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Abstract: Recent advances in information and communication technologies present opportuni-
ties to optimally control the driving speed and powertrain energy management of vehicles under
dynamic traffic circumstances. This paper addresses the energy-efficient car following problem of
a series hybrid electric vehicle (HEV) by an enhanced adaptive cruise control (EACC) method.
EACC is based on a nonlinear model predictive control framework, in which the behaviour
of the lead vehicle is forecast by a neural network predictor trained by common test cycles.
With the real-time predicted reference speed, EACC simultaneously optimizes the velocity and
energy source power split of the ego HEV, while keeping the inter-vehicular distance within
the desired range. The performance of EACC is benchmarked against a practical adaptive
cruise control (ACC) that performs drafting and an impractical optimal control (OC) solved
throughout the entire journey. Numerical examples show that the EACC can effectively close
the gap between ACC and OC in terms of optimality with a remarkable fuel saving over ACC,
while the computational load of EACC is comparable to ACC, which is much more efficient
than the OC. Further design insight of the methodology is also provided by an investigation
into the influence of the prediction horizon.

Keywords: Hybrid Electric Vehicle, Optimal Control, Energy Management, Velocity Control,
Model Predictive Control.

As a result of multiple energy sources, hybrid electric ve-
hicles (HEVs) can profit from freely optimized power split
between the energy sources for improving fuel economy
as compared to the conventional vehicles. The problem
of finding fuel-efficient power split for HEVs, which is
referred to as energy management (EM) control problem,
has drawn considerable attention in the past decade. A
comprehensive overview of existing EM techniques, from
rule-based to optimization-based, can be found in (Mar-
tinez et al., 2017). In particular, optimization-based EM
strategies are popular as benchmark methods due to usu-
ally guaranteeing the optimal or sub-optimal solutions (Li
et al., 2017b; Uebel et al., 2019).

Recently, with the advent of the advanced vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2X) commu-
nication technologies, the interconnected vehicle control
is gaining momentum (Chen and Evangelou, 2019; Ma-
likopoulos et al., 2018; Martinez et al., 2017). This leads
to the investigation of a new optimisation framework that
considers the EM for connected HEVs (Li et al., 2017a; Xie
et al., 2019; Zhang et al., 2019), such as vehicle platoon-
ing with a fleet of HEVs, or with only two vehicles (car
following model), which is a natural way to emulate real-
world driving conditions. In this context, both the driving
speed and EM are possible to be optimized to improve
overall efficiency and to cut emissions, while maintaining
or even improving the traffic throughput. Moreover, the
availability of the various communication systems enables
the prediction of the driving speed of the leading vehicle
based on the traffic conditions. Thus, the investigation of
predictive EM optimization for real-time implementation
is gaining momentum (Liu et al., 2017; Murphey et al.,

2013; Zou et al., 2016). The fundamental challenge in the
design of predictive EM control techniques is associated
with the precision of velocity prediction. Various speed
prediction methods are compared in (Sun et al., 2014) in
the context of HEVs. It is shown that the neural network
(NN) predictor tends to achieve the best performance
as compared to the approaches based on exponentially
varying speed predictors and Markov chain.

This paper proposes an enhanced adaptive cruise control
(EACC) to address the car following problem, where the
speed and EM of the ego vehicle are optimally controlled
with consideration of the interaction with the vehicle
ahead. Compared to the very recent work on the car
following EM (Xie et al., 2019), the presented paper
addresses a more realistic car following scenario, where
the influence of following distance on the air drag losses
is modelled. As such, the ego vehicle can make use of
drafting technique to reduce aerodynamic energy losses.
Moreover, the vehicle jerk is modeled to ensure smooth
control, and therefore it improves driving comfort and
avoids unrealistic jerky manoeuvre. The focus of the paper
is on the series HEV powertrain architecture. However,
the ideas that are presented also have relevance to other
HEV architectures. The fundamental concept of EACC
is the nonlinear model predictive control (NMPC), which
optimizes the velocity and power split over a sliding time
window based on the predicted reference speed of the
lead vehicle. In this work, the reference speed is forecast
by the NN predictor introduced in (Sun et al., 2014).
The performance of the proposed EACC is evaluated by
comparing it with two benchmark methods: 1) the optimal
control (OC) solution solved globally with a precise speed
profile of the lead vehicle, and 2) a practical adaptive
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cruise control (ACC) method that is also based on NMPC,
whereas a constant and close following distance is targeted
to enjoy the drafting effect. Additionally, the impact of
the prediction horizon length on the overall optimality is
investigated.

This paper is organized as follows. Section 1 introduces
the car following scheme and the powertrain model of
the series HEV. The proposed method is described in
Section 2, together with two benchmark methods. Simu-
lation examples and comparative studies are illustrated in
Section 3, followed by the concluding remarks in Section 4.

1. MODEL DESCRIPTION

1.1 Vehicle following Model

This work considers the car following model illustrated
in Fig. 1, where the vehicle in front is identified as an
uncontrolled reference vehicle, followed by a controlled
ego vehicle. Moreover, it is assumed that the lead vehicle
is travelling at a speed vref , and the past status of the
lead vehicle, including the speed and travelled space,
(vref , sref ) can be shared with the ego vehicle by proper
communication systems without any delay.

Fig. 1. Vehicle following scheme with V2V communication
considered.

Consider (s, v) respectively the distance and speed of the
ego vehicle. The inter-vehicular distance, d, between the
two vehicles is defined by d , sref − s. To keep following
the vehicle in front safely, the gap between the two vehicles
is constrained by:

dmin ≤ d ≤ dmax , (1)
where dmin is the minimum distance to avoid rear-end
collision and dmax is the maximum value to maintain
the car following mode. The selections of dmin and dmax
depend on the road type and vehicle travelling speed.

The ego vehicle motion is given in terms of speed and
travelled space by the following differential equations:

d

dt
s = v , (2a)

m
d

dt
v = Fw + Fh − fT mg − fD(d) v2 , (2b)

where m = 1500 kg is the vehicle mass, Fw is the power-
train driving force at the wheels, Fh is the braking force,
fT = 0.01, is the coefficient of tyre rolling resistance,
and fD(d) is the aerodynamic drag coefficient, modelled
as a function of the distance to the lead vehicle (Ro-
drigues Lopes and Evangelou, 2019; Turri et al., 2017).

For an HEV with energy recovery system, Fw > 0 in
driving condition (energy transfer from the powertrain
to the vehicle) and Fw ≤ 0 during energy recovery. As
commonly assumed in EM studies (Uebel et al., 2019),
the regenerative braking is assumed not restricted by the
braking distribution between front and rear axles, such
that all the braking power is recoverable and it is only
restricted by the battery power charging limit.

The present work adopts the nonlinear air drag model
(Rodrigues Lopes and Evangelou, 2019) that is able to
capture the influence of inter-vehicular distance on the

drag coefficient in the context of a passenger car. The
behaviour of the model is illustrated in Fig. 2. As it can
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Fig. 2. Air drag coefficient of a passenger car, modeled as a
function of inter-vehicular distance (Rodrigues Lopes
and Evangelou, 2019).

be seen, the air drag coefficient, and consequently the
aerodynamic losses can be effectively reduced by travelling
close to the reference vehicle because of the drafting effect.

1.2 Series Hybrid Electric Vehicle Powertrain Model

The series HEV powertrain architecture is sketched in
Fig. 3. As it can be seen, a series HEV consists of two en-
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Fig. 3. Block diagram of the series HEV powertrain.

ergy source branches: the primary source branch (PS) and
the secondary source branch (SS), which are joined elec-
trically at the DC-link. Then, the total power is delivered
to the driving wheels via the traction electric motor. Me-
chanical brakes may be actuated to decelerate the vehicle.
Energy regeneration is also possible during decelerations
conveying braking power through the transmission up to
the battery. Moreover, the SS may be recharged by using
a fraction of the PS power.

The vehicle model for the HEV is now briefly described. It
represents a simple (i.e., quasi-steady) but representative
model for HEV analysis and control design (Chen et al.,
2019, 2018; Lujan et al., 2018; Zhou et al., 2015).

Primary Source Branch As shown in Fig. 3, the PS
branch consists of a generator set and an AC-DC rectifier,
which are connected in series. The mechanical separation
of the PS from driving wheels allows the PS to be operated
along its optimal efficiency trajectory. In this context, the
fuel mass rate of the PS can be approximated as a linear
function of PS output power, PPS :

d

dt
mf = mf0 + αfPPS , (3)

in which mf0 = 0.061 g/s acts as the idling fuel mass
rate, and αf = 0.059 g/kW/s is the coefficient of power
transformation. The two constants, in this paper, are
obtained by linear regression fitting to the static PS
efficiency map given in (Chen et al., 2019).

Secondary Source Branch The SS branch is composed
of a battery and a DC-DC converter. In particular, the
battery is modeled as series connection of an ideal voltage
source with a resistance, and the dynamics are described
as a pure integrator of SoC. Such a model has been
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extensively used in the HEV EM literature (Chen et al.,
2019; Zhou et al., 2015). The DC-DC converter is modelled
as a constant efficiency term, ηdc = 0.96.

With the considerations above, the battery dynamics (i.e.,
SoC) are governed by:

d

dt
SoC =

−Voc +

√
V 2
oc − 4PSS Rb/η

sign(PSS)
dc

2RbQmax
, (4)

where PSS is the branch output power with an assumed
positive sign in the discharging phase, Voc = 300 V is the
constant open circuit voltage, Qmax = 5 Ah is the battery
capacity and Rb =0.2056 Ω is the internal resistance.

Propulsion Load Branch From the power flow within the
PL branch, the powertrain driving force is determined by:

Fw =
(PPS + PSS)(ηiηmηt)

sign(Fw)

v
, (5)

where ηi =0.96 and ηt =0.96 are constant efficiencies of the
inverter and the transmission, respectively. ηm is the effi-
ciency of the bidirectional motor/generator, represented
by an efficiency map as shown in the authors’ previous
work (Chen et al., 2019). The transmission system con-
nects the motor/generator and wheels with a fixed gear
ratio gt =10, such that ωm = gt v.

Overall Vehicle Model In view of the vehicle model
presented previously, the series HEV has three indepen-
dent sources of power PSS , PPS and Ph, which are freely
controlled to obtain the desired values of vehicle speed
and acceleration. To ensure the smoothness of the control,
the power variables are not controlled directly, instead,
the control inputs in this work are the jerk variables,
jPS , jSS , jh of the associated forces, FPS = PPS /v,
FSS = PSS /v, and Fh = Ph /v. Let us define the state

variables x , [mf , SoC, v, s, FPS , FSS , Fh]> and control

inputs u , [jPS , jSS , jh]. Then, the overall vehicle model,
d
dtx = f (x,u, t) that collects (2), (3), (4) and the dynamics
of the forces, is expressed as:

d

dt



mf

SoC

v

s
FPS

FSS

Fh


=



qf0 + αf (PPL − PSS)

−Voc +

√
V 2
oc − 4PSS Rb/η

sign(PSS)
dc

2RbQmax
1

m

(
Fw + Fh − fT mg − fD(d) v2

)
v

mjPS

mjSS

mjh


(6)

Furthermore, following inequality constraints are also im-
posed due to physical and operational limits:

0 ≤ PPS ≤ PPSmax , PSSmin ≤ PSS ≤ PSSmax , (7a)

SoCmin ≤ SoC ≤ SoCmax, 0 ≤ v ≤ vmax, (7b)

Ph ≤ 0, jPS , jSS , jh ∈ [jmin, jmax] (7c)

with PPSmax
= 70 kW, PSSmax

= 30 kW, PSSmin
=−15 kW,

SoCmax = 0.8 , SoCmin = 0.5 , which are chosen to emulate
the energy sources for a non-plug-in HEV.

2. PROBLEM FORMULATION AND CAR
FOLLOWING STRATEGIES

The main objective is to optimize the speed and EM of the
ego vehicle over a specified time-horizon [0, T ], such that
its fuel consumption mf (T ) is minimized and the battery
is charge sustained at the end of the mission (i.e., SoC(0) ≈

SoC(T )), subject to state and control constraints as well as
the constraint on the inter-vehicular distance. To address
the optimization problem online, this section proposes the
EACC which combines receding horizon control with an
NN-based speed predictor. Prior to the introduction of the
novel scheme, benchmark strategies are introduced next.

2.1 Optimal Control (OC) Method

By assuming that the reference speed profile vref is avail-
able for all t ∈ [0, T ], it is immediate to obtain sref by in-
tegration with sref (0)=d0, where d0 is the initial distance
between the two vehicles. Then the control problem can be
formulated as an optimal control problem. The objective
function is designed as:

Joc = W1mf (T ) +W2

(
SoC(T )− SoC(0)

)2
(8)

where W1, W2 are two constant weights, tuned to balance
the control performance in both aspects. The objective
Joc is minimized subject to system differential equations
(6) and the inequality constraints (1) and (7). Finally,
the problem is completed by imposing following boundary
conditions: s(0) = sref (0) − d0 = 0, s(T ) = sref (T ) −
d0, v(0) = vref (0), v(T ) = vref (T ), FPS(0) = FSS(0) =
Fh(0) = 0, mf (0) = 0, SoC(0) = 0.65, SoC(t0) = 0.65,
where SoC is initialized at the middle of the allowed
SoC range, and the control forces and other states are
initialized at 0. Furthermore, the terminal condition on s
ensures the space travelled by the ego vehicle is identical
to that travelled by the reference vehicle.

2.2 Adaptive Cruise Control (ACC) Strategy

During real-world driving, vref is usually not known a
priori. This promotes the development of ACC strategies
for driver assistance. Similarly to most of the available
ACC systems (Shakouri and Ordys, 2014), the benchmark
ACC considered in this paper aims to maintain a fixed
distance from the vehicle ahead by adaptively adjusting
the velocity of the ego vehicle. Additionally, to further
improve the fuel efficiency of the ACC, and consequently to
enable effective comparison with the proposed approach,
it is also assumed that the benchmark ACC enforces the
ego vehicle to stay closely behind the lead vehicle so that
it can benefit from drafting. The ACC is designed based
on an NMPC framework, in discrete time with sampling
time Ts, formulated as follows:

min
u

Jk,ACC , k = 1, 2, . . . , T/Ts (9a)

s.t.: x(tj+1|tk)= f(x(tj |tk),u(tj |tk)), j = 1, . . . , Np,
(9b)

x(tk)=x0, (9c)

Ψ(x(tj |tk),u(tj |tk), x̂r(tj |tk)) < 0, j = 1, . . . , Np,
(9d)

where Np is the dimension of the prediction horizon, and

x̂r , [v̂ref , ŝref ] represents the predicted reference veloc-
ity and space. The ACC assumes that the reference vehicle
keeps its speed constant within a prediction horizon:

v̂ref (tj |tk) = vref (t1|tk), j = 1, 2, . . . Np , (10)

and

ŝref (tj |tk) = ŝref (t1|tk) + Ts

j−1∑
i=1

v̂ref (ti|tk) , j = 1, . . . , Np

(11)
with ŝref (t1|tk) = d0. The speed forecasting method
(10) represents an elementary but widely applicable algo-
rithm (Shakouri and Ordys, 2014) that enables the ACC to
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be implemented in real-time for benchmarking purposes.
The following terminal cost is used for the ACC:

Jk,ACC =W1mf (tNp
|tk) +W2

(
SoC(tNp

|tk)−SoC(0)
)2

+W3

Np∑
j=1

(
d̂(tj |tk)− dACC

)2
, k = 1, 2 . . . , T/Ts (12)

where W1, W2, W3 are constant weights, d̂ = ŝref − s is
the anticipated inter-vehicular distance and dACC is the
desired following distance. As such, in addition to the
fuel usage and SoC variations (first two terms), the third
term in (12) represents a running cost penalizing also the
variation in the headway distance.

Within each finite horizon, Jk,ACC is minimized subject
to various constraints and boundary conditions (9b)-(9d).
More specifically, the dynamic constraints (9b) represent
the discretized version of vehicle system (6), with the
initial condition x0 for each iteration. x0 is the same as
used in the OC case at t = 0, and it is updated iteratively
based on the system states at t = tk, k = 1, 2, . . . , T/Ts.
The Ψ inequality constraints (9d) incorporate (1) and (7),
which are identical to the OC case.

2.3 Enhanced Adaptive Cruise Control Strategy

The EACC, which is developed in this section, aims to
further improve the fuel economy performance of the ACC
without losing the real-time control property.

Terminal cost design Similarly to the ACC, the EACC
is also formulated as an NMPC problem (9), subject to
identical constraints and initial conditions to those of the
ACC. However, the terminal cost is redesigned to allow
adjustable following distance:

Jk,EACC = W1mf (tNp
|tk) +W2

(
SoC(tNp

|tk)−SoC(0)
)2

+W3(v̂ref (tNp
|tk)−v(tNp

|tk))2, k = 1, 2, . . . , T/Ts (13)

where the last term penalizes the difference between the
terminal speed of both vehicles, as opposed to the ACC
that keeps the headway distance fixed. As a consequence,
the ego vehicle is able to make use of the inter-vehicular
distance variation within an NMPC horizon for fuel econ-
omy improvement, while keeping up with the reference
speed at the end of the horizon at each iteration. Thus,
the terminal cost avoids the sub-optimal solution where
the ego vehicle maintains the maximum following distance
at the end of the horizon at each iteration that minimizes
the ego vehicle travelled distance and hence its fuel usage,
regardless of the terminal position and velocity of the
reference vehicle.

Reference velocity forecasting In addition to the novel
objective function (13), the proposed EACC further in-
corporates a neural network to provide a more effective
reference vehicle velocity prediction, v̂ref (tj |tk), j =
1, 2, . . . Np and associated ŝref by (11), within each NMPC
horizon, as compared to the corresponding constant veloc-
ity prediction in the ACC shown in (10).

Neural networks are widely used for time series forecasting
as they can be trained to establish a nonlinear mapping
relationship between input and output data. For velocity
prediction purposes, usually historical velocity sequences
are considered as the input of the NN, and the outputs are
predicted horizon velocity sequences. Each input-output
pattern is composed of a moving window of fixed length,
which can be expressed as:

[vk+1, vk+2, . . . , vk+Np ] = fNN (vk−Nh+1, . . . , vk−1, vk),

where Nh is the dimension of the input historical velocity
sequence, and fNN represents the nonlinear map of the
NN predictor, which is obtained by offline training.

In this work, a radial basis function neural network (RBF-
NN) is applied for speed forecasting of the EACC. The
advantages of the RBF-NN have been examined in (Sun
et al., 2014), where the RBF-NN shows better convergence
speed and precision in the context of velocity prediction
of ground vehicles, as compared to a few other types of
network structures. The framework of the RBF-NN is
shown in Fig. 4. After the input sequences vh are received

Fig. 4. Scheme of RBF-NN predictor with historical veloc-
ity sequences vh as the input, followed by a Gaussian
function-based hidden layer that depicts the nonlinear
relationship between input and output, and then the
output layer yields the predicted velocity sequences
vp. S1 and S2 are the numbers of neurons respectively
for the hidden and output layers.

and rearranged, the pre-trained Gaussian function-based
hidden layer establish the nonlinear relationship between
input and output. Then, the output layer yields output
patterns vp, which are linear combinations of the hidden
layer outputs. The number of the neurons in the output
layer is identical to the size of output vp, while that in the
hidden layer is tunable and predefined, which determines
the precision of the prediction with proper selection of the
neuron numbers.

3. NUMERICAL RESULTS

This section provides a comprehensive comparative analy-
sis of the three car following control strategies described in
Section 2. All the optimization problems are addressed by
the ACADO toolkit, which provides a general framework
for efficiently solving optimal control and model predictive
control problems based on direct optimal control meth-
ods (Ariens et al., 2010). The sampling time of the solver
is kept the same for all cases at Ts=0.5 s, which provides
an appropriate balance between numerical accuracy and
computational complexity. Prior to showing the compara-
tive results, a test driving profile of the reference vehicle
vref is introduced next, together with prediction examples
of this profile by the RBF-NN.

3.1 Reference Velocity and Prediction

To evaluate the performance of the NMPC methods (ACC
and EACC), the urban/suburban cycle JP-15 is selected
as the reference velocity, vref , in this work to emulate
a mixed unban/suburban driving environment. Moreover,
the training set for the RBF-NN predictor is formed by
the four individual components of the WLTP cycle.

Fig. 5 illustrates a prediction example by the RBF-NN
utilized in the EACC, for Nh = 40 and Np = 20. In other
words, it shows 10-second-ahead prediction for the JP-15
cycle based on vref during the past 20 seconds. As it can
be seen, the RBF-NN predictor is able to achieve accurate
prediction within a short horizon.

3.2 Comparative Results of the Control Strategies

In order to achieve a fair comparison, all the approaches
are tuned to be battery charge sustaining with negligible
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Fig. 5. Reference velocity (JP-15) and the 20-step-ahead
(Np = 20) velocity prediction by the RBF-NN driven
by the past 40 steps (Nh = 40) reference speed data.

differences in the terminal SoC values. Thus, the fuel
consumption of each method can be compared without
the need to refer to the equivalent fuel, which evaluates
the fuel and battery charge consumption under a sin-
gle paradigm (Shabbir and Evangelou, 2019). The inter-
vehicular distance limits are set to avoid both rear-end
collision and the disruption of car following scenario. For
simplicity, constant limits are employed in this study.
Similarly to (Xie et al., 2019), the inter-vehicular distance
limits are defined as a linear function of speed, dmin = b0+
b1vmin, dmax = b0+b1vmax where b0 and b1 are coefficients,
which are set to 5m and 3s, respectively. As the velocity
of JP-15 is bounded within [0, 20] m/s, following distance
limits are adopted: dmin = 5m, dmax = 65m . The desired
headway distance of the ACC is set to 15m, which is close
to the lower distance limit to enable drafting, while leaving
enough distance for tolerance to cope with the imprecise
speed prediction. The other two methods, OC and EACC,
as well as the ACC, are initialized with the same distance
value for consistency: d0 = dACC = 15 m. Moreover, the
influence of the prediction horizon is investigated by com-
paring solutions with different horizon lengths (Np = 10,
Np = 20, and Np = 30), to provide further insight into the
design of the NMPC-based EACC.

The first case considered is with a prediction horizon for
EACC set to Np = 10, which enables accurate velocity
forecasts. The optimal ego vehicle speed profile as well
as the resulting inter-vehicular distance profile solved by
EACC is compared in Fig. 6 with the solutions of OC and
ACC with the same horizon length. As it can be seen,
both OC and EACC exploit the inter-vehicular distance
variation rather than staying closely behind the reference
vehicle. This allows OC and EACC to yield smoother
speed profiles, and hence lower accelerations, which are
expected to be more energy efficient in terms of powertrain
operation.

The energy source and other friction energy losses for
the whole mission are evaluated for each method, which
reinforces some of the earlier observations and conclu-
sions. The histogram in Fig. 7 shows the various power
losses for each control strategy. It is clear that the biggest
component of losses in all simulated cases corresponds
to the PS branch power losses, which is expected since
the most inefficient component of the powertrain is the
ICE, and the reference vehicle follows a low average-speed
profile whereby the air drag losses are not significant. The
rolling resistance losses of all three strategies are the same
as a fixed distance is travelled in each case. By driving
smoothly, OC substantially reduces the energy losses from
the PS branch, PL branch and mechanical brakes, and
results in the least overall energy losses. Although EACC
incurs more PS branch and mechanical braking energy
losses than OC, it reduces the aforementioned energy
losses as compared to ACC. In addition, ACC also pro-
duces more SS branch energy losses as its driving profile
(see Fig. 6) demands high power output from both energy

Fig. 6. Optimal ego vehicle driving speeds and the inter-
vehicular distances solved by OC, and the two NMPC
methods, ACC and EACC with a 10-step (5 s) predic-
tion ahead. The following distance of the ACC has a
large overshoot at the beginning due to the transient
response to the acceleration of the leading vehicle.

Fig. 7. Energy losses breakdown for the optimal solutions
solved by the three strategies (OC, ACC and EACC)
for the JP-15 driving cycle as the reference velocity.

sources to perform larger acceleration, and high battery
charge rate for larger deceleration. Although ACC is able
to cut aerodynamic drag losses by closing the gap between
the two vehicles (i.e., drafting), it ends up with the largest
overall energy losses because of the more significant losses
from the other aspects.

Fig. 8 shows the comparative results of fuel consumption
and computation time. The performances of ACC and
EACC are compared by using the OC solution as the
benchmark. For the prediction horizon of 5 s (Np =10), the
EACC proposed in this work consumes 26.7% more fuel
than OC, which is a remarkable improvement as compared
to the result of the ACC, which leads to 71.6% more fuel
consumption. Both NMPC methods are developed for real-
time implementation and thereby they are much more
computationally efficient than OC. In comparison with
ACC, the additional running time requested by EACC
mainly comes from the more advanced speed forecasting
approach. The length of the prediction horizon is one of
the most crucial factors that influences the performance
of NPMC methods. In this context, the horizon length
of the ACC and EACC is further increased to Np = 20
and Np = 30 to investigate its impact. As shown in
Figs. 7-8, extending the prediction horizon increases the
computational burden, but it also enhances the ability
to anticipate future behavior of the reference vehicle.
Therefore, both the ACC and the EACC benefit from the
change of the horizon window from 10 to 20 time steps.
However, when Np is further increased, the optimality of
both algorithms starts degrading, since the accuracy of the
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Fig. 8. Fuel consumption and computation time of three
control strategies (OC, ACC and EACC). The fuel
percentage increase as compared to the OC for each
NMPC case is indicated in the top plot.

velocity prediction also drops. The best performing EACC
with Np =20 lags the OC solution by 12.1%. By comparing
this EACC case with the best behaved ACC that consumes
38.8% more fuel than the OC, the fuel saved by the EACC
is approximately 26%.

4. CONCLUSIONS

This paper proposes the novel control strategy enhanced
adaptive cruise control (EACC) for energy management
and velocity control of series hybrid electric vehicles in
car-following scenarios. This method is developed based
on an NMPC framework, in which the velocity of the
lead vehicle is predicted by a radial basis function neural
network speed forecasting approach. In contrast with the
conventional adaptive cruise control (ACC) that aims
for a fixed following distance, EACC encourages the ego
vehicle to exploit the inter-vehicular distance variation,
especially when the vehicle ahead is driven inefficiently.
The control performance of the EACC is benchmarked
against the full-horizon optimal control (OC) strategy and
a suitably designed ACC. The simulation examples based
on a typical reference vehicle driving cycle confirm the
improvement of EACC over ACC in terms of fuel economy
at the expense of the slightly increased computational
complexity. Moreover, the fuel economy of the EACC
solution is shown to be relatively close to that of the OC
solution with a remarkable reduction in the running time.
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