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Abstract:
This paper proposes a dynamic controller for a swarm of unicycle robots following a desired
trajectory and maintaining a prescribed formation. Furthermore, a comparison of the proposed
dynamic controller versus a traditional static feedback controller is presented.The stability
analysis of the closed loop system is determined by using the Lyapunov stability theory and the
theoretical results are numerically illustrated. Also a comparison in terms of energy, between
the proposed dynamic controller and the classical static feedback controller is provided.
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1. INTRODUCTION

There are several works addressing the multi-agent co-
ordination problem, from which two approaches can be
distinguished: centralized and decentralized schemes. In
a centralized scheme, there is a central computer which
computes the control laws and send them to the involved
agents. On the other hand, in a decentralized scheme, each
agent has its own computer on board to calculate the
corresponding control law and also to communicate with
other agents.

There are also different directions which sometimes they
overlap to offer better solutions; two of these directions
are: consensus and distributed formation, see (Cao et al.,
2013). In consensus, all the agents reach to a common
agreement, see (Olfati and Murray, 2004). On the other
hand, in distributed formation, all the agents form a
geometrical pre-designed figure through local interactions,
see (Pavone and Frazzoli, 2007) and (Ren, 2009). We use
these directions in this work, but our main direction is
consensus. In this context, synchronization appears as a
solution to keep a coordination between the agents or
systems. To achieve this, it is essential that the agents in
the network communicate each other by a channel, which
is called coupling, which can be either static or dynamic.

The static couplings are constructed with the weighted
differences between the states of the involved systems, i.e.
in this case the interaction between the agents is direct,
see e.g. (van de Wouw et al., 2017). This coupling is often
used to synchronize pairs or groups of systems, see e.g.
(Gutierrez et al., 2017), (Morales and Nijmiejer, 2016),
and (Pereira et al., 2014).
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On the other hand, when the coupling is dynamic, then
the interaction between the agents in the network is
indirect. Furthermore, the behavior of the coupling signal
is governed by a dynamical system, cf. (Suykens et al.,
1997).

According to (Pena Ramirez et al., 2018), both couplings
have their own advantages and disadvantages. The static
couplings have the advantage that its implementation
is relatively easy but, for certain systems, this type of
coupling fails to induce synchronization or synchronization
can be induced in the network only for a narrow interval
of coupling strength values. On the other hand, a dynamic
coupling seems to solve these limitations but this type of
coupling requires to increase the number of equations at
each node.

In this work we present the design of a novel dynamic
controller for inducing synchronized/cooperative behavior
in a swarm of unicycle robots. The proposed controller
is based on our previous work (Gutierrez et al., 2017),
were the derived controller was static. The stability of the
closed-loop system is formally studied and a comparison
of the obtained results to those obtained when using
the static controller are provided. The outcome of the
comparison suggest that the energy consumption of the
proposed controller is smaller than the consumption of the
static controller.

The outline of the paper is as follows. First, the mathemat-
ical preliminaries and the problem statement are presented
in Section 2. Next, Section 3 introduces the proposed
controller, and then in Section 4, the performance of the
controller is numerically investigated. Finally, some con-
clusions are presented in Section 5.
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2. PRELIMINARIES AND PROBLEM STATEMENT

Consider a network composed by N unicycle robots, which
keep a formation via a virtual structure scheme. The
kinematic model describing the time evolution of each
agent in the network is given by

q̇i =

[
cos θi 0
sin θi 0

0 1

] [
vi
ωi

]
, (1)

where qi(t) = [xi(t), yi(t), θi(t)]
T is the pose of each robot

respect to a global reference frame (GRF), the control
inputs vi and ωi are the linear and angular velocities of
the robot, respectively. Furthermore, each robot has the
following well-known nonholonomic constraint

ẏi cos θi − ẋi sin θi = 0, (2)

which implies that the unicycle can only move forwards
and backwards.

The main idea of the virtual structure is that a swarm of
N agents keeps a formation where each one has a position,
pi = [pxi , p

y
i ]T (i = 1, . . . , N), see Fig. 1, with respect to

the virtual center (VC) of the formation meanwhile the
VC follows a desired trajectory respect to the GRF. This
desired trajectory is denoted by the orange dashed line
in Fig. 1 and is given by qvc = [xrvc, y

r
vc, θ

r
vc]

T , where
xrvc and yrvc are the position of the VC on the x and y
axis, respectively, and θrvc the orientation of the virtual
structure.

According to (Gutierrez et al., 2017), there is a procedure
for designing the control signals vi and ωi for each robot.
In what follows we briefly summarize the procedure.
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r
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Fig. 1. Virtual structure scheme. The robots are located
in positions respect to the virtual center (VC).

The reference trajectory, qri (t) = [xri (t), y
r
i (t), θ

r
i (t)]

T (i =
1, . . . , N), for each robot with respect to the GRF, is given
by

qri (t) =

[
pri (t)
θri

]
=

prvc(t) + R(θrvc)pi

arctan

(
ẏri
ẋri

)  , (3)

where pri (t) = [xri , y
r
i ]
T is the reference position of each

robot, prvc(t) = [xrvc, y
r
vc]

T is the position of the VC respect
to GRF and R(θrvc) ∈ R2×2 is a rotational matrix which
is given by

R(θrvc) =

[
cos θrvc − sin θrvc
sin θrvc cos θrvc

]
. (4)

In Eq. (3) the orientation (θri ) of each robot depends on
the reference velocities on each axis. This velocities can be
obtained by

ṗri = ṗrvc + θ̇rvcSR(θvc
r)pi, i = 1, . . . , N, (5)

where S is a 2× 2 skew-symmetric matrix given by

S =

[
0 −1
1 0

]
. (6)

Solving (2) for θi and comparing to (3), it can be seen
that the reference trajectory for each robot has the same
constrain for the unicycle. Therefore, each trajectory has
the same kinematic model for the unicycle, i.e.

q̇ri =

[
cos θri 0
sin θri 0

0 1

] [
vri
ωri

]
, i = 1, . . . , N. (7)

This implies that we need to know the reference velocities
vri and ωri . This velocities can be obtained by

vri = ‖ṗri ‖2, ωri = −〈ṗ
r
i ,Sp̈ri 〉
〈ṗri , ṗri 〉

, i = 1, . . . , N, (8)

where ṗri and S are defined in (5) and (6), respectively,
and

p̈ri = p̈rvc +

(
¨θrvcS−

(
θ̇rvc

)2
I2×2

)
R(θrvc)pi, (9)

for i = 1, . . . , N , with I2×2 as the identity matrix. Finally,
the tracking errors are defined by[

ei
eθi

]
=

[
RT (θi) 02×1

01×2 1

]
(qri − qi) , i = 1, . . . , N, (10)

where ei = [exi , eyi ]
T is the error in position, eθi is the

error in orientation, and R(θi) is the rotational matrix
respect to the GRF for the i-th robot which is given by

R(θi) =

[
cos θi − sin θi
sin θi cos θi

]
, i = 1, . . . , N. (11)

The tracking error dynamics can be obtained by the
derivative of (10) and taking in account the kinematic
models of the unicycle robot (1) and the reference tra-
jectory (7). Therefore the error dynamics are given by[

ėi
ėθi

]
=

[
ωiSei + GiVi

ωri − ωi

]
, i = 1, . . . , N, (12)

where Vi = [vri , vi]
T and

Gi =

[
cos eθi −1
sin eθi 0

]
, i = 1, . . . , N. (13)

As it can be seen, the errors on the GRF are transformed
to the robot reference frame (RRF), in (10), for easing the
computing of the control law, see Gutierrez et al. (2017).
In the same reference, the authors define coupling errors
which are given by

εxij
= exi

− exj
, (14)

εyij = eyi − eyj , (15)

where εxij
and εyij are the coupling errors for the x-axis

and y-axis, respectively.

For each robot, the proposed controller in Gutierrez et al.
(2017) is as follows
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vi =vri cos eθi + kxi exi
+ Cxi

N∑
j=1,j 6=i

εxij
, (16)

ωi =ωri + kθi eθi +
K

αi
vri k

y
i eyi sinc eθi+

+
K

αi
vri

Cyi N∑
j=1,j 6=i

εyij

 sinc eθi , (17)

for i = 1, . . . , N , where εxij
and εyij are defined in (14)

and (15), respectively, kxi > 0, kyi > 0, kθi > 0 are gains
of the nonlinear controller for the errors in x, y and θ,
respectively, Cxi > 0 and Cyi > 0 are the gains for the
coupling errors on x-axis and y-axis, respectively, and

αi =

√√√√K2 + e2xi
+ e2yi +

N∑
j=1,j 6=i

(
ε2xij

+ ε2yij

)
. (18)

for i = 1, . . . , N , with K > 0 as a factor that avoids
an indefiniteness of (17) when exi = exj = eyi = eyj =
0, ∀ j 6= i . In this case αi is also affected by the coupling
errors.

The weighted sums in (16) and (17) are the static couplings
on the x-axis and y-axis, respectively.

2.1 Problem statement

The controllers (16) and (17) proposed in (Gutierrez et al.,
2017) consists of two parts: a static feedback for inducing
tracking of a desired trajectory (the terms that contain
eθi , exi

, and eyi) and a static coupling for achieving
synchronization of the robots (the terms containing εxij

,
εyij ).

In this work, the objective is to replace the static couplings
in (16) and (17) by a first order dynamic coupling. The rea-
son behind this is to investigate whether the performance
of the controller is improved by using dynamic couplings
or not.

3. PROPOSED CONTROLLER

The proposed controller, which indeed is a modification of
controller (16),(17), is described by

vi =vri cos eθi + kxi exi
+ Cxi zxi

, (19)

ωi =ωri + kθi eθi +
K

αi
vri k

y
i eyi sinc eθi , (20)

for i = 1, . . . , N , where zxi
is the coupling variable, which

is dynamically generated by

żxi
= −αxzxi

+ µx

N∑
j=1,j 6=i

Lxijεxij
, (21)

where αx > 0 is a design parameter, µx > 0 is the coupling
strength, and Lij denotes the weighted interaction between
system i and j.

The rest of parameters in (19)-(20) are as defined in
(16),(17), and αi is redefined as

αi =
√
K2 + e2xi

+ e2yi , i = 1, . . . , N. (22)

Remark 1. Note that both controllers (16) and (17) con-
tain a static coupling: vi contains a term depending on

εxij , whereas ωi contains a term that depends on εyi .
However, in the proposed controller, see (19)-(20), the
static coupling in vi has been replaced by the dynamic
coupling (21), but the static part in ωi has been neglected,
i.e. we have set Cyi = 0. Therefore, with the proposed
controller, the interaction between the robots is minimal.

By replacing (19)-(20) into (12), it follows that the track-
ing error dynamics are given by

ėxi = eyiωi − kxi exi − Cxi zxi , (23)

ėyi = vri sin eθi − exi
ωi, (24)

ėθi = −kθi eθi −
K

αi
vri k

y
i eyi sinc eθi , (25)

żxi = −αxzxi + µx

N∑
j=1,j 6=i

Lxijεxij , (26)

for i = 1, . . . , N , and ωi is as given in (20). Furthermore,
zxi has been considered as an ‘error’ because when the
systems synchronize then zxi converges asymptotically to
zero.

3.1 Stability Analysis

The stability of the system (23)-(26) is established by the
following theorem:

Theorem 1. Consider a network ofN unicycle robots given
by (1) with control inputs (19)-(20) and dynamic controller
(26). Then, if the controller gains (kxi , kyi , k

θ
i , K and Cxi )

and the coefficients of the dynamic coupling are positive,
i.e. αx > 0 and µx > 0, then the origin of the close-loop
dynamic (23)-(26) is globally asymptotically stable.

Proof. Let’s define ζ(t) = [eTx , e
T
y , e

T
θ , z

T
x ]T , with ex(t) =

[ex1
(t), . . . , exN

(t)]T , ey(t) = [ey1(t), . . . , eyN (t)]T , eθ(t) =
[eθ1(t), . . . , eθN (t)]T , zx(t) = [zx1(t), . . . , zxN

(t)]T .

The stability of the system (23)-(26) can be established by
the following quadratic Lyapunov function

V (ζ(t)) =

N∑
i=1

[
Kkyi αi +

1

2

(
e2θi + z2xi

)
−K2kyi

]
, (27)

where αi is as given in (22). It can be seen that V (0) = 0
and V (ζ(t)) > 0 ∀ ζ(t) 6= 0, therefore (27) is positive
definite.

The time derivative of (27) is given by

V̇ =

N∑
i

[
Kkyi
αi

(exi
ėxi

+ eyi ėyi) + zxi
żxi

+ eθi ėθi

]
,

=

N∑
i

[
Kkyi
αi

(
−kxi e2xi

− Cxi exizxi

)
− αxz2xi

+

+µxzxi

N∑
j=1,j 6=i

Lxij
(
exi
− exj

)
− kθi e2θi

 . (28)

Equation (28) can be written in a compact form as follows

V̇ =− eTxΓαiKxex − eTxΓαiCxzx − αxzTx zx+

+ µxz
T
xLxex − eTθ Kθeθ,

=− ξTΓLξ − eTθ Kθeθ, (29)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3176



where ξ =
[
eTx , z

T
x

]T
, Kθ = diag

[
kθ1 , . . . , k

θ
N

]
and

L =

[
Kx Cx

−µxLx αxI
N×N

]
, Γ = diag

[
Γαi , IN×N

]
,

Γαi = diag

[
Kky1
α1

, . . . ,
KkyN
αN

]
, (30)

with Kx = diag [kx1 , . . . , k
x
N ], Cx = diag [Cx1 , . . . , C

x
N ] and

Lx is the Laplacian matrix for the connections on the x-
axis.

It can be seen that Γαi
ii ∈ (0, kyi ] , (i = 1, . . . , N), therefore

Γαi is bounded and positive definite. The matrix L is
positive definite for µx > 0 for all of kind of connectivities,
therefore the product ΓL is definite positive. Also the
matrix Kθ is positive definite due to kθi > 0, (i =
1, . . . , N). Therefore, the system (23)-(26) is stable in

terms of the tracking errors because V̇ (ζ) ≤ 0 ∀ ζ =[
0N×1, eTy ,0

N×1,0N×1
]T

.

We now need to demonstrate that the system (23)-(26)
converges globally asymptotically to zero. That’s why we
use the Barbalat’s Lemma to prove it, see Khalil (2018).
By integrating (29), we have the following bounds

0 ≥
∫ ∞
0

dV (ζ(t)) = −
∫ ∞
0

[
ξTΓLξ + eTθ Kθeθ

]
dt, (31)

where V (ζ(t)) is lower bounded by the initial conditions
(ζ(0) = [exi

T (0), ey
T (0), eθ

T (0), zx
T (0)]T ), i.e. exists and

it is finite. Considering a subset where the errors are all of
them bounded, we obtain

lim
t→∞

[
ξTΓLξ + eTθ Kθeθ

]
= 0, (32)

which implies

lim
t→∞

[‖ξ‖1 + ‖eθ‖1] = 0. (33)

It is necessary to prove that the only solution of the system
(23)-(26) is (exi

, eyi , eθi , zxi
) = (0, 0, 0, 0) when t→∞. To

achieve this, we use the dynamic of eθi as in Gutierrez
et al. (2017)

ėθi = −kθi eθi −
K

αi
kyi v

r
i eyi sinc eθi , i = 1, . . . , N, (34)

where, according to (33), exi = eθi = 0, (i = 1, . . . , N),
for t→∞. Therefore, we have

lim
t→∞

ėθi = lim
t→∞

−K
αi
kyi v

r
i eyi = 0, i = 1, . . . , N, (35)

which implies that the only solution is eyi = 0 (i =
1, . . . , N) for which (35) is true. Therefore, we conclude
that the origin of the system (12) with controls (19)-(20)
is globally asymptotically stable.

4. NUMERICAL RESULTS

We conducted some simulations to compare the results
between the static controller and the proposed dynamic
controller in a pair of unicycle robots. For the simulations
we consider the time interval 0 ≤ t ≤ 200 [s], with a
time step of 1 [ms] and using the Euler step as integra-
tion method. Also we use the controller gains reported in
Gutierrez et al. (2017). The values for the nonlinear con-
trollers are kxi = 5 [s−1], kθi = 2 [s−1], kyi = 100 [rad/m2]
and K = 1 [m] (i = 1, 2), and the gains for both couplings
are in Table 1.

Table 1. Gains and parameters for couplings.

Static coupling Value Dynamic coupling Value

Cx [s−1] 5 αx [s−1] 10
Cy [s−1] 100 µx [−] 20

Cx
i [s−1] 1

Lx
ij , i, j = 1, 2 [s−1] 1

The desired trajectory (qvc) for the VC is a circumference
whose ratio is 1 [m] and a circuit period of 100 [s]. On
the other hand, we compute the reference orientation for
each robot θri by integrating the angular velocity ωri due
to the tangent function is a discontinuous function, i.e.
tan θri ∈ (−π, π) and we need the desired trajectory to be
continuous. The positions of each robot are p1 = [−0.3, 0]
and p2 = [0.3, 0] respect to the VC and their initial
conditions are q1 = [0, 0, π]T and q2 = [0.5,−0.5, 0]T .

The desired trajectory as well as the real trajectory for
each robot are shown in Fig. 2 where the x markers indicate
the initial conditions. These results have a perturbation in
the linear velocity of the first car which simulates there
is an obstacle that prohibits its linear movement. This
disturbance is applied at t = 150 [s] during 20 [s].

The results corresponding to the static coupling (original
controller) are depicted in Fig. 3a, whereas those obtained
with the proposed controller are shown in 3b. It can be
seen that in both cases the robots achieve their respective
trajectories and after the perturbation the first robot
describes a line and achieves its trajectory faster with
the static controller compared to the dynamic controller.
However, for the second robot, the things are different:
with the dynamic controller the second robot achieves its
trajectory faster than with the static coupling because the
perturbation affects little bit to the secon robot with the
dynamic coupling.

Next, we compare the tracking errors for x−axis (exi), y−
axis (eyi) and orientation (eθi). These errors are shown in
Fig. 3. For both couplings, the errors on x−axis as shown
in Figs. 3a-b. But, there are some differences for the errors
on y − axis and orientation between both couplings, as
depicted in Figs. 3c-f. The errors eyi and eθi (i = 1, 2) are
smaller with a static coupling than those with a dynamic
coupling. Perhaps these differences appear due to the fact
that the proposed dynamic controller only appears in vi
but not in ωi.

On the other hand, Fig. 4 shows the synchronization errors
εxij . It can be seen that the errors converge also to zero
at the beginning and during perturbation, see Fig. 4a.
Furthermore, the dynamic couplings also converge to zero,
as presented in Fig. 4b.

We have observed that the proposed dynamic coupling
reduces the velocities (linear and angular) that each robot
needs to achieve their trajectories, see Fig. 5. It can be
seen that the velocities are similar for both couplings once
errors converge to zero. But there are differences between
both results at the beginning and during perturbation. In
fact, as can be seen from Figs. 5b and 5d, the values of the
instant velocities are smaller with the dynamic coupling
than with the static coupling.

Finally, we perform a numerical study about the energy of
the velocities vi and ωi (linear and angular) to determine
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Fig. 2. XY phase plane. Panel a) Results obtained with
the static controller (16)-(17). Panel b) Results for
the proposed controller (19)-(20).

which coupling has the best performance from an energetic
view point.

According to Oppenheim et al. (1997), we define the
following energy functions to compute the energy of these
signals at each instant of time.

Evi(t) =

∫ t

0

|vi(τ)|2dτ, i = 1, 2, (36)

Eωi
(t) =

∫ t

0

|ωi(τ)|2dτ, i = 1, 2. (37)

The results are shown in Fig. 6. It can be seen that the
energy of both velocities are smaller with the dynamic
coupling than with the static coupling, even when a per-
turbation is applied, from 150 to 170 seconds. According
with these results, we draw the conjecture that using the
proposed dynamic coupling yields to a reduction in the
energy required by the controller to achieve the required
synchronization task.

5. CONCLUSIONS

We presented a control strategy to couple two or more
unicycle robots, which allows keeping a formation while
following a prescribed trajectory. The numerical results
presented here suggest that the energy needed to keep
the robots within the formation is smaller if the coupling
between the systems is dynamic rather than static.

Another advantage of the proposed controller is that
minimal interaction between the robots is required. In
our previous work (Gutierrez et al., 2017), the robots
were coupled via two variables. However, in the dynamic
controller proposed here, the robots interact through only
one variable.
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On the other hand, the proposed controller requires to
increase the number of equations in the system because
at each node we have to add one extra equation for the
dynamic coupling. This fact may be seen as disadvantage
for a centralized distribution because the computing time
may increase as the number of robots increases. It is worth
mentioning that the stability proof only takes into account
the tracking errors. Currently, we are extending this proof
in order to also consider the synchronization errors.
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Fig. 5. Velocities for each robot. Panels a) and b) are
for linear velocities at the beginning and during the
perturbation, respectively, and panels c) and d) are
for angular velocities. Similar to Fig. 3, left panels
are for the errors at the beginning and right panels
are the errors during perturbation.
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Fig. 6. Energies obtained from vi and ωi. Panel a) is for
linear velocities and panel b) is for angular velocities.
In both cases, the energy level is smaller for the case
where the robots interact via the proposed dynamic
controller.
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