
Approximate Time-Optimal Control
Considering System Bandwidth and

Saturation ?

Yunjie Yang ∗ Yang He ∗,∗∗ Jihong Zhu ∗∗∗

∗Department of Computer Science and Technology, Tsinghua
University, Beijing, China, (e-mail: yyj15@mails.tsinghua.edu.cn)
∗∗ School of Electrical and Information Engineering, Jiangsu

University, Zhenjiang, China, (e-mail: heyang@tsinghua.edu.cn)
∗∗∗Department of Precision Instrument, Tsinghua University, Beijing,

China, (e-mail: Jihong Zhu@hotmail.com)

Abstract: Time-optimal (TO) control is promising in many fields since it ensures to accomplish
a task in minimum time. However, its direct application may cause oscillations or even limit
cycles due to the restriction of the sampling period, state measurement accuracy and so on.
To solve these problems, a compound proximate time-optimal (PTO) control law is proposed
by considering system bandwidth and saturation in this paper. With the help of the phase
plane, the switching zone and linear zone of the PTO control law are constructed. When the
system state lies outside of both switching and linear zones, the bang-bang optimal scheme is
adopted to achieve rapidity. And when the system state enters the switching zone, the bang-bang
suboptimal scheme is developed to avoid oscillations or even limit cycles. Proportional-derivative
(PD) scheme is applied in the linear zone to obtain local asymptotic stability around the origin.
Numerical simulations are carried out to corroborate the advantages of the PTO control law.
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1. INTRODUCTION

Optimal control is a well developed method which aims
to optimize a specific performance index (Bryson (2018)).
Among various forms of optimal criteria, time-optimal
(TO) is a promising one in many fields like mechanical
arms (Herlant et al. (2016)), servo systems (Lu and Shieh
(2014); HU et al. (2018)) and so on. The target of time-
optimal control (TOC) is to transfer the system from an
initial state to a desired state as quick as possible.

Since the control input is bounded generally, the solution
of TOC forms as a bang-bang scheme, which means the
control input constantly switching between its minimum
and maximum values (Bonifacius et al. (2019)). The basic
utilization of TOC is in a dual integrators system, where
the switching curve is a simple quadratic parabola (Rao
and Bernstein (2001); Grimholt and Skogestad (2016)).
However, its direct application to practical systems is not
feasible due to the restriction of the sampling period, state
measurement accuracy and so on. Oscillations or even
limit cycles are possible to occur, which are undesirable
(Dhanda and Franklin (2009)). Adaptive proximate time
optimal servomechanism (PTOS) developed by Workman
et al. (1987a,b) is a widely used technique in addressing
this problem. By replacing the sign function as the satu-
ration function, a region to avoid chattering problems was
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formed. Besides, when the system state approaches the
given target, the linear control is adopted. With these two
strategies, the robustness of the system is strengthened,
but this is at the expense of decreased dynamic perfor-
mance. Choi et al. (2006) proposed a damping scheduling
PTOS (DSPTOS), which keeps the damping coefficient of
the closed-loop system at a predetermined value. There-
fore, by setting different damping in the deceleration phase
and settling phase, it is able to speed up the system
dynamic response while ensuring a smaller overshoot and
weaker residual vibrations. A PTOSωζ tracking controller
was developed for a damped harmonic oscillator. But its
complexity requires a lookup table for the implementation,
which weakens the robustness of the controller in the
application (Braker and Pao (2017)).

Considering the fact that in many rigid systems, the band-
width and saturation limits make the command velocity
hard to be tracked instantaneously. As shown in Fig. 1,
under an inner loop controller, the velocity loop generally
features as the first-order system (Featherstone (2014)).
The velocity saturation and the bandwidth are the two im-
portant factors. Thus the PTOS and its various improve-
ments on the double integrator system cannot be directly
used. Park and Won (1991) derived the TOC switching
curve, but the possible oscillations caused by inaccurately
switch in practical systems are not considered.

In this paper, a compound proximate time-optimal control
(PTO) method is designed for these rigid body systems.
According to the minimum principle (Bertsekas (1995)),
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Fig. 1. Dynamics of rigid body systems

the switching curve becomes a complex logarithmic func-
tion. Since the sampled discrete system states are hard
to accurately switch on a specific curve, we extend the
optimal switching curve into a suboptimal switching zone.
At the inside of the switching zone, the bang-bang subop-
timal scheme is developed, which ensures that the system
accurately reaches the desired target. Besides, inspired
by the above mentioned PTOS, the linear control is also
adopted when the system state error approaches zero.

The remainder of this paper is organized as follows: In
Section 2, the problem is formulated. The time-optimal
control is derived in Section 3. In Section 4, the proximate
time-optimal control is developed. Section 5 analyzes the
stability of the PTO. Numerical simulations are shown in
Section 6. Finally, Section 7 concludes the paper.

2. PROBLEM FORMULATION

As shown in Fig. 1, assume that the velocity loop of the
rigid body system features as a first-order link under an
inner-loop controller, the system to be controlled is

ẋ1 (t) = x2 (t)
ẋ2 (t) = −a · x2 (t) + a · u (t)

x (0) = x0, x (tf ) = 0, |u| ≤ ωm

(1)

where a indicates the system inner-loop bandwidth, ωm

indicates the system velocity saturation, u is the control
input which represents the reference velocity. TOC is to
find a control input u∗(t), such that the system (1) can
transfer from the initial state x0 to the zero point as quick
as possible. The cost function is shown as

min
u

J = tf (2)

However, since direct application of the TOC to practical
systems will lead to oscillations or even limit cycles, our
goal is to develop a robust control law such that the closed-
loop system makes a good compromise between dynamic
response and steady-state precision.

3. TIME-OPTIMAL CONTROL

The Hamilton function of the system (1)∼(2) is written as

H(x(t),u(t),λ(t))
= 1 + λ1(t) · x2(t) + λ2(t) · (−a · x2(t) + a · u(t))

(3)

where λ1 and λ2 are two co-states. According to the
minimum principle, we need to derive u∗ such that

H (x∗, u∗,λ) = min
|u|≤ωm

H (x∗, u,λ) (4)

This is equivalent to

1 +λ1x
∗
2−aλ2x∗2 +aλ2u

∗ ≤ 1 +λ1x
∗
2−aλ2x∗2 +aλ2u (5)

Therefore the optimal control input is given as

u∗ (t) = −sgn (λ2) · ωm (6)

3.1 The Positive Maximum Control Input

When u (t) = ωm, the system states can be derived as{
x1 (t) = x10 + ωmt+

1

a
(x20 − ωm)

(
1− e−at

)
x2 (t) = ωm + (x20 − ωm) e−at

(7)

By eliminating t, the state trajectory is given as

a · (x1 − x10) + (x2 − x20) + ωm · ln
x2 − ωm

x20 − ωm
= 0 (8)

This means that when u(t) = ωm, the system moves
along the trajectory defined by (8) with initial state being
(x10, x20). The switching curve is the one passing through
the origin. By setting (x10, x20) = (0, 0), we have

l1 : a · x1 + x2 + ωm · ln
(

1− x2
ωm

)
= 0 (9)

Fig. 2 shows the state trajectories (8) (blue lines) with
different (x10, x20) and the switching curve (9) (black
lines). When x2 ≤ 0 (black solid line), the system state lies
in l1 will move to the origin with the positive maximum
control. But when x2 > 0 (black dotted line), any system
state lies in l1 will run away from the origin with the
positive maximum control input, which is not desired.
Therefore, only the x2 < 0 part is adopted as part of the
final switching curve.

3.2 The Negative Maximum Control Input

Similar to the derivation of the positive maximum control
input, the set of state trajectories in this case is given as

a · (x1 − x10) + (x2 − x20)− ωm · ln
x2 + ωm

x20 + ωm
= 0 (10)

This means that when u(t) = −ωm, the system moves
along the trajectory defined by (10) with initial state being
(x10, x20). By setting (x10, x20) = (0, 0), the switching
curve is derived as

l2 : a · x1 + x2 − ωm · ln
(

1 +
x2
ωm

)
= 0 (11)

Fig. 2 also shows the state trajectories (10) (blue lines) and
the switching curve (11) (black lines). With the negative
maximum control, l2 values when x2 ≥ 0 (black solid line).
Thus l1 and l2 complement each others’ weakness, the
whole switching curve l1 − o− l2 is formed.

Fig. 2. The state trajectories with maximum control inputs
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Fig. 3. The state trajectories when considering velocity
saturation.

3.3 Saturation Consideration

In a practical system, we should take velocity saturation
into consideration. According to (1), |x2| ≤ ωm. By
considering this point, the trajectories in Fig. 3 reveal the
change of system state under different initial values. The
TOC input is:

u (t) =


ωm, (x1, x2) ∈ SP ∪ l1
0, (x1, x2) = O

−ωm, (x1, x2) ∈ SN ∪ l2
(12)

4. DEVELOPMENT OF PROXIMATE
TIME-OPTIMAL CONTROL

The direct application of TOC to practical systems is not
feasible due to the restriction of the sampling period, state
measurement accuracy and so on. Oscillations or even limit
cycles are possible to occur since the system is hard to
match the single state in the switching curve. To address
this problem, we attempt to extend the optimal switching
curve into a suboptimal switching zone, which is easier to
match. The principle of the switching zone is to ensure
that a sampled system state will enter it, but not directly
strides over. In the switching zone, the control input will
switch to an suboptimal value which can drive the system
moves to the origin. When the position x1 is smaller than
a certain threshold, the system enters the linear zone and
linear control is adopted. The switching zone ensures the
rapidity of the system, and also avoids oscillations and
overshoots. The linear zone ensures a determinately local
asymptotic stability and accurate stay at the origin.

Fig. 4. The switching zone and linear zone for proximate
time-optimal control.

Fig. 4 shows the switching zone and linear zone we are
about to construct. The switching zone includes the region
enclosed by l1 and l∗1 (S̃P ) as well as l2 and l∗2 (S̃N ). The
linear zone is denoted by |x1| < d (SL), where d is a

boundary to be decided. The mathematical expressions
of l∗1 and l∗2 will be developed according to the following
rules:

¬ In the fourth quadrant: The boundary curve

l1
∗ : a · x1 + x2 + ω0 · ln

(
1− x2

ω0

)
= 0 (13)

should ensure that when u (t) = −ωm, the next sample
time state (x̃1, x̃2) after (x∗1, x

∗
2) stays inside of the switch-

ing zone. Namely (x̃1, x̃2) should stay above the curve l1.

­ In the second quadrant: The boundary curve

l2
∗ : a · x1 + x2 − ω0 · ln

(
1 +

x2
ω0

)
= 0 (14)

should ensure that when u (t) = ωm, the next sample time
state (x̃1, x̃2) after (x∗1, x

∗
2) stays inside of the switching

zone. Namely (x̃1, x̃2) should stay below the curve l2.

The deriving of l∗1 will be developed as follows. l∗2 is similar
to that and will be omitted. According to the system state
motion law (7), with u(t) = ωm as the control input and
(x1, x2) ∈ l1 as the initial state, after a sampling period
T , the state (x̃1, x̃2) is x̃1 = x1 + ωmT +

1

a
(x2 − ωm)

(
1− e−aT

)
x̃2 = x2 · e−aT + ωm

(
1− e−aT

) (15)

which means
a · x̃1 + x̃2 = ax1 + x2 − aωmT

= −ωm ln

(
1− x2

ωm

)
− aωmT

(16)

Since
x2 =

[
x̃2 − ωm

(
1− e−aT

)]
eaT (17)

Substituting (17) into (16), we have

a · x̃1 + x̃2 =

= −ωm ln

(
1−

(
x̃2 − ωm

(
1− e−aT

))
ωme−aT

)
− aωmT

= −ωm ln

(
1−

(
1 +

x̃2 − ωm

ωme−aT

))
− aωmT

= −ωm ln

(
eaT

ωm − x̃2
ωm

)
− aωmT

= −ωm

(
aT + ln

(
1− x̃2

ωm

))
− aωmT

= −ωm ln

(
1− x̃2

ωm

)
− 2aωmT

(18)

This means the trajectory formed by (x̃1, x̃2) is

l̃1 : a · x̃1 + x̃2 + ωm ln

(
1− x̃2

ωm

)
= −2aωmT (19)

Fig. 5 shows the relationship among l1, l∗1, and l̃1. There

must exists an intersection (x̃10, x̃20) between l∗1 and l̃1.
The area to the left of the intersection is selected as the
linear zone because l̃1 lies above l∗1. By setting x̃10 = d and
substitute it into (19), we have

a · x̃10 + x̃20 + ωm ln

(
1− x̃2

ωm

)
= −2aωmT

⇒ ln

(
1− x̃20

ωm

)
−
(
− x̃20
ωm
−
(
ax̃10
ωm

+ 2aT

))
= 0

(20)
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Fig. 5. The relationship among l1, l∗1, and l̃1.

By defining

y =
−x̃20
ωm

, b0 =
ax̃10
ωm

+ 2aT (21)

Equation (20) can be expressed as

f (y) = ln (1 + y)− (y − b0) = 0 (22)

The analytic solution of (22) is difficult to be obtained.
Therefore, the simple bisection algorithm can be used to
derive the numerical solution. Once we get the solution y∗,
x̃20 is

x̃20 = −y∗ · ωm (23)
Thus the intersection (x̃10, x̃20) is derived. Now, the in-
tersection is used to derive the boundary curve l∗1. By
substituting (x̃10, x̃20) into (13), we have

a · x̃10 + x̃20 + ω0 · ln
(

1− x̃20
ω0

)
= 0

⇒ ln

(
1− x̃20

ω0

)
−
(

1 +
ax̃10
x̃20

)
·
(
− x̃20
ω0

)
= 0

(24)

By defining

k =

(
1 +

ax̃10
x̃20

)
, z = − x̃20

ω0
(25)

Equation (24) can be expressed as

f (z) = ln (1 + z)− k · z = 0 (26)

Similarly, the bisection algorithm can be used to derive
the numerical solution of (26). With the derived z∗, ω0 is

ω0 = − x̃20
z∗

(27)

Thus the boundary curve l∗1 is obtained, the switching zone
is now constructed.

To ensure any state within the switching zone enters the
linear zone, we derive a control input u (t) = ωc ∈ [ω0, ωm]
such that the system moves along the trajectory:

a · x1 + x2 + ωc · ln
(

1− x2
ωc

)
= 0 (28)

Rewrite (28) as

ln

(
1− x2

ωc

)
= −ax1 + x2

ωc
=

(
1 +

ax1
x2

)
·
(
−x2
ωc

)
(29)

Similarly, by defining

k = 1 +
ax1
x2

, w = −x2
ωc

(30)

Equation (30) can be expressed as

f (w) = ln (1 + w)− k · w = 0 (31)

Also using the bisection algorithm, the control input is
derived as

ωc = − x2
w∗

(32)

The above analysis aims at the fourth quadrant. For the
second quadrant, the results can be easily derived because
of symmetry. For the system state inside of the switching
zone enclosed by l2 and l∗2 (S̃N ), the control input u (t) =
−ωc ∈ [−ωm,−ω0] is similarly derived according to the
trajectory

a · x1 + x2 − ωc · ln
(

1 +
x2
ωc

)
= 0 (33)

The details are omitted here. With the control input
u (t) = −ωc, the system state inside of the switching zone
enclosed by l2 and l∗2 will move along the trajectory (33).

The last thing needs to be concerned is the linear zone. The
threshold d should be determined by different performance
requirements. The control input of the linear zone is

u(t) = −k1 · x1 − k2 · x2 (34)

where k1 and k2 are two adjustable parameters.

As a whole, the compound PTO control law is

u (t) =



ωm, (x1, x2) ∈ SP ∪ l1
−ωc · · · (33) , (x1, x2) ∈ S̃N ∪ l∗2
PD · · · (34) , (x1, x2) ∈ SL

0, (x1, x2) = O

ωc · · · (28) , (x1, x2) ∈ S̃P ∪ l∗1
−ωm, (x1, x2) ∈ SN ∪ l2

(35)

We call control inputs in the regions SN and SP as the
bang-bang optimal schemes, control inputs in the regions
S̃N and S̃P as the bang-bang suboptimal schemes, and
control input in the region SL as the linear scheme.

5. STABILITY ANALYSIS

The PTO control involves two switches, one is from the
bang-bang optimal scheme to the bang-bang suboptimal
scheme, and the other is from the bang-bang suboptimal
scheme to the linear scheme. Take the fourth quadrant as
the example, stability analysis is shown as follows.

Fig. 6 shows the system trajectory evolution when initial
state lies in the fourth quadrant. With u (t) = −ωm, the
system crosses over the curve l∗1 and enters the switching

zone. Because the boundary cure l∗1 lies above l̃1 when
|x1| > d, once the system state enters the switching zone,
it must satisfy

Fig. 6. The trajectory evolution when initial state lies in
the fourth quadrant.
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
a · x1 + x2 + ωm · ln

(
1− x2

ωm

)
≥ 0

a · x1 + x2 + ω0 · ln
(

1− x2
ω0

)
≤ 0

(36)

Equation (36) means that the system will stay in the
switching zone at a certain sampling time. In the switching
zone, the control input switches to u (t) = ωc ∈ [ω0, ωm].
As the blue curve shown in Fig. 6, the system moves along
the trajectory (28), and enters the linear zone at last.

In the linear zone, the closed-loop system performs as{
ẋ1 = x2
ẋ2 = −ak1x1 − a (1 + k2)x2

(37)

By setting the Lyapunov candidate as

V (x1, x2) = ak1 · x21 + x22 (38)

We have

V̇ = 2ak1x1x2 + 2x2 [−ak1x1 − a (1 + k2)x2]

= −2a (1 + k2)x22
(39)

Thus V > 0 and V̇ ≤ 0 if 1 + k2 > 0, k1 > 0. Since
x2 = 0⇒ x1 = 0, the system is local asymptotically stable.
Therefore, the whole system is stable with the developed
PTO control law.

6. NUMERICAL SIMULATION

In this section, numerical simulations are conducted
among the PTO, TO, and PD controllers to compare their
performances. Assume that the velocity loop bandwidth
is 30Hz and rated speed is 300mm/s, the position range
is ±50mm. With a 2ms sampling period, the step signal,
ramp signal and sinusoidal signal are tested in following
subsections. The parameters of controllers are carefully
adjusted by the Ziegler-Nichols method. In the PD con-
troller, kp = 356 and kd = 1.15. In the TO controller, the
maximum control input is set as the rated speed 300mm/s.
In the PTO controller, the boundary of linear zone is set
as the 1% of the position range, namely 0.5mm. And in its
linear zone, k1 = 323 and k2 = 3.6.

6.1 Step Command Signal

A 5mm step signal, which is 10% of the position range,
is commanded in this case. Fig. 7 shows the system
responses with the TO, PD, and PTO controllers. With
the TO controller, it can be seen that there exist persistent
oscillations in the steady-state phase. This phenomenon
is eliminated by the PD controller, but with the same
overshoot, it takes 31% more adjustment time than the
PTO. The PTO controller combines the advantages of
both controllers, it features with a more stable steady-
state phase compared with the TO controller and a quicker
dynamic process compared with the PD controller. The
trajectories of system control error shown in Fig. 8 also
confirm this point.

6.2 Ramp Command Signal

A ramp signal, which linearly increases from 0 to 30mm
with a slope of 200mm/s, is commanded in this case.
Figs. 9 and 10 show the system position and velocity
responses. And Fig. 11 shows the system control error

Fig. 7. The position responses under step signal.

Fig. 8. The state error trajectories under step signal.

trajectories. Similarly, it can be seen that there also
exist series position and velocity oscillations with the
TO controller. And the PD controller delays a large
value about the command signal. The developed PTO
controller makes a good compromise between dynamic and
steady-state characteristics: the command signal is tracked
smoothly in a short time, and the state error trajectory
reaches zero without any oscillation.

Fig. 9. The position responses under ramp signal.

Fig. 10. The velocity responses under ramp signal.

6.3 Sinusoidal Command Signal

A sinusoidal signal, with a magnitude of 5mm and a
frequency of 5Hz, is commanded in this case. Figs. 12
and 13 show the system position and velocity responses.
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Fig. 11. The state error trajectories under ramp signal.

Fig. 12. The position responses under sinusoidal signal.

Fig. 13. The velocity responses under sinusoidal signal.

Fig. 14. The state trajectories under sinusoidal signal.

And Fig. 14 shows the system state trajectories, which
indicate that the system with the TO controller is much
fluctuant than that with the PD and PTO controllers.
With the TO controller, there is basically no phase delay
but oscillations exist. With the PTO controller, the phase
delay is about 4.5◦, which is only 55.5% of the phase delay
with the PD controller (about 8.1◦).

7. CONCLUSION

This paper focuses on the proximate time-optimal con-
trol for rigid body systems, whose velocity dynamics are
assumed as a first-order inertial link under the inner-loop
controller. The optimal switching curves are extended into
a suboptimal switching zone. The goal is to ensure that

a sampled state will stay in this zone, but not directly
strides over. At the inside of the switching zone, the bang-
bang suboptimal scheme is developed. When the position
signal is smaller than a certain threshold, the system enters
the linear zone and the linear scheme is adopted. The
numerical simulations indicate the advantages of our work:
Compared with the TO, our PTO avoids oscillations and
overshoots. And compared with the PD, our PTO has a
shorter adjustment time and a quicker dynamic response.
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