j
k} Gk (49)

Recursive algorithm for calculation of ωk described below
is divided in two independent computational parts for
simultaneous calculations. Calculations of both parts start
with calculation of the

∑n−1
j=0 Γj

k, where Γk = Γn
k−1.

1) The first part is associated with the calculation of Gk

in (34) via ωk−1 as follows:

Gk = [

n−1∑
j=0

Γj
k] [ωk−1 −

n−1∑
j=0

F j
k−1 Gk−1] +

n−1∑
j=0

F j
k−1 Gk−1

(50)
which requires one matrix multiplication only and further
calculation of

∑n−1
j=0 F

j
k Gk with Gk defined in (50) which

in turn can be further divided in independent parts.
2) The second part is associated with calculations of Lk

and Γn
k in (32) and (33) respectively using

∑n−1
j=0 Γj

k.

The results of both parts are merged in (49) to be included
in the Richardson iteration (48). The matrix-by-vector
product Aθk−1 in (48) can be easily calculated in parallel
via methods described for example by Saad (2003) .

7. COMPARISONS & QUANTIFICATION OF THE
PERFORMANCE

Numerical calculation of the parameter vector θ∗ for the
system (1) where the ill-conditioned SPD information ma-

Figure 1. The Figure shows the spectral radius ρ(k nk+1 + nk)

for the matrix inversion algorithm defined in (36) (described
in Section 5.1), plotted as colored surface. The spectral radius
for Newton-Schulz iteration with improved convergence rate

described by Stotsky (2019) ρ(k + 1) nk
is plotted as white

surface. Both surfaces are plotted for the spectral radius of ill-
conditioned case as functions of the order n and step number
k.

trix A associated with the system with harmonic regressor
with three frequencies is chosen for comparisons. The
performance evaluation is presented in the following two
parts.
1) The convergence rate of new matrix inversion algorithm
(31) - (36) is compared to the convergence rate of recent
algorithm with improved convergence rate described by
Stotsky (2019) in Figure 1. The Figure shows that conver-
gence rate improvements are more pronounced for higher
orders and larger step numbers.
2) Comparison of the convergence rate of the parameter es-
timation algorithm (41) and the Richardson iteration with
improved convergence rate described by Stotsky (2019) is
presented in Figure 2. The algorithm (41) with high order
convergence accelerator improves essentially the conver-
gence rate compared to existing algorithms even for lower
orders and small step numbers. Indeed, comparison of the
Figure 1 and Figure 2 shows that new algorithms are the
most beneficial in the Richardson framework.

8. CONCLUSION

This paper shows that the most general and well-known
Newton-Schulz iteration is fast power series expansion and
presents unified framework and tool-kit for power series
factorization and reduction of the computational complex-
ity. The framework allows reduction of complexity of many
algorithms and factorization of the algorithm of the order
45 that requires 10 mmm only is presented as example.
Main result of the paper is new composite power series
expansion for Newton-Schulz iteration with high degree
of parallelism for the convergence rate improvement and
computational efficiency. Comparative analysis of the con-
vergence rates of new algorithms and exiting ones is per-
formed via explicit transient models. New algorithms have
faster convergence than known Newton-Schulz iterations.
Moreover, new expansion resulted in significant improve-
ment of the convergence rate of Richardson iteration for
which recursive and computationally efficient version was
developed. The results were also confirmed by simulations.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

905

Figure 2. The Figure shows the spectral radius

ρ
h n2 (k nk+2 − (k − 1) nk+1 − 2 nk − n+ 2)

(n− 1)2 for Richardson
iteration (for parameter estimation) defined in (46) (plotted as
colored surface). The spectral radius for Richardson iteration
with improved convergence rate described by Stotsky (2019)

ρ
2h{

nk+3 − n4

(n− 1)3
− (k − 1){

n3

(n− 1)2
+

k

2(n− 1)
}+ k(n+ 2)}

is plotted as white surface. Both surfaces are plotted for the
spectral radius of ill-conditioned case as functions of the order
n and step number k for h = 1.

The paper opens new opportunities for convergence rate
improvement of Newton-Schulz and Richardson iterations
via computationally efficient composite expansions to be
implemented on parallel machines with different computa-
tional performance.

REFERENCES

[1] Bayard, D. (2000). A General Theory of Linear Time-
Invariant Adaptive Feedforward Systems with Har-
monic Regressors, IEEE Trans. Autom. Control, vol.
45, N 11, pp. 1983-1996.

[2] Björck Å. (1996). Numerical Methods for Least
Squares Problems, SIAM, First edition, April 1.

[3] Buranay S. and Iyikal O. (2019). A Predictor-
Corrector Iterative Method for Solving Linear Least
Squares Problems and Perturbation Error Analysis,
Journal of Inequalities and Applications, vol. 203,
pp.1-14.

[4] Chen K. (2005). Matrix Preconditioning Techniques
and Applications, Cambridge University Press, Cam-
bridge, UK.

[5] Demidovich B., Maron I. (1963). Basics of Numeri-
cal Mathematics, Moscow, Fizmatgiz, 660 pages (in
Russian).

[6] Esmaeilic H., Erfanifar R. and Rashidi M. (2017). A
Fourth-Order Iterative Method for Computing the
Moore-Penrose Inverse, Journal of Hyperstructures
vol. 6, N1, pp. 52-67.

[7] Fomin V., Fradkov A. and Yakubovich V.(1981).
Adaptive Control of Dynamic Objects, Nauka,
Moscow, (in Russian).

[8] Hackbusch W.(1994). Iterative Solution of Large
Sparse Systems of Equations, Springer, New York.

[9] Horn R. and Johnson C. (1985). Matrix Analysis,
Cambridge University Press.

[10] Isaacson E. and Keller H. (1966). Analysis of Numer-
ical Methods, John Wiley & Sons, New York.

[11] Janiszowski K. (2003). Inversion of Square Matrices
in Processors with Limited Calculation Abillities,
International Journal of Applied Mathematics and
Computer Science, AMSC, vol. 13, N 2, pp. 199-204.

[12] Ljung L. (1999). System Identification: Theory for the
User, Prentice-Hall, Upper Saddle River, NJ.

[13] Pan V., Soleymani F. and Zhao L. (2016). Highly
Efficient Computation of Generalized Inverse of a
Matrix, arXiv:1604.07893v1 [math.RA].

[14] Peng R. and Spielman D. (2013). An Efficient Parallel
Solver for SDD Linear Systems, arXiv:1311.3286v1
[cs.NA], 13 Nov.

[15] Petryshyn W. (1967). On Generalized Inverses and on
the Uniform Convergence of (I–βK)n with Applica-
tion to Iterative Methods, J. Math. Anal. Appl., vol.
18, pp. 417-439.

[16] Saad Y. (2003). Iterative Methods for Sparse Linear
Systems, 2-nd edition, SIAM, Philadelpha, PA.

[17] Schulz G. (1933). Iterative Berechnung Der Rezipro-
ken Matrix, Zeitschrift für Angewandte Mathematik
und Mechanik, vol. 13, pp. 57-59.

[18] Soleymani, F., Stanimirovic, P., Haghani, F. (2015).
On Hyperpower Family of Iterations for Computing
Outer Inverses Possessing High Efficiencies, Linear
Algebra Appl., vol. 484,pp. 477-495.

[19] Soleymani, F. (2015). An Efficient and Stable
Newton-type Iterative Method for Computing Gener-

alized Inverse, A
(2)
T,S , Numer. Algorithms vol. 69, N3,

pp. 569-578.
[20] Srivastava S. and Gupta D. (2014). A Higher Order

Iterative Method for A
(2)
T,S , Journal of Applied Math-

ematics and Computing, vol.46, N 1/2, pp. 147 - 168.
[21] Stickel E. (1987). On a Class of High Order Meth-

ods for Inverting Matrices, ZAMM Z. Angew. Math.
Mech. 67, pp. 331-386.

[22] Stanimirovic P., Kumar A. and Katsikis V. (2019)
Further Efficient Hyperpower Iterative methods for
the Computation of Generalized Inverses A2

T,S , RAC-
SAM, vol.113, pp. 3323-3339.

[23] Stotsky A. (2010). Recursive Trigonometric Interpo-
lation Algorithms, Journal of Systems and Control
Engineering, vol. 224, N 1, pp. 65-77.

[24] Stotsky A. (2015). Accuracy Improvement in Least-
Squares Estimation with Harmonic Regressor: New
Preconditioning and Correction Methods, 54-th CDC,
Dec. 15-18, Osaka, Japan, pp. 4035-4040.

[25] Stotsky A. (2017). Grid Frequency Estimation Using
Multiple Model with Harmonic Regressor: Robust-
ness Enhancement with Stepwise Splitting Method,
IFAC PapersOnLine 50-1, pp. 12817 - 12822.

[26] Stotsky A. (2019). Unified Frameworks for High
Order Newton-Schulz and Richardson Iterations: A
Computationally Efficient Toolkit for Convergence
Rate Improvement, Journal of Applied Mathematics
and Computing, vol. 60, N 1 - 2, pp. 605-623.

[27] Söderström T. and Stewart G. (1974). On the Numer-
ical Properties of an Iterative Method for Computing
the Moore–Penrose Generalized Inverse, SIAM J. Nu-
mer. Anal. vol. 11, pp. 61-74.

[28] Traub J. (1964). Iterative Methods for Solution of
Equations, Englewood Cliffs, NJ: Prentice-Hall.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

906

