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Abstract: This paper presents a new technique to design static output-feedback controllers
for continuous-time positive uncertain linear systems. The design is performed through an
iterative algorithm based on parameter-dependent linear matrix inequality conditions, solved by
means of relaxations, with local convergence guaranteed. A qualified feasible solution provides a
stabilizing output-feedback controller that also assures the positivity of the closed-loop system.
The main advantage of the proposed methodology is that the control gain is handled directly
as an optimization variable, that is, no change of variables is needed to recover the gain
and no particular structure (e.g., diagonal) is imposed on the Lyapunov or slack variable
matrix to guarantee closed-loop positivity. This particular feature also facilitates the design
of decentralized or element-wise bounded gains, as illustrated by numerical experiments.
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1. INTRODUCTION

The evolution of the numerical procedures and the
great advance of the computational processing capac-
ity have allowed to solve increasingly complex control
problems regarding dynamic systems subject to uncer-
tainties. In this scenario, convex optimization techniques
based on semidefinite programming stand out, specially
those formulated in terms of linear matrix inequalities
(LMIs) [Boyd et al., 1994, El Ghaoui and Niculescu, 2000].

At the same time, a wide range of practical problems
is concerned with systems that have non-negative states
and outputs, whose variables are usually associated with
physical parameters that can only assume positive or null
values. In this context, the so called positive systems can
suitably model industrial processes with chemical reactors,
heat exchangers, water reservoirs, network flows, storage
and communications systems [Berman and Plemmons,
1979, Luenberger, 1979, Farina and Rinaldi, 2000]. Other
applications can be found in economics and sociology, with
demographic and sociological population models, or in
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medicine and biology, analyzing and controlling bacterial
or cell cultures [Berman and Plemmons, 1979, Luenberger,
1979, Farina and Rinaldi, 2000].

Beyond the practical appealing, another motivation to
investigate the control of positive systems is that not
all methods employed to handle linear systems can be
directly extended to deal with positive systems [Caccetta
and Rumchev, 2000]. Note that to assure the positiveness
of the closed-loop continuous-time system is equivalent to
verify if the closed-loop dynamic matrix is Metzler (that is,
with nonnegative off diagonal elements). Recently, several
approaches emerged in the control theory literature aiming
to treat this problem [Briat, 2013, Ebihara et al., 2014,
Ait-Rami et al., 2014, Shen and Lam, 2015, 2017, 2016,
Tanaka and Langbort, 2011, Wang and Huang, 2013]. One
of the challenges is how to extend the methods developed
for single input single output systems, as those based on
linear programming [Arneson and Langbort, 2012, Ait
Rami, 2011, Roszak and Davison, 2009], to handle the
multi-variable case. Besides that, although LMI synthesis
conditions for state-feedback control of positive systems
can be obtained as a direct extension of the techniques
presented in the literature for traditional linear systems,
the main source of conservativeness comes from the fact
that the positivity constraint is handled by imposing a
diagonal structure to the square matrix used to recover
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the control gain, as done in Tanaka and Langbort [2011],
Ebihara et al. [2014]. Another alternative could be, for
instance, to employ iterative approaches that work with
the gain directly as optimization variable [Felipe, 2017,
Felipe et al., 2016].

In this paper, an LMI-based iterative procedure is adopted
to solve the problem of robust stabilization for continuous-
time positive uncertain linear systems. For this purpose,
firstly, a parameter-dependent LMI condition inspired
in Felipe et al. [2016] is developed for the synthesis of
static output-feedback (or state-feedback) controllers, in
which the dynamic matrix does not multiply any decision
variable of the problem, meaning that the gain can be dealt
with as an optimization variable. In this sense, the conser-
vativeness inherent to other LMI-based methods adapted
to control design of positive continuous-time systems (that
impose a diagonal structure on the Lyapunov matrix or
on the square matrix used to recover the gain) disappears.
Moreover, the method can handle output feedback control
with uncertainties in the output matrix and bounds on
the gain entries can be imposed by simply adding linear
constraints to the optimization problem.

Notation: M ∈ R
m×p denotes a real matrix M with m

rows and p columns. The transpose of M is designated
by M ′ and He(M) stands for M + M ′. For symmetric
matrices (M = M ′), M ≻ 0 (M ≺ 0) denotes that M
is positive (negative) definite, while M ≥ 0 means that
for M = [mij ], mij ≥ 0, ∀i, j. The symbol ⋆ represents a
symmetric block in a square matrix.

2. FUNDAMENTALS OF POSITIVE SYSTEMS

This section gathers the main definitions and fundamen-
tals of positive systems necessary to develop the results of
this paper.

Definition 1. (Farina and Rinaldi [2000]). A linear system
is said to be positive if and only if for every nonnegative
initial state and for every nonnegative input its state and
output are nonnegative.

Definition 2. (Farina and Rinaldi [2000]). A square ma-
trix A ∈ R

n×n is called Metzler if all the elements that
are not in the diagonal are positive or zero (nonnegative),
that is, Aij ≥ 0 for all i 6= j.

Consider the continuous-time linear system
{

ẋ(t) = Ax(t) +Bw(t),

y(t) = Cx(t) +Dw(t)
(1)

where x(t), y(t) and w(t) are the vectors of states, outputs
and exogenous inputs, respectively. A condition equivalent
to Definition 1 for the positivity of system (1) is presented
next.

Definition 3. (Farina and Rinaldi [2000]). System (1) is
positive if and only if matrix A is a Metzler matrix, and
B ≥ 0, C ≥ 0 and D ≥ 0, that is, all elements of B, C,
and D are nonnegative.

Additionally, a condition for the stability of (1) is given in
the next lemma.

Lemma 1. (Farina and Rinaldi [2000]). The positive sys-
tem (1) is asymptotically stable if and only if there exists
a positive definite diagonal matrix P such that

A′P + PA ≺ 0. (2)

Note that, although the stability of (1) can also be assured
by a symmetric positive definite matrix P , the existence of
a diagonal Lyapunov matrix P satisfying (2) also ensures
properties of robustness with respect to perturbations in
the state vector x(t), a result known in the literature as
D-stability [Kaszkurewicz and Bhaya, 1999, Oliveira and
Peres, 2005].

3. PROBLEM STATEMENT

Consider the uncertain continuous-time positive linear
system

{

ẋ(t) = A(α)x(t) +B(α)u(t),

y(t) = C(α)x(t),
(3)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the
control input vector and y(t) ∈ R

p is the measured output
vector. Each one of the state-space matrices from (3)
can be described as a convex combination of N matrices
(known as vertices), that is,

(A(α), B(α), C(α)) =
N
∑

i=1

αi(Ai, Bi, Ci), α ∈ Λ (4)

where α = [α1 α2 · · · αN ]
′
is a time-invariant vector

belonging to the unit simplex

Λ =
{

α ∈ R
N :

N
∑

i=1

αi = 1, αi ≥ 0, i = 1, . . . , N
}

. (5)

This paper addresses the problem of designing a static
output-feedback robust control law given by

u(t) = Ky(t) (6)

for system (3) such that the closed-loop system

ẋ(t) =
(

A(α) +B(α)KC(α)
)

x(t) (7)

is asymptotically stable and positive.

4. MAIN RESULT

This section presents the main contributions of this pa-
per. First, a sufficient parameter-dependent LMI condition
for the existence of a static output-feedback control gain
assuring a relaxed condition for stability and positivity
of the closed-loop uncertain system, as presented in The-
orem 2. Since Theorem 2 requires some matrices to be
pre-specified, to avoid bilinear matrix inequality terms,
Theorem 3 proposes a choice for those matrices that always
provides a feasible solution for Theorem 2. Finally, an
algorithm is proposed to iteratively solve the conditions
of Theorem 2, with local convergence guaranteed.

Theorem 2. For given matrices Yi(α) ∈ R
n×n, i = 1, 2, 3,

if there exist parameter-dependent matrices 0 ≺ P (α) =
P (α)′ ∈ R

n×n, Xi(α) ∈ R
n×n, i = 1, 2, 3, a parameter-

independent matrix K ∈ R
m×p and real scalars δ and r

such that
Acl(α) + δI ≥ 0, (8)

Q(α) + X (α)B(α) + B(α)′X (α)′ ≺ 0 (9)

are verified ∀α ∈ Λ, where B(α) = [Y1(α) Y2(α) Y3(α)] ,

Q(α) =

[

0 ⋆ ⋆
P (α) 0 ⋆

(Acl(α)− rI) −I 0

]

, X (α) =

[

X1(α)
X2(α)
X3(α)

]

,

with Acl(α) = A(α) + B(α)KCy(α), then K is a static
output-feedback robust control gain such that the real part
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of the eigenvalues of Acl(α), ∀α ∈ Λ, is smaller than r and
the positivity of closed-loop system (7) is assured.

Proof. First observe that (8) certifies the positivity of the
closed-loop system (all off diagonal terms of Acl(α) are
nonnegative), that is, (A(α) + B(α)KC(α)) is Metzler.
Additionally, note that, if (9) is feasible, block (3,3)
from (9), given by X3(α)Y3(α) + Y3(α)

′X3(α)
′ ≺ 0,

guarantees that Y3(α) is a full-rank matrix and, therefore,
B(α) can be rewritten as B(α) = Y3(α) [−F (α) −G(α) I].
Thus, pre- and post-multiplying (9) respectively by

B⊥(α)′ =

[

I 0 F (α)
0 I G(α)

]

and B⊥(α) yields
[

He (F (α)(Acl(α) − rI)) ⋆
P (α)− F (α) +G(α)(Acl(α) − rI) He (G(α))

]

≺ 0.

(10)
By multiplying (10) on the left by Γ(α)′ and on the right

by Γ(α) =
[

I (Acl(α)− rI)′
]′

one has

P (α)(Acl(α) − rI) + (Acl(α)− rI)′P (α) ≺ 0, (11)

that assures the asymptotic stability of a system with
dynamic matrix given by A(α)+B(α)KC(α)− rI (repro-
ducing an extension of Lemma 1 for the polytopic case).
Therefore, K is a static output-feedback robust controller
that allocates the real part of the eigenvalues of the closed-
loop system (7) on the left of r. Furthermore, if r ≤ 0, K
is a stabilizing robust gain for (3). ✷

Theorem 2 can also be used to provide state-feedback
robust gains for system (3) by making Cy(α) = I.

Note that condition (9) in Theorem 2 is not a bilinear
matrix inequality (BMI) only because matrices Yi(α),
i = 1, 2, 3, are given. The introduction of variable r in
the conditions of Theorem 2 represents a relaxation in
the stability condition, in the sense that the eigenvalues
of Acl(α) must be located in the half-plain on the left
of r, and r is a free optimization variable. Therefore,
Theorem 2 can be recurrently used, by minimizing r until
r ≤ 0, in order to assure the stability of the original
closed-loop system. The iterative procedure, described in
Algorithm 1, always provide feasible solutions for the
conditions of Theorem 2 such that r is non-increasing,
whenever a suitable initial condition for Yi(α), i = 1, 2, 3
is applied, as described in next theorem.

Theorem 3. The choice B(α) = B0 = [I I −I] ensures the
existence of a feasible solution for Theorem 2.

Proof. Choose X (α) = (−r/2)B0, then rewrite (9) as
[

−rI ⋆ ⋆
P (α)− rI −rI ⋆
Acl(α) (r − 1)I −rI

]

≺ 0. (12)

For the particular choice P (α) = rI, r > 0, and applying
a Schur complement in (12), the resulting inequality is

−rI − [Acl(α) (r − 1)I] (−rI)−1 [Acl(α) (r − 1)I]
′
≺ 0,

which is equivalent to

−rI +
1

r
Acl(α)Acl(α)

′ +
(r − 1)2

r
I ≺ 0. (13)

By multiplying (13) by r on both sides, one has

(1− 2r)I +Acl(α)Acl(α)
′ ≺ 0,

which can be satisfied with any r > 0 such that (2r− 1) is
greater than the spectral radius of Acl(α)Acl(α)

′, ∀α ∈ Λ.
Finally, the choice K = 0 guarantees that (8) is also
satisfied, since A(α) is, by hypothesis, Metzler. ✷

4.1 Iterative Procedure

This section presents a detailed description of the itera-
tive procedure proposed to solve the conditions of Theo-
rem 2 and, possibly, to provide a stabilizing static output-
feedback robust controller for system (3). It is well known
that the closed-loop stability of linear positive systems
can be certified by means of a diagonal Lyapunov matrix
without loss of generality. However, numerical experiments
showed that the iterative procedure proposed in this pa-
per produces better results when the Lyapunov matrix
is allowed to be full, symmetric and positive definite, as
presented in the statement of Theorem 2. The algorithm
can be divided in two steps, sequentially executed at each
iteration.

First, matrix B(α) = [Y1(α) Y2(α) Y3(α)] in Theorem 2 is
initialized with a value defined by the designer (a possible
option is B0 = [I I −I] presented in Theorem 3). Then,
start Phase 1 of Algorithm 1, which searches for a feasible
solution for Theorem 2. If feasible, the computed values
of r, K and δ are stored and the algorithm proceeds
to Phase 2. Otherwise, the algorithm is ended without
providing a feasible solution (observe that the inequali-
ties in Theorem 2 can be unfeasible for initial conditions
different from those proposed in Theorem 3). Since r is
an upper bound for the real part of the eigenvalues of
the closed-loop dynamic matrix Acl(α), if r ≤ 0, the
eigenvalues of Acl(α) are located in the left half-plan of
the complex plan, meaning that the algorithm has found
a robustly stabilizing gain K. On the other hand, when
r > 0, it is not possible to assure the system stability.
Nevertheless, since r is only an upper bound for the real
part of the eigenvalues of Acl(α), the eigenvalues could be
negative even with r > 0. For this reason, when r > 0,
the stability and positivity of the closed-loop system are
tested and, if both conditions are verified, Algorithm 1 is
interrupted, returning the stabilizing solution. To reduce
the computational effort of this evaluation, the test first
computes the eigenvalues associated to the vertices Acli,
i = 1, . . . , N, of the polytopic closed-loop dynamic matrix
(making αi = 1, αj = 0, j 6= i). Only if all eigenvalues of
the vertices have negative real part (necessary condition
for the stability of the polytope), an LMI condition is
used to certify the stability and an element-wise inequal-
ity condition is employed to assure the positivity of the
closed-loop system. If both stability and positivity are
confirmed, Phase 1 of Algorithm 1 has found a stabilizing
gain. Otherwise, the value of X (α)′ provided by Algo-
rithm 1 in this iteration replaces the value of B(α) used
as initial condition B0 of the next iteration. Note that,
with this update, the feasibility is always assured because
He(X (α)B(α)) = He(B(α)′X (α)′) in (9), repeating, in the
worst case scenario, the previous solution in terms of the
value of r. With this strategy, it is possible to assure that
the value of r always decreases or, at least, remains the
same computed in the previous iteration. In other words,
Algorithm 1 is a locally convergent iterative procedure.
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Those steps continue until Algorithm 1 provides a gain
that simultaneously assures the positivity and asymptotic
stability of the closed-loop system (r ≤ 0, or feasible
stability analysis and positivity tests in Phase 2), or when
the maximum number of iterations itmax is achieved.

Algorithm 1

Initialize: B0(α)← [I I −I] , k ← 0, itmax;
while k < itmax do

k ← k + 1;
minimize r subject to (8)–(9) with B0(α);
if feasible then

rk ← r; Kaux ← K; δk ← δ;
Acl(α)← A(α) +B(α)KauxC(α);

else
quit (no solution);

end if
if r ≤ 0 then

Ksol ← Kaux;
return Ksol;

else if max
j=1···n

Re(λj(A
i
cl)) < 0, Ai

cl ≥ 0, i = 1, . . . , N

then Apply stability and positivity tests on Acl(α);
if feasible then

Ksol ← Kaux;
return Ksol;

end if
end if
B0(α)← X (α)

′;
end while

5. COMPUTATIONAL ASPECTS

The conditions proposed in Theorem 2 are infinite di-
mensional problems, because they must be solved for all
α ∈ Λ. To circumvent this obstacle, this paper employs
the so-called relaxations: sufficient LMI conditions con-
structed from the imposition of homogeneous polynomial
structures of fixed degree to the optimization variables of
the problem [Oliveira and Peres, 2007]. This finite set of
LMIs can be automatically generated by the Robust LMI
Parser (ROLMIP) [Agulhari et al., 2019] toolbox. Partic-
ularly, the examples of the next section employ degree
one for the variables of Theorem 2 that depend on α and
also for P (α) in the stability analysis conditions given by
He(Acl(α)

′P (α)) ≺ 0, P (α) ≻ 0. Clearly, when evaluating
systems not affected by uncertainties (Section 6.1), all
optimization variables are α-independent. All the com-
putational scripts were programmed in Matlab (R2014a)
employing the SDP solver SeDuMi [Sturm, 1999] and
parsers Yalmip [Löfberg, 2004] and ROLMIP [Agulhari
et al., 2019].

6. NUMERICAL EXPERIMENTS

This section presents numerical examples to evaluate
the performance of the approach developed in this pa-
per regarding the synthesis of robust controllers that as-
sure the positivity and stability of closed-loop uncertain
continuous-time linear systems. A second aim of this sec-
tion is to compare the proposed technique with the meth-
ods presented in Bhattacharyya and Patra [2018], (BP18)
and Feng et al. [2011], (FLLS11). It is important to em-
phasize that, since the literature conditions do not handle

the uncertain case, the comparative examples investigate
only precisely known positive systems.

6.1 Precisely known systems

In this section, the proposed method is compared with
three techniques from the literature (FLLS and the two
methods presented in BP18: BP-1 and BP-2) concerning
static output-feedback (SOF) stabilization of precisely
known continuous-time positive linear systems. The first
four examples from BP18 (Ex 1, 2, 3 and 4) consist
in providing a stabilizing controller without imposing
structures on the control gain. The fifth example of BP18
proposes the stabilization of the system investigated in
Ex 1 by imposing four different structure constraints in
the gain K (Ex 5.1, 5.2, 5.3, 5.4). Method BP-1 is capable
of providing stabilizing solutions only for three of the first
four examples and for none of the cases with constrained
structure. On the other hand, BP-2 provides stabilizing
solutions for all the proposed examples. Finally, while
the iterative procedure proposed in this paper provides
stabilizing SOF gains for all examples, none of the other
methods investigated in BP18 (FLLS, Shen and Lam
[2015], Ait Rami [2011], Wang and Huang [2013]) succeeds
on all the cases.

To better evaluate the conservativeness of the methods,
consider the design of an SOF controller for the systems
presented in the examples of BP18 by replacing the open-
loop dynamic matrix A by A + ρI. The aim is to verify
which approach guarantees solutions for the greater range
of positive values of ρ. Algorithm 1 (A1, employing arbi-
trary structure inX1,2(α) and symmetric structure in both
X3(α) and P (α) in Theorem 2) proposed in this paper,
the two algorithms from BP18 (BP-1 and BP-2) and the
algorithm from FLLS were tested. The maximum number
of iterations imposed for all algorithms is itmax = 20. Fig-
ure 1 presents the results for the unconstrained synthesis
examples while Figure 2 shows the results for the tests
where structure constraints are imposed on the gain K.
Note that the proposed iterative procedure has the best
results in all cases, never producing results worser than
the compared methods.
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Figure 1. Stabilizing range of ρ obtained for examples 1 to
4 from BP18.
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Figure 2. Stabilizing range of ρ obtained for examples 5.1
to 5.4 from BP18 (structured gain).

6.2 Uncertain System

To illustrate the applicability of Algorithm 1 in robust
control design for an uncertain continuous-time positive
linear system, consider the state-space matrices borrowed
from [Ait Rami, 2011, Section 4]

A =

[

−0.15 1.90 1.55
0.50 −0.3 0.10
0.20 0.50 −2.55

]

, B =

[

0.55 −0.64
1.69 0.38
0.59 −1.50

]

. (14)

The output matrix is considered to be uncertain, belonging
to a polytope, aiming to simulate a failure of, at most, 5%
in the sensor power of the first state and up to 100% in
the sensor power measuring the second state

C(β) = β [1 1 0] + (1− β) [0.95 0 0] , β ∈ [0, 1]. (15)

Algorithm 1 (with itmax = 13, employing arbitrary struc-
ture in X1,2(α) and symmetric structure in both X3(α)
and P (α) in Theorem 2) provides the following stabilizing
controller (truncated with 4 decimal digits):

K = [−0.2994 0.0156]
′
. (16)

As mentioned before, the proposed method is appropri-
ate to synthesize gains with particular structures. Thus,
imposing the constrained structure to the control matrix
K = [k1 0], the following stabilizing solution is obtained

K = [−0.2959 0]
′
. (17)

To further illustrate that both controllers gains, in (16)
and (17), assure the positivity and stability of the closed-
loop system, Figure 3 (a) presents the minimum values
of the non-diagonal elements of Acl(α) (min(aij), i 6=
j), while Figure 3 (b) shows the maximum value of
the real part of the eigenvalues of Acl(α) (λmax =
maxi=1,...,n Re(λi(Acl(α)))), for all α ∈ [0, 1] (a fine grid
was employed). Note in Figure 3 (a) that the closed-loop
matrix is Metzler for the entire uncertainty domain (all the
non-diagonal elements of Acl(α) are nonnegative). Addi-
tionally, observe in Figure 3 (b) that Acl(α) is Hurwitz
since λmax < 0, ∀α ∈ Λ.

To conclude, consider the following uncertain output ma-
trix

C(β) = β

[

1 0 0
0 1 0

]

+ (1− β)

[

0.95 0 0
0 0.5 0

]

, β ∈ [0, 1].

(18)

0 0.5 1

-0.005

0

0.005

0.01

0.015
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0.025

0 0.5 1

-0.35
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-0.25

-0.2

-0.15

-0.1

-0.05

0
(a) (b)

ββ

m
in
(a

ij
),
i
6=

j

λ
m
a
x

K in (16)K in (16)
K in (17)K in (17)

Figure 3. (a) Minimum values of the non-diagonal elements
of Acl(α) (min(aij), i 6= j) and (b) maximum value of
the real part of the eigenvalues of Acl(α) (λmax) versus
α ∈ [0, 1].

The robust stabilizing SOF gain provided by Algorithm 1
without imposing any restriction is

K =

[

−0.2994 −5.6549
0.0156 −1.8909

]

. (19)

Suppose that the application requires that the stabilizing
gain is subject to magnitude constraints in each one of its
entries, that is, the aim is to determine the minimum value
M , such that for |kij | ≤ M , the closed-loop system (14),
(18) with the gain K = [kij ], i = 1, 2, j = 1, 2, is stable
and positive. Applying Algorithm 1, the minimum value
obtained for M is M = 0.271 associated with the following
control matrix

K =

[

−0.2710 −0.2710
0.0267 0.2267

]

(20)

which corresponds to a reduction of 95% of the largest
entry of the control gain (5.6249 in (19) and 0.2710
in (20)). Note that this type of magnitude constraint on the
entries of the control gain could not be imposed directly
in other LMI-based strategies for multiple-input-multiple-
output systems based on change of variables without
introducing additional conservativeness (as, for instance,
constraints in some of the other optimization variables),
while using the proposed method it suffices to add mp
linear constraints in the problem, since the gain is an
optimization variable.

7. CONCLUSION

This paper presented an iterative method based on
parameter-dependent LMIs to provide static output-
feedback controllers that robustly stabilize continuous-
time positive polytopic linear systems. The existence of
initial conditions that always assure feasible solutions for
a particular relaxation strategy and the local convergence
of the proposed algorithm were demonstrated. One of the
advantages of the technique is the possibility of designing
controllers with particular structures without restricting
other variables of the problem, due to the fact that the gain
is handled directly as an optimization variable. The low
level of conservatism of the proposed iterative procedure
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when compared with other literature methods and the
applicability of the method in robust control considering
magnitude or structure constraints in the gain were illus-
trated by means of numerical examples from the literature.
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