
A Dynamic Method to Solve the Fixed
Charge Network Flow Problem ?

Zhibin Nie ∗ Shuning Wang ∗∗

∗National Laboratory for Information Science and Technology,
Department of Automation, Tsinghua University, Beijing 100084,

China. (e-mail: nzb15@mails.tsinghua.edu.cn).
∗∗National Laboratory for Information Science and Technology,
Department of Automation, Tsinghua University, Beijing 100084,

China. (e-mail: swang@mail.tsinghua.edu.cn)

Abstract: This paper studies the widely applied fixed charge network flow problem (FCNFP),
which is NP-hard. We approximate the FCNFP with a bilinear programming problem that is
determined by a parameter ε. When ε is small enough, the optimal solution to the bilinear
programming problem is the same as the optimal solution to the FCNFP. Therefore, solving
the FCNFP can be transformed into solving a series of bilinear programming problems with
decreasing ε. In this paper, these bilinear programming problems are solved by alternately
solving two coupled linear programming problems. A dynamic method is proposed to update
ε after solving one of the linear programming problems rather than solving the whole bilinear
programming problem. Numerical experiments show the performance of the proposed method.

Keywords: Network flow problem, Fixed charge, Bilinear programming, Dynamic method.

1. INTRODUCTION

The fixed charge network flow problem (FCNFP) is widely
applied in the field of network optimisation, in areas such
as network design (Paraskevopoulosa et al. (2016)), pro-
duction planning (Nasiri et al. (2014)), inventory man-
agement (Hovav and Tsadikovich (2015)) and transporta-
tion science (Moghaddam et al. (2019)). Theoretically, the
FCNFP minimises the concave total cost function under
linear constraints and is therefore NP-hard (Guisewite and
Pardalos (1990)).

By adding a 0-1 variable for each arc to indicate whether
there is some flow passing through, the FCNFP can be
modelled as a mixed-integer linear programming (MILP)
problem and then be solved exactly by branch-and-
bound algorithms (F. Ortega (2003); Kowalski et al.
(2014);Fontes et al. (2006);Palekar et al. (1990);G. Bernard
(2014)). Another exact method is the vertex ranking algo-
rithm (Murty (1968)), which is based on the property that
the optimal solution to the concave minimisation problem
on a convex polyhedron can be found at one of the vertices
of the feasible region. However, these exact algorithms
are only applicable to small-scale FCNFPs because their
computational complexity increases exponentially with the
problem scale. For large-scale FCNFPs, the calculations
become unacceptably large.

A huge variety of heuristic algorithms have been pre-
sented to search for a suboptimal solution for large-scale
FCNFPs. Walker (1976) proposed the heuristic adjacent

? This project was supported by the National Natural Science
Foundation of China (No. 61473165, U1813224) and the Science and
Technology Innovation Committee of Shenzhen Municipality, China
(JCYJ2017-0811-155131785).

extreme point algorithm, which escapes a local optimum
by jumping over adjacent extreme points to resume it-
erating two or three extreme points away. Kim et al.
(2006) and Kim and Pardalos (1999) proposed a dynamic
slope scaling procedure (DSSP) to approximately solve the
FCNFP. The DSSP transforms the FCNFP into a linear
programming problem that is updated dynamically as the
algorithm progresses. Nahapetyan and Pardalos (2008)
transformed the FCNFP into a series of bilinear program-
ming problems and then solved them by the adaptive
dynamic cost updating procedure (ADCUP). Rebennack
et al. (2009) combined the ADCUP with the branch-
and-bound method. They used the ADCUP to find a
suboptimal solution and then employed the suboptimal
solution as a starting point to solve the FCNFP exactly by
the branch-and-bound algorithm. Other classical heuristic
methods (Lotfi and Moghaddamb (2013);Sherbiny and Al-
hamali (2013);Fontes and Goncalves (2007);Adlakha and
Kowalski (2010);Hewitt et al. (2010)), such as the genetic
algorithm and the particle swarm algorithm, were also
applied to solve the FCNFP.

In these heuristic algorithms, the ADCUP has been proven
to be very efficient. The objective function of the FCNFP
is f =

∑
a∈A fa, where A is the set of arcs and fa is

the cost function for arc a. In the ADCUP, the original
cost function fa with a fixed charge is underestimated
by a piecewise linear function φεaa with parameter εa.
The smaller εa is, the smaller the difference between
φεaa and fa. Let ε be the parameter vector consisting
of all elements in set {εa|a ∈ A}. Then, the FCNFP
can be approximated as a bilinear programming problem
with parameter ε. Moreover, when ε is small enough,
the FCNFP is equivalent to the bilinear programming

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 11382



problem. The ADCUP is an iterative algorithm. In each
iteration, the ADCUP applies the dynamic cost updating
procedure (DCUP) to find a locally optimal solution of
the bilinear programming problem and then reduces the
parameter ε based on the obtained solution until ε is
small enough. This means that the ADCUP needs to
implement a complete DCUP for each fixed ε, which is
not efficient enough. Structurally, the DCUP consists of
solving a series of coupled linear programming problems.
To accelerate the update of ε, we propose the dynamic
problem-updating procedure (DPUP), which updates ε
after solving one linear programming problem instead of
implementing the complete DCUP. In other words, the
DPUP updates ε much more efficiently than the ADCUP.
The quality of the solution obtained by the DPUP is also
verified experimentally.

This paper is organised as follows: Section 2 formulates
the FCNFP and approximates it as a bilinear program-
ming problem. Section 3 presents the continuous bilinear
algorithm and the DPUP. The validity and convergence of
the DPUP are also analysed. Section 4 verifies the perfor-
mance of the DPUP by numerical experiments. Section 5
concludes the paper.

2. PRELIMINARIES

2.1 The FCNFP

Let G = (N,A) be a directed network with n nodes and m
arcs, where N is the set of nodes and A is the set of arcs.
Each arc a ∈ A is associated with a flow xa, a capacity ua,
and a cost function fa(xa). In the FCNFP, fa(xa) consists
of two parts, the fixed cost sa and the variable cost caxa,
where ca is the unit cost. Therefore, fa(xa) is discontinuous
and can be expressed as

fa(xa) =

{
0 xa = 0,

sa + caxa xa ∈ (0, ua].
(1)

Let x be the flow vector, B be the node-arc incidence
matrix of G, and b be the node supply vector. The FCNFP
can be formulated as the following problem:

FCNFP: min
x

f(x) =
∑
a∈A

fa(xa)

s.t. Bx = b

0 ≤ x ≤ u,

(2)

where x, u ∈ Rm, b ∈ Rn, and B ∈ Rn×m.

2.2 Approximation to the FCNFP

To address the discontinuity of fa(xa), we approximate
fa(xa) as a continuous concave piecewise linear function

φεaa (xa) =

{
cεaa xa xa ∈ [0, εa) ,

sa + caxa xa ∈ [εa, ua],
(3)

where cεaa = ca + sa/εa.

Plots of fa(xa) and φεaa (xa) are shown in Fig. 1. We can
see that φεaa (xa) is an underestimate of fa(xa). Specifically,
we have φεaa (xa) < fa(xa) for xa ∈ (0, εa) and φεaa (xa) =
fa(xa) for xa ∈ 0 ∪ [εa, ua].

For any ε with εa ∈ (0, ua],∀a ∈ A, a continuous piecewise
linear network flow problem (CPLNFP) is defined as
follows:

Fig. 1. Plots of fa(xa) and φεaa (xa).

CPLNFP(ε) : min
x

φε(x) =
∑
a∈A

φεaa (xa)

s.t. Bx = b

0 ≤ x ≤ u.

(4)

CPLNFP(ε) is an approximation to the FCNFP. More-
over, Nahapetyan and Pardalos (2008) has proven that,
for sufficiently small ε, CPLNFP(ε) is equivalent to the
FCNFP.

Let V be the set of vertices in the feasible region of the
FCNFP. We define δ as δ = min{xa|x ∈ V, xa > 0, a ∈ A}.
Let xε (x∗) be the optimal solution to CPLNFP(ε) (the
FCNFP). The following theorem shows the relationship
between CPLNFP(ε) and the FCNFP.

Theorem 1. (Nahapetyan and Pardalos (2008)). For any ε
with εa ∈ (0, δ],∀a ∈ A, we have φε(xε) = f(x∗).

Proof. See the proof of Theorem 2 in Nahapetyan and
Pardalos (2008).

2.3 Relaxation of CPLNFP(ε)

Note that φεaa (xa) is a one-dimensional piecewise linear
function with two segments. A binary variable ya can be
used to indicate which segment xa is located in.

ya =

{
0 xa ∈ [0, εa),

1 xa ∈ [εa, ua].
(5)

By replacing the binary constraint (5) with 0 ≤ ya ≤ 1,
CPLNFP(ε) can be relaxed as the following continuous
bilinear network flow problem (CBLNFP).

CBLNFP(ε) :

min
x,y

ϕε(x) =
∑
a∈A

(cεaa xa + (sa −
εa
sa
xa)ya)

s.t. Bx = b

0 ≤ x ≤ u
0 ≤ y ≤ 1.

(6)

Fortunately, Rebennack et al. (2009) has proven that
(x∗, y∗) is the optimal solution to CBLNFP(ε) if and
only if x∗ is the optimal solution to CPLNFP(ε). When
ε is small enough, x∗ is also the optimal solution to the
FCNFP.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11383



3. ALGORITHM

3.1 Continuous bilinear algorithm

Based on sections 2.2 and 2.3, we can solve the FCNFP by
solving CBLNFP(ε) with a sufficiently small ε. However,
it is difficult to obtain the applicable ε by definition. The
following theorem provides a feasible method to obtain an
applicable ε.

Theorem 2. (Rebennack et al. (2009)) For a specified ε,
let (x∗, y∗) be the optimal solution to CBLNFP(ε). If

x∗a ∈ 0 ∪ [εa, ua],∀a ∈ A, (7)

then x∗ is also the optimal solution to the FCNFP.

Proof. See the proof of Corollary 3.2 in Rebennack et al.
(2009).

We can start from a large parameter ε and iterate to
reduce ε until the optimal solution to CBLNFP(ε) satisfies
condition (7). The solution obtained in the last iteration is
used to update the parameter ε in the next iteration. This
process can be shown as the following continuous bilinear
algorithm (CBA):

Algorithm 1 Continuous bilinear algorithm.

Require: Matrix B, vector b, u, parameter α ∈ (0, 1);
Ensure: Parameter ε, solution xε;
1: Step 1: Initialise: ε = u;
2: Step 2: Solve CBLNFP(ε) and obtain the optimal

solution xε.
3: Step 3:
4: if ∃xεa ∈ (0, εa), a ∈ A then
• Aε = {a|a ∈ A, xεa ∈ (0, εa)};
• εa = α · εa,∀a ∈ Aε;
• Go to Step 2;

5: end if
6: return ε, xε;

3.2 The dynamic method to update ε

CBLNFP(ε) is still concave and thus is computationally
expensive to solve. From Step 2 of Algorithm 1, we
can see that xε is only used to update ε before the
last iteration. If we can use much less time to obtain a
suboptimal solution to CBLNFP(ε), which can also update
ε, the efficiency of the CBA can be greatly improved.

An efficient method to obtain a suboptimal solution to
CBLNFP(ε) is the variable rotation method, which alter-
nately fixes x and y and then solves the resulting linear
programming problem. The variable rotation method di-
vides CBLNFP(ε) into the following two coupled linear
programming problems, which we refer to as LP ε(y) and
LP ε(x).

LP ε(y) :

min
x

ϕε(x) =
∑
a∈A

((cεaa −
sa
εa
ya)xa + saya)

s.t. Bx = b

0 ≤ x ≤ u,

(8)

LP ε(x) :

min
y

ϕε(y) =
∑
a∈A

((sa −
εa
sa
xa)ya + cεaa xa)

s.t. 0 ≤ y ≤ 1.

(9)

The dynamic cost updating procedure (DCUP) (Na-
hapetyan and Pardalos (2007)) is a practical variable ro-
tation algorithm to find a local optimum to CBLNFP(ε)
by alternately solving LP ε(y) and LP ε(x).

In fact, it is not necessary to wait until the local opti-
mum of CBLNFP(ε) is obtained before updating ε. When
we solve CBLNFP(ε) by alternately solving LP ε(y) and
LP ε(x), we can update ε once LP ε(y) is solved and then
solve LP ε(x) with the new ε. The problem to be solved is
updated synchronously with the parameter ε. Based on
this update process, we propose the dynamic problem-
updating procedure (DPUP). For a specified ε, the DPUP
only needs to solve one linear programming problem. The
outline of the DPUP can be seen in Algorithm 2.

Algorithm 2 Dynamic problem-updating procedure

Require: Matrix B, vector b, u, y0, parameter α ∈ (0, 1);
Ensure: Parameter ε, solution xε;
1: Step 1: Initialise:
• ε = u;
• yε = y0;

2: Step 2: Solve LP ε(yε) and obtain the optimal solution
xε.

3: Step 3:
4: if ∃xεa ∈ (0, εa], a ∈ A then
• Aε = {a|a ∈ A, xεa ∈ (0, εa)};
• εa = α · εa,∀a ∈ Aε;
• Solve LP ε(xε) and obtain the optimal solution yε;
• Go to Step 2;

5: end if
6: return ε, xε;

3.3 Analysis of the convergence

The following corollary shows the convergence of the
DPUP for solving the FCNFP.

Corollary 1. The DPUP solves the FCNFP in a finite
number of iterations.

Proof. In the worst case, each iteration of the DPUP
updates the parameter εa for only one arc a ∈ A. Hence,
for each arc a ∈ A, the maximum number of iterations
needed is given by Ia = I + 1, where I is the smallest
integer satisfying αIua ≤ δ and 1 is the step needed to
check the stopping criterion. In actual implementation, all
the arcs in A need only one step in total to check the
stopping criterion. Therefore, the upper bound on the total
number of iterations of the DPUP is given by

Nu = 1 +
∑
a∈A

max{dlog
δ
ua
α e, 0}. (10)

4. NUMERICAL EXPERIMENTS

Numerical experiments are conducted in MATLAB 2014a
on a Windows 10 platform with an Intel Core i7 3.2 GHz

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11384



processor and 16.0 GB of RAM. We compare the DPUP
with the ADCUP and the CPLEX MIP Solver.

The ADCUP uses the complete DCUP to obtain a local
optimum for CBLNFP(ε) and then updates the parameter
ε. The CPLEX MIP Solver solves the following 0-1 mixed-
integer programming problem, which is equivalent to the
FCNFP.

MIP-FCNFP : min
x,y

f(x) =
∑
a∈A

caxa + saya

s.t. Bx = b

0 ≤ xa ≤ uaya,∀a ∈ A
ya ∈ {0, 1},∀a ∈ A.

(11)

For small-scale problems, the CPLEX MIP Solver can
obtain the exact solution of the FCNFP. However, for
large-scale problems, the CPLEX MIP Solver cannot find
the optimal solution in an acceptable time. This paper
uses the CPLEX MIP Solver with version 12.6 and sets
the acceptable time to 200 seconds. If the CUP running
time exceeds 200 seconds, we say the MIP-FCNFP cannot
be solved by the CPLEX MIP Solver.

The parameter α also affects the convergence speed of the
DPUP and ADPUP. For fairness in the comparison, α is
set to 0.5 for both the DPUP and ADPUP.

4.1 Test problems

The test problems are divided into 12 problem sets ac-
cording to the network scale (the number of nodes (n)
and the number of arcs (m)) shown in Table 1. Each
problem set consists of 10 test problems with the same
network scale, where networks are randomly generated by
the benchmark network generator NETGEN [16]. In each
test problem, the fixed charge sa and the unit cost ca
for any arc a ∈ A are randomly generated in U [50, 100]
and [5, 15], respectively. The number of supply (demand)
nodes is generated uniformly between 20% and 30% of the
total nodes. The total supply flow is generated uniformly
between 40 and 50 times the number of nodes and then
randomly assigned to the supply nodes.

Table 1. Test problem sets.

Set n m Set n m

1 20 100 7 200 4000

2 60 400 8 220 5000

3 120 1500 9 240 6000

4 140 2000 10 260 7000

5 160 2500 11 280 8000

6 180 3000 12 300 9000

According to whether they can be solved by the CPLEX
MIP Solver, the test problems are classified into small-
scale problems and large-scale problems. In our experi-
ments, sets 1-2 consist of small-scale problems, and sets
3-12 consist of large-scale problems.

For ease of expression, a solver set S is defined as

S = {D,A,C},
where “D” denotes the DPUP, “A” denotes the ADCUP
and “C” denotes the CPLEX MIP Solver. When a test
problem is solved by ζ ∈ S, we use fζ and Tζ to denote the
obtained objective function value and the CPU running
time, respectively.

4.2 Computation results for small-scale problems

The small-scale problems in sets 1-2 are solved by the
DPUP, ADCUP and CPLEX MIP Solver. The CPU run-
ning time, measured in seconds, is used to evaluate the
solving efficiency. The objective function values are used
to evaluate the solving accuracy. The smaller the objective
function value is, the better the corresponding solution is.
Since the solutions obtained by the DPUP and ADCUP
are generally not global optimal solutions, we use the
relative error (RE) to evaluate the accuracy.

RED(%) =
fD − fC
fC

× 100%,

REA(%) =
fA − fC
fC

× 100%.

(12)

The computation results are shown in Table 2, where
the bold item in each row represents the minimum CPU
running time, the minimum objective function value or the
smallest relative error for the corresponding test problem.
It can be seen that the CPLEX MIP Solver can always
obtain the best solution, but it consumes much more
computation time than the DPUP and ADCUP. For all
the test problems, we have

TD < TA < TC . (13)

Moreover, as the problem scale increases, the gap between
TD, TA and TC becomes wider. For the relative error, we
can see that there are 13 (65%) test problems with RED <
REA and 7 (35%) test problems with RED > REA. That
is, compared with the ADCUP, the DPUP has a higher
probability of finding a better solution.

4.3 Computation results for large-scale problems

For the large-scale test problems in sets 3-12, the CPLEX
MIP Solver cannot obtain the exact solutions in an ac-
ceptable CPU running time (200 seconds). Therefore, the
test problems in these 10 sets are solved by the DPUP
and ADCUP. For each test problem, the time ratio (TR)
is defined as

TR = TA/TD. (14)

The average, minimum and maximum time ratios for test
problems in each problem set are used to evaluate the
solving efficiency.

For each test problem, since the exact solution cannot be
obtained, we define the pseudo-error (PE) as

PED(%) =
fD −min{fD, fA}

min{fD, fA}
× 100%,

PEA(%) =
fA −min{fD, fA}

min{fD, fA}
× 100%.

(15)

Similarly, the average and maximum pseudo-error for the
test problems in each problem set are used to evaluate the
solving accuracy.

Moreover, for each problem set, we define the percentage
of better values (PV) to compare the overall accuracy of
the solutions obtained by the DPUP and ADCUP.

PVD(%) =
NfD<fA
Np

× 100%,

PVA(%) =
NfA<fD
Np

× 100%.

(16)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11385



Table 2. Performance of the DPUP, ADCUP and CPLEX MIP Solver for small-scale problems.

Set Problem Size CPU Running Time (seconds) Objective Function Value RE(%)
No. No. n m TD TA TC fD fA fC RED REA

I 1 20 100 0.0032 0.0554 0.1389 2329 2342 2075 12.24 12.87
2 0.0013 0.0313 0.1196 1639 1821 1554 5.47 17.18
3 0.0034 0.0199 0.0721 2000 1831 1664 20.19 10.04
4 0.0025 0.0301 0.1756 1647 1794 1529 7.71 17.33
5 0.0021 0.0185 0.2357 1645 1633 1488 10.55 9.75
6 0.0016 0.0259 0.0962 1649 1551 1437 14.75 7.93
7 0.0015 0.0234 0.0858 1932 2075 1867 3.48 11.14
8 0.0024 0.0416 0.1239 1636 1660 1541 6.16 7.72
9 0.0019 0.0433 0.2382 1483 1580 1381 7.39 14.41
10 0.0012 0.0421 0.2203 1655 1469 1405 17.79 4.56

I 1 60 400 0.0063 0.2314 11.975 4135 4340 3831 7.94 13.29
2 0.0061 0.1583 26.907 4338 4455 3933 10.30 13.27
3 0.0043 0.1766 24.819 4488 4765 4141 8.38 15.07
4 0.0062 0.2697 129.15 5413 5802 4764 13.62 21.79
5 0.0051 0.1617 5.8716 4710 4487 3979 19.27 13.62
6 0.0053 0.0710 31.713 4504 4987 4018 12.10 24.12
7 0.0045 0.1354 24.988 4766 4489 4224 12.83 6.27
8 0.0050 0.2329 11.022 4724 4669 4356 8.45 7.19
9 0.0043 0.1550 114.79 4701 5352 4505 4.35 18.80
10 0.0050 0.1605 30.721 4836 4951 4169 16.00 18.76

Table 3. Performance of the DPUP and ADCUP for large-scale problems.

Set Size CPU Running Time (seconds) Time Ratio PE (%) PV (%)
No. n m TD TA TR PED PEA PVD PVA

Aver Aver Aver Aver Aver
(min,max) (min,max) (min,max) max max

3 120 1500 0.0197 0.1029 41 0.39 4.39 70 30
(0.0142,0.0335) (0.5782,1.0270) (25,75) 2.55 8.91

4 140 2000 0.0266 1.6749 62 0.26 5.77 80 10
(0.0206,0.0453) (1.0278,2.4983) (31,97) 2.56 9.49

5 160 2500 0.0314 2.7123 86 0.59 5.33 90 10
(0.0193,0.0494) (1.8815,3.8172) (46,184) 4.32 12.1

6 180 3000 0.0894 10.136 113 0.50 7.46 90 10
(0.0546,0.1456) (7.5152,15.067) (58,205) 5.04 17.8

7 200 4000 0.1071 14.4167 134 0 5.15 100 0
(0.0599,0.2120) (9.8830,19.415) (92,287) 0 11.0

8 220 5000 0.1104 19.563 177 0 7.55 100 0
(0.0728,0.1363) (13.099,28.850) (112,287) 0 13.3

9 240 6000 0.1291 27.101 209 0 9.47 100 0
(0.0941,0.1735) (13.968,37.794) (122,339) 0 14.6

10 260 7000 0.1498 34.967 233 0 7.53 100 0
(0.1197,0.2509) (29.189,43.484) (169,289) 0 13.2

11 280 8000 0.1901 48.376 254 0 6.34 100 0
(0.1440,0.2600) (38.765,68.336) (130,339) 0 10.7

12 300 9000 0.2185 67.826 280 0 8.46 100 0
(0.2076,0.3098) (48.038,80.180) (174,372) 0 15.8

In (16), NfD<fA is the number of test problems where
the objective function values obtained by the DPUP are
smaller than those obtained by the ADCUP, NfA<fD is
the number of test problems where the objective function
values obtained by the ADCUP are smaller than those
obtained by the DPUP, and Np is the number of test
problems in each problem set. In this paper, Np = 10.

Computation results are shown in Table 3. We can see that
for any problem set, the average (maximum or minimum)
of TD is always much less than the average (maximum
or minimum) of TA. The average, maximum and mini-
mum of the TR are all much greater than 1. To further
demonstrate the trend of TR with the problem scale, the
computation results for TR are shown in Fig. 2, where
the thick line represents the average of TR and each thin
vertical line represents the range between the minimum

and maximum of TR. As the problem scale increases, the
average of TR increases approximately linearly.

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

400

Dimension (m)

T
im

e
 R

a
ti
o

 (
T

R
)

Fig. 2. Plots of the average, minimum and maximum of
TR.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11386



For each problem set, PED is clearly smaller than PEA,
and PVD is clearly larger than PVA. Moreover, for problem
sets 7-12, PED is 0 and PVD is 100%, which means that
the DPUP can obtain better solutions than the ADCUP
for all test problems.

4.4 Summary

Considering the solving efficiency, the DPUP always shows
obvious superiority over the ADCUP in problems of dif-
ferent scales.

In regard to optimising capacity, neither the DPUP nor
the ADCUP can obtain the global optimal solution in
most cases. For small-scale problems, the accuracy of the
solution obtained by the DPUP and ADCUP is related to
the test problem itself. However, the DPUP statistically
obtains better solutions in more test problems. For very
large-scale problems, the DPUP can always obtain better
solutions.

In general, compared with the ADCUP, the DPUP pos-
sesses an obvious superiority in both solving efficiency and
optimising capability.

5. CONCLUSION

The motivation for our study comes from the wide appli-
cation of the FCNFP. We transform the task of solving the
FCNFP into solving a series of bilinear programming prob-
lems. The major contribution of this paper is the DPUP,
which is used to update the bilinear programming problem
dynamically. The superiority of the DPUP is that it only
needs to solve a linear programming problem instead of
solving the complete bilinear programming problem before
updating the parameter ε. In numerical experiments, the
performance of the DPUP is evaluated by comparison
with the ADCUP and CPLEX MIP Solver in randomly
generated test problems.

REFERENCES

Adlakha, V. and Kowalski, K. (2010). A heuristic algo-
rithm for the fixed charge problem. Opsearch, 47, 166–
175.

F. Ortega, L.A.W. (2003). A branch-and-cut algorithm
for the single-commodity, uncapacitated, fixed-charge
network flow problem. Networks, 41, 143–158.

Fontes, D. and Goncalves, J. (2007). Heuristic solutions for
general concave minimum cost network flow problems.
Networks, 50, 67–76.

Fontes, D., Hadjiconstantinou, E., and Christofides, N.
(2006). A branch-and-bound algorithm for concave
network flow problems. Journal of Global Optimization,
34, 127–155.

G. Bernard, L.M. (2014). Branch-and-price-and-cut
for large-scale multicommodity capacitated fixed-charge
network design. EURO Journal on Computational Op-
timization, 2, 55–75.

Guisewite, G.M. and Pardalos, P.M. (1990). Minimum
concave-cost network flow problems: applications, com-
plexity, and algorithms. Annals of Operations Research,
25, 75–99.

Hewitt, M., Nemhauser, G., and Savelsbergh, M. (2010).
Combining exact and heuristic approaches for the ca-
pacitated fixed-charge network flow problem. Informs
Journal on Computing, 22, 314–325.

Hovav, S. and Tsadikovich, D. (2015). A network flow
model for inventory management and distribution of
influenza vaccines through a healthcare supply chain.
Operations Research for Health Care, 5, 49–62.

Kim, D., Pan, X., and Pardalos, P. (2006). An enhanced
dynamic slope scaling procedure with tabu scheme for
fixed charge network flow problems. Computational
Economics, 27, 273–293.

Kim, D. and Pardalos, P.M. (1999). A solution approach to
the fixed charge network flow problem using a dynamic
slope scaling procedure. Operations Research Letters,
24, 195–203.

Kowalski, K., Levb, B., Shen, W., and Tu, Y. (2014). A
fast and simple branching algorithm for solving small
scale fixed-charge transportation problem. Operations
Research Perspectives, 1, 1–5.

Lotfi, M. and Moghaddamb, R. (2013). A genetic algo-
rithm using priority-based encoding with new operators
for fixed charge transportation problems. Applied Soft
Computing, 13, 2711–2726.

Moghaddam, S., Keshteli, M., and Mahmoodjanloo, M.
(2019). New approaches in metaheuristics to solve
the fixed charge transportation problem in a fuzzy
environment. Neural Computing and Applications, 31.

Murty, K. (1968). Solving the fixed charge problem by
ranking the extreme points. Operations Research, 16,
268–279.

Nahapetyan, A. and Pardalos, P. (2008). Adaptive dy-
namic cost updating procedure for solving fixed charge
network flow problems. Computational Optimization
and Applications, 39, 37–50.

Nahapetyan, A. and Pardalos, P. (2007). A bilinear re-
laxation based algorithm for concave piecewise linear
network flow problems. Journal of Industrial and Man-
agement Optimization, 3, 71–85.

Nasiri, G., Zolfaghari, R., and Davoudpour, H. (2014). An
integrated supply chain production–distribution plan-
ning with stochastic demands. Computers & Industrial
Engineering, 77, 35–45.

Palekar, U., Karwan, M., and Zionts, S. (1990). A branch-
and-bound method for the fixed charge transportation
problem. Management Science, 36, 1092–1105.

Paraskevopoulosa, D., Bektasb, T., Gabriel, T., Chris, C.,
and N.Pottsd (2016). A cycle-based evolutionary algo-
rithm for the fixed-charge capacitated multi-commodity
network design problem. European Journal of Opera-
tional Research, 253, 265–279.

Rebennack, R., Nahapetyan, A., and Pardalos, P. (2009).
Bilinear modeling solution approach for fixed charge
network flow problems. Optimization Letters, 3, 347–
355.

Sherbiny, M. and Alhamali, R. (2013). A hybrid particle
swarm algorithm with artificial immune learning for
solving the fixed charge transportation problem. Com-
puters & Industrial Engineering, 64, 610–620.

Walker, W. (1976). A heuristic adjacent extreme point
algorithm for the fixed charge problem. Management
Science, 22, 587–596.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11387


