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Abstract: This paper exploits the so-called congelation of variables method to design an
adaptive controller for nonlinear systems with time-varying parameters. Two motivating
examples describing scalar systems are discussed to illustrate the flexibility of the congelation
of variables method to deal with the cases in which the time-varying parameters are coupled
with the state and with the input, respectively. Interpretations from a passivity perspective are
also provided. Then design procedures are derived for general nonlinear systems in parametric
strict-feedback form, and it is shown that the state of the underlying system converges to the
origin and all signals of the closed-loop system remain bounded. Simulations show that, in the
presence of parameter variations, the performance of the proposed controller is superior to that
of the classical adaptive controller designed for time-invariant systems.
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1. INTRODUCTION

Since the 1980s, adaptive control has undergone extensive
research (see e.g. Narendra and Annaswamy (1989); Krstic
et al. (1995); Ioannou and Sun (1996); Tao (2003); Astolfi
et al. (2007)), yet the works on systems with time-varying
parameters appear not to be as voluminous as works
that only consider time-invariant systems. Some pioneer-
ing works on adaptive control for time-varying systems
(see e.g. Goodwin and Teoh (1983)) exploit persistence of
excitation to guarantee stability by ensuring that parame-
ter estimates converge to the true parameters. Subsequent
works (see e.g. Kreisselmeier (1986), Middleton and Good-
win (1988)) have removed the restriction of persistence of
excitation by requiring bounded and slow (in an average
sense) parameter variations.

More recent works can be mainly categorized into two
trends. One of them is based on the so-called robust
adaptive law or σ-modification (see Ioannou and Sun
(1996)), which adds leakage to the parameter update law
when the parameter estimates drift out of a pre-specified
reasonable region to guarantee the boundedness of the
parameter estimates. This approach achieves asymptotic
tracking when the parameters are constant, otherwise the
tracking error is nonzero and related to the rates of the
parameter variations, see Tsakalis and Ioannou (1987). In
Zhang and Ioannou (1996) and Zhang et al. (2003) the
parameter variations are modelled in two parts: known
parameter variations and unknown variations, so that the
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residual tracking error only depends on the rates of the
unknown parameter variations.

The other trend exploits the so-called filtered transforma-
tion, which is essentially an adaptive observer described
via a change of coordinates, and the projection opera-
tion, which confines the parameter estimates within a pre-
specified compact set to guarantee the boundedness of
the parameter estimates, see Marino and Tomei (1993),
Marino and Tomei (1999) and Marino and Tomei (2003).
These methods can guarantee asymptotic tracking pro-
vided that the parameters are bounded in a compact set,
their derivatives are L1 and the disturbance on the state
evolution is additive and L2. Moreover, a priori knowledge
on parameter variations is not needed and the residual
tracking error is independent of the rates of the parameter
variations.

The methods mentioned above cannot guarantee zero-
error regulation when the unknown parameters are persis-
tently varying. To achieve asymptotic state/output regula-
tion when the time-varying parameters are neither known
nor asymptotically constant, in Chen and Astolfi (2018a)
and Chen and Astolfi (2018b) a method called the con-
gelation of variables has been proposed and developed
on the basis of the adaptive backstepping approach and
the adaptive immersion and invariance (I&I) approach,
respectively. In the spirit of the congelation of variables
method each unknown time-varying parameter is treated
as a nominal unknown constant parameter perturbed by
the difference between the true parameter and the nomi-
nal parameter, which causes a time-varying perturbation
term. The controller design is then divided into a classical
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adaptive control design, with constant unknown param-
eters, and a damping design via dominance to counter-
act the time-varying perturbation terms. This method
is compatible with most adaptive control schemes using
parameter estimates, as it does not change the original
parameter update law designed for time-invariant systems.

Time-varying parameters coupled with the input needs
special treatment in the congelation of variables scheme,
as the perturbation terms depend on the input. The
simple strengthening of damping terms in the controller
alters the input (as well as the perturbation itself) and
therefore causes a chicken-and-egg dilemma. The aim of
this paper is to design a controller such that, in the spirit
of the congelation of variables method, one can naturally
guarantee stability properties in the presence of a time-
varying control coefficient without incurring the above-
mentioned chicken-and-egg problem.

Notation. This paper uses standard notation unless stated
otherwise. For an n-dimensional vector v ∈ Rn, |v| denotes

its Euclidean 2-norm, |v|M =
√
v>Mv, M = M> � 0,

denotes the weighted 2-norm with weight M , vi ∈ Ri,
1 ≤ i ≤ n, denotes the vector composed of the first i
elements of v. For a matrix M , |M |F denotes its Frobenius
norm. I and S denote the identity matrix and the upper-
shift matrix with proper dimension, respectively. For an
n-dimensional time-varying signal s : R → Rn, with
image contained in a compact set S, ∆s : R → Rn

denotes the deviation of s from a constant reference `s,
i.e. ∆s(t) = s(t) − `s, and δs ∈ R denotes the supremum
of the 2-norm of s, i.e. δs = sups∈S,t≥0 |s(t)| ≥ 0. �
In this paper the vector of unknown time-varying system
parameters θ : R→ Rq may verify one of the assumptions
below.

Assumption 1. (Bounded parameters). θ(t) ∈ Θ0, ∀t ≥ 0,
where Θ0 is a compact set. �
Assumption 2. (Sign-definite parameter). The parameter
bm : R→ R is bounded away from 0 in the sense that there
exists a constant `bm such that sgn(`bm) = sgn(bm(t)) 6= 0
and 0 < |`bm | ≤ |bm(t)|, ∀t ≥ 0. The sign of `bm and bm(t),
∀t ≥ 0, is known1 and does not change. �

2. MOTIVATING EXAMPLES

2.1 Parameter in the Feedback Path

To begin with consider a scalar nonlinear system described
by the equation

ẋ = θ(t)x2 + u, (1)

where x(t) ∈ R is the state, u(t) ∈ R is the input, and
θ(t) ∈ R is an unknown time-varying parameter satisfying

1 If the sign of bm(t) is unknown yet constant and bm(t) is bounded
away from 0, then a Nussbaum-type function (see Nussbaum (1983))
can be exploited to compensate for bm(t), see e.g. Ge and Wang
(2002). This method is not discussed here because it trades robust-
ness against an unknown sign with undesirable transient performance
due to the oscillatory exploration of the Nussbaum gain (and half of
the exploration is actually in the wrong direction), whereas deter-
mining an unknown yet constant sign is typically not a challenge in
many applications.

Assumption 1. Assuming that we have an “estimate” θ̂ of
the parameter θ(t), we can rewrite (1) as

ẋ = θ̂x2 + u+ (θ − θ̂)x2. (2)

One way to find an update law for θ̂ is to consider a
Lyapunov function candidate

V (x, θ̂, θ) =
1

2
x2 +

1

2γθ
(θ − θ̂)2. (3)

Taking the time derivative of V along the solutions of (2)
yields

V̇ = θ̂x3 + ux+ (θ − θ̂)x3 − (θ − θ̂)
˙̂
θ

γθ
+ (θ − θ̂) θ̇

γθ
, (4)

which means that the selection of the parameter update
law

˙̂
θ = γθx

3 (5)

cancels the effect of the unknown (θ − θ̂)x3 term. The
constant γθ > 0 is known as adaptation gain. In classical
adaptive control problems one assumes that θ is constant,
that is θ̇ = 0, for all t ≥ 0, and selects the control law

u = −kx− θ̂x2 (6)

with k > 0, which yields V̇ = −kx2 ≤ 0. We can conclude

from this that x and θ̂ are bounded, and x converges to
0 by invoking Barbalat lemma. When θ̇ is not identically

zero, one has to deal with the indefinite term (θ − θ̂) θ̇γθ .

One way to do this is to modify (5) with the so-called
projection operation (see e.g. Goodwin and Mayne (1987),

Pomet and Praly (1992)), which confines the parameter θ̂
inside a convex compact set and therefore guarantees the

boundedness of (θ − θ̂). It follows that the boundedness

of θ̇ guarantees the boundedness of x (either exact bound-
edness, e.g. in Zhou and Wen (2008) or boundedness in
an average sense, e.g. in Middleton and Goodwin (1988)),

and θ̇ ∈ L1 guarantees the convergence of x to 0 (e.g.
in Marino and Tomei (1999), Marino and Tomei (2000),
Marino and Tomei (2003)). In some other works (e.g. in
Tsakalis and Ioannou (1987), Zhang and Ioannou (1996),

Zhang et al. (2003)), the boundedness of θ̂ is guaranteed by
the so-called σ-modification, which adds some leakage to
the integrator (5) if the parameter estimate drifts outside
a reasonable region, and it is often referred to as soft
projection. All these schemes share the similarity that they
treat θ̇ as a disturbance. As a result some disturbance
attenuation effort is required to guarantee that bounded
θ̇ causes bounded state/output regulation/tracking error,

and sufficiently fast converging θ̇, which means that θ
becomes constant eventually, guarantees the convergence
of the error to 0. As a result, none of these methods
can guarantee zero-error regulation/tracking when the un-
known parameter is persistently time-varying, in which
case θ̇ is non-vanishing.

Note that the reason why we cannot avoid θ̇ in the

analysis is the θ − θ̂ term in (3). This term is included

only to guarantee the boundedness of θ̂, yet by no means

guaranteeing the convergence of θ̂ to θ, no matter whether
θ is time-varying or constant, thus replacing θ with a
constant `θ, to be determined, can guarantee the same
properties. `θ can be regarded as the average of θ(t), which
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is not necessarily known. In the light of this, consider the

modified Lyapunov function candidate V`(x, θ̂, `θ) = 1
2x

2+
1

2γθ
(`θ − θ̂)2. Taking the time derivative of V` along the

trajectories of (2) yields

V̇` = θ̂x3 + ux+ (θ − θ̂)x3 − (θ − θ̂)
˙̂
θ

γθ
+ ∆θx

3, (7)

where ∆θ = θ − `θ. Comparing (7) with (4) we can see

that the substitution of `θ for θ eliminates the θ̇ term,
at the cost of adding a perturbation term ∆θx

3 due to
the inconsistency between θ and `θ. Considering the same
parameter update law as in (5) and a new control law

u = −
(
k +

1

2ε∆θ

δ∆θ

)
x− 1

2
ε∆θ

δ∆θ
x3 − θ̂x2, (8)

where ε∆θ
> 0 is a constant, to balance the linear and

the nonlinear terms, yields V̇` = −
(
k + 1

2ε∆θ
δ∆θ

)
x2 −

1
2ε∆θ

δ∆θ
x4+∆θx

3 ≤ −kx2 ≤ 0. Therefore we can conclude
boundedness of all trajectories of the closed-loop system as
well as convergence of x to 0 using the same argument as
the one used in the classical constant parameter problem
and without requiring a vanishing θ̇. The method of
substituting the constant `θ for the time-varying θ to
avoid the occurrence of undesired time derivatives is called
congelation of variables, see Chen and Astolfi (2018a).

Remark 1. The control law (8) and the parameter update
law (5) do not depend on `θ, in the same way as classical
adaptive controllers do not depend on θ, which preserves
the “adaptive” property. One can interpret the proposed
controller as a combination of an adaptive controller,
to cope with the unknown parameter `θ, and a robust
controller, to cope with the time-varying perturbation
∆θ(t). This fact can also be revealed by noting that when
θ is a constant one could select `θ = θ, hence δ∆θ

= 0,
and the control law (8) is reduced to the classical control
law (6). �
Remark 2. The control law (8) depends on δ∆θ

, which
is assumed to be known by Assumption 1. Even if δ∆θ

is unknown, one can easily overcome this by building an
“estimate” for δ∆θ

via classical adaptive control techniques
as δ∆θ

is a constant. For instance, in this example we

can substitute a dynamically updated δ̂ for δ∆θ
, using

the update law
˙̂
δ = γδ(x

2 + x4), with γδ > 0. However,
we will not discuss this method in detail as it over-
complicates the problem without providing any significant
contribution. �
Remark 3. (Passivity interpretation). Consider the classi-
cal adaptive control problem in which θ is constant. The
closed-loop dynamics can be described via a negative feed-
back loop consisting of two passive systems

Σ1 :

{
ẋ1 = −kx1 + x2

1u1,
y1 = x3

1,
(9)

Σ2 :

{
ẋ2 = γθu2,
y2 = x2,

(10)

where x1 = x, x2 = θ̂− θ, u1 = −y2, u2 = y1. The storage
functions are S1 = 1

2x
2
1 and S2 = 1

2γθ
x2

2, respectively. It is

well-known that the parameter update law (5) is neither

designed to guarantee the convergence of θ̂ − θ to zero

nor to make θ̂ estimate θ, though θ̂ is called the parameter

estimate by convention, but to make θ̂−θ an input/output
signal to form a passive interconnection. When θ(t) is time-
varying, the dynamics of Σ2 are described by

Σ2 :

{
ẋ2 = γθu2 − θ̇,
y2 = x2,

(11)

which causes the loss of passivity from u2 to y2. The
congelation of variables method can therefore be inter-

preted as selecting a new signal θ̂ − `θ, which can yield
a passive interconnection, and maintaining the passivity
of Σ1, by strengthened damping. The two passive systems
are described by the equations

Σ1 :

{
ẋ1 = −a(x1, t)x1 + x2

1u1,
y1 = x3

1,
(12)

Σ2 :

{
ẋ2 = γθu2,
y2 = x2,

(13)

where x1 = x, x2 = θ̂ − `θ, u1 = −y2, u2 = y2 and
a(x1, t) =

(
k+ 1

2ε∆θ
δ∆θ

)
+ 1

2ε∆θ
δ∆θ

x2
1−∆θx1 ≥ k > 0. �

2.2 Parameter in the input path

In what follows we show how to extend the idea of
congelation of variables to systems in which the time-
varying parameter is coupled with the input by considering
the nonlinear system

ẋ = θ(t)x2 + b(t)u, (14)

where θ(t) satisfies Assumption 1 and b(t) ∈ R satisfies
Assumption 1 and Assumption 2. Equation (14) can be
re-written as

ẋ = θ̂x2 + ū+ ∆θx
2 + ∆b%̂ū

+ (`θ − θ̂)x2 − `b
(

1

`b
− %̂
)
ū,

(15)

where ∆b(t) = b(t) − `b, %̂ is an “estimate” of 1
`b

, and

u = %̂ū. From classical adaptive control theory (see e.g.
Krstic et al. (1995)) we know that the effect of the second
line of (15) can be cancelled by selecting the parameter
update laws (5) and

˙̂% = −γ%sgn(`b)ūx, (16)

and by considering the Lyapunov function candidate

V (x, θ̂, %̂) = 1
2x

2 + 1
2γθ

(θ − θ̂)2 + |`b|
2γ%

(
1
`b
− %̂
)2

, the time

derivative of which along the trajectories of (15) is

V̇ = θ̂x3 + ūx+ ∆θx
3 + ∆b%̂ūx. (17)

Note that the perturbation term ∆b%̂ūx depends on ū
explicitly, which means that we cannot dominate this term
by simply adding damping terms to ū, as doing this also
alters the perturbation term itself. Instead, we need to
make ∆b%̂ūx non-positive by designing ū and selecting `b.
Consider ū as a feedback control law with a non-positive
nonlinear gain, that is

ū = −
(
k +

1

2

(
δ∆θ

ε∆θ

+
1

εθ̂

)
+

1

2
(ε∆θ

δ∆θ
+ εθ̂ θ̂

2)x2

)
x,

= −κ(x, θ̂)x, (18)

where εθ̂ > 0. It is obvious that κ(x, θ̂) > 0 by definition.

Substituting (18) into (16) yields ˙̂% = γ%sgn(`b)κx
2. When

b(t) > 0, due to Assumption 2, there exists a constant `b
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such that 0 < `b ≤ b(t), ∆b > 0, ˙̂% ≥ 0, for all t ≥ 0,
which means that any initialization such that %̂(0) > 0
guarantees %̂(t) > 0, and therefore ∆b%̂ūx = −∆b%̂κx

2 ≤
0, for all t ≥ 0. When b(t) < 0, similarly, there exists `b
such that b(t) ≤ `b < 0, ∆b < 0, ˙̂% ≤ 0, for all t ≥ 0. Then
selecting %̂(0) < 0 guarantees %̂(t) < 0 and ∆b%̂ūx ≤ 0.
Recalling (17), (18), and noting that ∆b%̂ūx ≤ 0 yields

V̇ ≤ −kx2−
( εθ̂

2 θ̂
2x4 + 1

2εθ̂
x− θ̂x3

)
−
( ε∆θ δ∆θ

2 x4 +
δ∆θ
2ε∆θ

x2 +

∆θx
3
)
≤ −kx2 ≤ 0. With the same stability argument as

before, the boundedness of the system trajectories and the
convergence of x to zero follows.

Remark 4. From this example we see the flexibility of the
congelation of variables method: the congealed parameter
`(·) can be selected according to the specific usage. It can
be a nominal value for robust design, or an “extreme”
value to create sign-definiteness, as long as the resulting
perturbation ∆(·) is also considered consistently. One can
even make `(·) a time-varying parameter subject to some

of the assumptions used in the literature (e.g. θ̇ ∈ L1,

θ̇ ∈ L∞), and use the congelation of variables method
to relax these assumptions. This is the reason why the
proposed method is named “congelation”2 not “freeze”. �
Remark 5. (Passivity interpretation). Similarly to the ef-
fect of the selection of `θ in Remark 3, the selection of `b
makes %̂− 1

`b
a passifying input/output signal (see Fig. 1).

In addition, note that the overall system is passive from
−∆b%̂κx to x and our selection of `b always guarantees
that −∆b%̂κ is negative, which makes use of the fact that
a negative feedback control law possesses an arbitrarily
large gain margin in a passive system. �

Fig. 1. Schematic representation of system (14), (5) and
(16) as the interconnection of passive subsystems.

3. STATE-FEEDBACK DESIGN FOR UNMATCHED
PARAMETERS

In the previous simple examples the unknown parameter
θ(t) enters the system dynamics from the same integrator
from which the input u enters, that is, the so-called
matching condition holds. For a more general class of
systems in which the unknown parameters are separated
from the input by integrators, the adaptive backstepping
design of Krstic et al. (1995) is needed. Consider an n-

2 The word “congelation” is polysemous: it means both “coagula-
tion” and “freeze/solidification”.

dimensional nonlinear system in the so-called parametric
strict-feedback form

ẋ1 = φ>1 (x1)θ(t) + x2,
...

ẋi = φ>i (xi)θ(t) + xi+1,
...

ẋn = φ>n (x)θ(t) + b(t)u,

(19)

where i = 2, . . . , n− 1, x(t) ∈ Rn is the state, u(t) ∈ R is
the input, θ(t) ∈ Rq is the vector of unknown parameters
satisfying Assumption 1, and b(t) ∈ R is an unknown
parameter satisfying Assumption 1 and Assumption 2.
The regressors φi : Ri → Rq, i = 1, . . . , n, are smooth
mappings, and satisfy φi(0) = 0.

Remark 6. The condition φi(0) = 0 implies that φ>i (0)θ(t)
= 0, which allows zero control effort at x = 0. One
can easily see that if φi(0) 6= 0, φ>i (0)θ(t) becomes an
unknown time-varying disturbance, yielding a disturbance
rejection/attenuation problem not discussed here. By the
smoothness of φ(·) one can express the regressors as
φi(xi) = Φ̄i(xi)xi, where Φ̄i are smooth mappings, due
to Hadamard’s lemma (see Nestruev (2006)). �

We directly give the results below and omit the step-by-
step procedures3 . For each step i, i = 1, . . . , n, define the
error variables

z0 = 0, (20)

zi = xi − αi−1, (21)

the new regressor vectors

wi(xi, θ̂) = φi −
i−1∑
j=1

∂αi−1

∂xj
φj , (22)

the tuning functions

τi(xi, θ̂) = τi−1 + wizi =

i∑
j=1

wizi, (23)

and the virtual control laws

α0 = 0, (24)

αi(xi, θ̂) = − zi−1 − (ci + ζi)zi − w>i θ̂

+

i−1∑
j=1

∂αi−1

∂xj
xj+1 +

∂αi−1

∂θ̂
Γθτi

+

i−1∑
j=2

∂αj−1

∂θ̂
Γθwizj , i = 1, . . . , n− 1,

(25)

αn = %̂ᾱn = −%̂κ(x, θ̂)zn, (26)

where ci > 0 are constant feedback gains, ζi(xi, θ) are

nonlinear feedback gains to be defined, Γθ = Γ>θ � 0 is the

adaptation gain, κ(x, θ̂) is a positive nonlinear feedback
gain to be defined, and similar to the one in Section 2.2.
To proceed with the analysis, select the control law and
the parameter update laws as

3 The classical procedures of adaptive backstepping, on which the
following procedures are based, can be found in Chapter 4 of Krstic
et al. (1995).
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u = αn, (27)

˙̂
θ = Γθτn, (28)

˙̂% = −γ%sgn(`b)ᾱnzn, (29)

and consider the Lyapunov function candidate V (z, θ̂, %̂) =
1
2 |z|

2+ 1
2 |`θ−θ̂|

2
Γ−1+ |`b|2γ%

| 1
`b
−%̂|2, in which z = [z1, . . . , zn]>.

Taking the time-derivative of V yields

V̇ = −
n∑
i=1

(ci + ζi)zi + znᾱn + ∆ + znψ

+ (`θ − θ̂)>
( n−1∑
i=1

wizi − Γ−1
θ

˙̂
θ

)
+ `b

(
1

`b
− %̂
)(

ᾱnzn −
˙̂%

γ%

)
,

(30)

where ∆ =
∑n−1
i=1 ziw

>
i ∆θ + ∆b%̂ᾱnzn and ψ = zn−1 +

w>n θ̂−
∑n−1
j=1

∂αn−1

∂xj
xj+1− ∂αn−1

∂θ̂
Γθτn−

∑n−1
j=2

∂αj−1

∂θ̂
Γθwnzj .

Remark 7. Recalling Remark 6 and implementing (20)

to (26) recursively, it is not hard to see that zi(xi, θ̂),

wi(xi, θ̂), τi(xi, θ̂), αi(xi, θ̂) are smooth and zi(0, θ̂) = 0,

wi(0, θ̂) = 0, τi(0, θ̂) = 0, αi(0, θ̂) = 0. Also note that the

θ̂-dependent change of coordinates between zi and xi is
smooth, invertible, and xi = 0 ⇔ zi = 0, thus we can

directly express wi as wi = W̄i(xi, θ̂)zi with Wi smooth

and, similarly, ψ as ψ = ψ̄>(x, θ̂)z with ψ̄ smooth. �

The last two lines of (30) are eliminated by the parame-
ter update laws (28) and (29), and the non-positivity of
∆b%̂ᾱnzn can be established in the same way as in Sec-
tion 2.2, thanks to the form4 of ᾱn. The rest of the problem

is to determine the nonlinear damping gains ζi(xi, θ̂) and

κ(x, θ̂) to dominate the ∆θ-terms.

Proposition 1. Consider system (19) and the control
law (27) with the nonlinear damping gains

ζi(xi, θ̂) =
1

2

(
(n− i+ 1)

δ∆θ

ε∆θ

+ ε∆θ
δ∆θ
|W̄i|2F +

1

εψ̄

)
,

(31)

κ(x, θ̂) = cn + ζn +
1

2
εψ̄|ψ̄|2, (32)

where cn > 0, ε(·) > 0, and the parameter update laws (28)
and (29), with sgn(%̂(0)) = sgn(b). Then all closed-loop
signals are bounded and lim

t→+∞
x(t) = 0. �

4. SIMULATIONS

Consider the benchmark nonlinear system in parametric
strict-feedback form described by

ẋ1 = x2 + θ1(t)x2
1,

ẋ2 = θ2(t)x2
1 + θ3(t)x2

2 + b(t)u,
(33)

where θ(t) = [θ1, θ2, θ3]> and b(t) are given by

4 This form of ᾱn is inspired by Li and Krstic (1997), which also
designs a control law with a nonlinear negative feedback gain, albeit
to achieve inverse optimality.

θ(t) = θconst +Rθ
w1z1 + w2z2

|w1z1 + w2z2|
(t), (34)

b(t) = bconst +Rb
uz2

|uz2|
(t), (35)

with θconst = [1, 1, 1]>, bconst = 1, Rθ = 1.4, Rb = 0.5, and
zi, wi given by (21), (22), respectively. These parameters
are intentionally designed to destabilize the system, as
they cause non-negative terms in the time derivative
of the Lyapunov function candidate along the system
trajectories. Now consider three controllers: Controller 1,
the classical backstepping controller proposed in Chapter 4
of Krstic et al. (1995) (essentially (25) with i = 2,
ζ2 = 0, and the corresponding parameter update laws);
Controller 2, a modified version of Controller 1 with
projection operation in the parameter update laws; and
Controller 3, as proposed in this paper and described by
(27)–(29), (31), and (32). Set the common parameters as
c1 = 1, c2 = 1, Γθ = I, γ% = 1. For Controller 2, let
the projection operation confine the parameter estimates

within two balls such that |θ̂(t)| ≤ 10 and |%̂(t)| ≤ 2,
for all t ≥ 0. For Controller 3, set the discounted radius
of parameter variations5 δ∆θ

= 0.3Rθ and all balancing
constants ε(·) = 1. The simulations are performed with
all states/parameter estimates initialized at 0: the results
are shown in Fig. 2. The “Baseline” results are the system
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Fig. 2. Time history of the system state and the control
signal driven by different controllers.

5 In practice, we do not directly treat Rθ as the radius of param-
eter variations to avoid an over-conservative controller design, see
Remark 7 of Chen and Astolfi (2018b).
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response driven by Controller 1 when the parameters are
constant, i.e. θ(t) = θconst and b(t) = bconst. It can
be seen that under the given parameter variations the
trajectories resulting from the use of Controller 1 diverge
(finite escape-time can be observed in the simulation); the
trajectories resulting from Controller 2 are bounded yet
significant overshoots and oscillations can be observed,
indicating a degradation of transient performance; while
Controller 3 restores the performance of the Baseline case.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed how to apply the congela-
tion of variables method to a class of nonlinear systems
with time-varying parameters. Motivating examples, in
which the time-varying parameters are in the feedback
path and in the input path, are discussed, and inter-
pretations from a passivity perspective are given. Then,
design procedures for nonlinear systems in parametric
strict-feedback form are proposed. These guarantee the
convergence of the state to the origin and the boundedness
of the closed-loop system trajectories. Simulations show
that the proposed controller is robust under the parameter
variations, whereas a classical controller may not prevent
the occurrence of finite escape-time.

Although the method proposed requires state-feedback, it
could be a crucial stepping stone to solve the remaining re-
striction in Chen and Astolfi (2019a) and Chen and Astolfi
(2019b), that is, to allow a time-varying “high-frequency
gain” in the adaptive output-feedback regulation problem,
a problem which is worthy of further investigation.
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