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Abstract: An adaptive control system design problem based on the almost strictly positive
real-ness (ASPR-ness) is dealt with. For ASPR systems, one can easily design a stable adaptive
output feedback control system, however, in the case where the system is not ASPR, in order
to guarantee the stability of the adaptive system, an parallel feedforward compensator (PFC),
which makes the resulting augmented system ASPR, is introduced. In the proposed method, an
adaptive PFC design scheme for making the resulting augmented system ASPR and an adaptive
feedforward input design scheme for attaining the output tracking are proposed by applying the
kernel method for uncertain non-ASPR linear systems. The effectiveness of the proposed method
is confirmed through numerical simulations for a simple uncertain system.
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1. INTRODUCTION

The system is said to be ‘almost strictly positive real’ (or
ASPR) if there exists a static output feedback such that
the resulting closed loop system is strictly positive real
(SPR) (Bar-Kana, 1991). It is well recognized that one can
easily design a stable output feedback control for uncertain
but ASPR systems and also can easily design a stable
adaptive control system, and the ASPR based (adaptive)
output feedback control has good robustness with respect
to disturbances and systems uncertainties unlike the con-
ventional adaptive strategies including general model ref-
erence adaptive controls (Kaufman et al., 1997; Mizumoto
et al., 2007, 2010; Barkana et al., 2014; Mizumoto and
Iwai, 1996; Fradkov and Hill, 1998). However, since the
most practical systems do not have ASPR property such
as (1) the system has relative degree of 1, (2) the system is
minimum-phase, and (3) the high frequency of the system
is positive. With this in mind, several alleviation methods
against ASPR conditions have been proposed by Fradkov
(1996); Bar-kana (1987); Mizumoto and Iwai (1996); Mizu-
moto et al. (2010); Mizumoto and Kawabe (2017). The
introduction of a parallel feedforward compensator (PFC)
is well recognized as one of the common and simple method
to overcome the ASPR restriction. In this strategy, the
PFC is added in parallel with the considered non-ASPR
controlled system so as to render the resulting augmented
system with the PFC ASPR, and the ASPR based control
strategy can be applied to this ASPR augmented system.

Unfortunately, however, how to design such PFC has be-
come a new issue. Moreover, although the stable adaptive
output feedback control can be designed with an appro-
priate PFC which make the augmented system ASPR,
the desired output tracking for the practical output had

not obtained because of the affect from the PFC output
even though the perfect output tracking was obtained for
augmented system’s output. As for the design problem of
PFC, several kinds of PFC design schemes have proposed
including model-based design schemes (Mizumoto et al.,
2010), robust design schemes (Mizumoto and Iwai, 1996),
ladder network design schemes Iwai and Mizumoto (1994)
and adaptive design schemes (Takagi et al., 2015; Mizu-
moto and Kawabe, 2017). The adaptive type methods can
design the PFC without information of nominal param-
eters. Unfortunately, however, the information about the
order of the system (or the information of the order of
the desired PFC) is required. As for the tracking problem
for the practical output, internal model filter approaches
(Mizumoto et al., 2010), augmented model approaches
(Mizumoto and Iwai, 1996) and adaptive feedforward in-
put approaches have been proposed. The adaptive RBF
NN feedforward input approach (Mizumoto et al., 2009;
Mizumoto and Kawabe, 2017) is one of the effective way
to alleviate the affect from the PFC output for both linear
and nonlinear systems. However, in order to obtain the
desired tracking performance, the node of NN might be
selected by higher order.

In this paper, we consider solving both problems on the
PFC design and the actual tracking via Kernel method
(Engel et al., 2004; Liu et al., 2008; Kurzrock and Ohmori,
2016) based on the concept of an adaptive PFC design and
a RBF NN feedforward approach. An adaptive PFC design
scheme and an adaptive feedforward input design scheme
by the Kernel method to attain the actual output tracking
for control system with the PFC is proposed for uncertain
linear systems. The effectiveness of the proposed method
is confirmed through numerical simulations.
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Fig. 1. Augmented ASPR system

2. PROBLEM STATEMENT

Consider the following n-th order LTI continuous-time
SISO system:

ẋ(t) = Ax(t) + bu(t)
y(t) = cTx(t)

(1)

with the transfer function of G(s), where x(t) ∈ Rn is the
state vector, u(t) ∈ R is the control input and y(t) ∈ R is
the output of the system. A ∈ Rn×n, b ∈ Rn, c ∈ Rn are
uncertain system parameter matrix and vectors.

The objective of this paper is to design an adaptive
output regulation control system so as to have the output
y(t) track the given reference signal r(t) by constructing
TDOF control system with adaptive output feedback and
appropriate feedforward input.

To this end, we impose the following assumptions for the
system:

Assumption 1. The system (1) is not ASPR, but, for a
given ideal ASPR model G∗a(s), there exists an ideal PFC
H∗(s) = H(s,ρ∗f ) with the ideal parameter vector ρ∗f such
that

G∗a(s) = G(s) +H(s,ρ∗f ) (2)

is satisfied.

Assumption 2. The reference signal r(t) for which the
output y(t) is required to track is generated by the
following reference model.

ω̇(t) = q(ω)
r(t) = p(ω)
q(0) = 0, p(0) = 0

(3)

Where ω(t) ∈ Rq is the state of the reference model, and
the reference model is set as neutrally stable, i.e. the linear

approximation AQ = [
∂q
∂ω ]ω=0 of the vector field q(ω) at

ω = 0 has all its eigenvalues on the imaginary axis (Isidori,
1995).

Assumption 3. The system (1) is stabilizable and has no
zeros on the imaginary axis.

3. IDEAL CONTROL SYSTEM DESIGN

Before showing the proposed controller design scheme via
Kernel method, we recall an ideal TDOF control with ideal
PFC and ideal RBF NN feedforward input provided by
Mizumoto and Kawabe (2017).

3.1 Ideal PFC Representation

Define the ideal output of the ideal augmented ASPR
model G∗a(s) with the input u(t) by (See Fig. 1)

y∗au(t) := G∗a(s)[u(t)] (4)

The notation: y(t) := W (s)[u(t)] denotes the output y(t)
of a system with the transfer function of W (s) and the
input u(t).
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Fig. 2. Block Diagram of the ideal control system

Defining the ideal PFC output by

y∗fu(t) := H∗(s)[u(t)] (5)

it follows from G∗a(s) = G(s) +H∗(s) that

y∗fu(t) = y∗au(t)− y(t) (6)

Supposing that the ideal PFC model is given by

H∗(s) =
N∗H(s)

D∗H(s)

=
b∗1s

nh−1 + b∗2s
nh−2 + · · ·+ b∗nh

snh + a∗1snh−1 + · · ·+ a∗nh
(7)

the ideal PFC output is obtained as follows

y∗fu(t) =
Z(s)

F (s)
[y∗fu(t)] +

N∗H(s)

F (s)
[u(t)] = ρ∗Tf z

∗
u(t) (8)

ρ∗f = [z∗1 z
∗
2 · · · z∗nh b∗1 b∗2 · · · b∗nh ]T , (z∗i = fi − a∗i )

z∗u(t) = z(y∗fu, u) =

[
snh−1

F (s)
[y∗fu], · · · , 1

F (s)
[y∗fu] (9)

snh−1

F (s)
[u], · · · , 1

F (s)
[u]

]T

by introducing a nh-th order stable filter
1

F (s)
=

1

snh + f1snh−1 + · · ·+ fnh
(10)

(8) gives a parametric representation of the ideal PFC
(Mizumoto and Kawabe, 2017).

3.2 Approximated Ideal Feedforward Input

Under Assumptions 2 and 3, there exists ideal feedforward
input v∗(t) which attains the perfect output tracking
y(t) ≡ r(t), ∀t ≥ 0 and v∗(t) can be obtained by a function
of ω as v∗(t) = c(ω). Here, we consider approximating the
ideal input by a RBF NN as

v̄∗(t) = ρ∗Tm φω(ω) (11)

where φω(ω) is a radial basis function vector and ρ∗m is
the ideal weight vector which satisfies

ρ∗m , arg min
ρm∈Rl

{ sup
ω∈Ωω

|v∗ − ρTmφω(ω)|} (12)

It is noted that there exists the ideal weight vector ρ∗m
given in (12) for a sufficient large node of l and a compact
set Ωω such that the ideal input v∗(t) can be approximated
by (Ge et al., 2002)

v∗(t) = ρ∗Tm φω(ω) + ε(ω), |ε(ω)| ≤ ε∗ (13)

with bounded approximation error ε(ω).

3.3 Ideal Control System

Again define a PFC output with any input q(t), yfq(t) :=
H(s)[q(t)], by

yfq(t) = ρTf zq(t), zq(t) = z(yfq, q) (14)
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with a stable filter given in (10) as a parametric represen-
tation of the PFC.

Furthermore, define

ȳfq(t) := G∗−1
a (s)[yfq(t)]

:= ρTf z̄q(t), z̄q(t) := G∗−1
a (s)[zq(t)] (15)

If the ideal order of the PFC: H∗(s) is known, then the
ideal PFC output is obtained by

y∗f (t) = y∗fue(t) = ρ∗Tf z
∗
ue(t)

= G∗a(s)[ȳ∗fue(t)]

= G∗a(s)[ρ∗Tf z̄
∗
ue(t)] (16)

Considering a TDOF control system as shown in Fig. 2,
the ideal controller is designed by

u∗(t) = u∗e(t) + v∗(t) (17)

ue(t) = −k∗e∗a(t) (18)

e∗a(t) = y∗a(t)− r(t) , y∗a(t) = y(t) + y∗f (t)

Unfortunately, since the system is uncertain, we are not
able to obtain ideal PFC parameter vector ρ∗f and suitable
order of the PFC. Furthermore, ideal feedforward input
v∗ and the ideal feedback gain k∗ which makes the re-
sulting closed-loop system SPR are also uncknown. In the
next section, a new adaptive strategy through the Kernel
method is proposed.

4. ADAPTIVE CONTROL SYSTEM DESIGN VIA
KERNEL METHOD

4.1 Adaptive Control System Design

Now, consider a case where the ideal order of the PFC
is uncertain, but appropriate (approximated or nominal)
order nf is known, and suppose that the following assump-
tion is satisfied.

Assumption 4. There exists a lowest order nf such that
the ideal PFC output ȳ∗fq(t) with any input q(t) can be
approximated with a order of nf ≥ nf by

ȳ∗fq = ρ∗Tφ φ(z̄∗q(t)) + ε(z̄∗q(t)), |ε(z̄∗q(t))| ≤ ε∗q (19)

with a basis function φ(•) of a sufficiently large node lφ
and an ideal weight vector ρ∗φ such as

ρ∗φ , arg min
ρ∗
φ
∈Rl
{ sup
z̄∗q(t)∈Ωzq∗

|ȳ∗fq − ρ∗Tφ φ(z̄∗q(t))|}

in a compact set Ωzq∗ .

Under Assumption 4, we define the following new signals.

yfu(t) = G∗a(s)[ȳfu(t)] (20)

ȳfu(t) = ρTφ (t)φ(z̄∗u(t)), z̄∗u(t) = G∗−1
a (s)[z∗u(t)] (21)

with z∗u(t) defined in (9) and y∗fu(t) obtained in (6), and

yfv(t) = G∗a(s)[ȳfv(t)] (22)

ȳfv(t) = ρTφ (t)φ(z̄v(t)), z̄v(t) = G∗−1
a (s)[zv(t)] (23)

with zv(t) = z(yfv, v). Further, we define

yf (t) = yfu(t)− yfv(t) (24)

as the PFC output. Where ρφ(t) is the estimated param-
eter vector of ρ∗φ and G∗a(s) is the given ASPR model.

Using the PFC output yf (t) obtained by (24) the adaptive
controller is designed as follows:

u(t) = ue(t) + v(t) (25)

ya(t) = y(t) + yf (t) , ea(t) = ya(t)− r(t)
ue(t) = −k(t)ea(t)− ρzφT (z̄v(t))φ(z̄v(t))ea(t) (26)

v(t) = ρTm(t)φω(ω(t)) (27)

Where k(t) is the adaptively adjusted output feedback
gain of k∗ and ρm(t) is the adaptively adjusted weight
vector of ρ∗m in (13). The second term in (26) is an
additional feedback term for maintaining the robustness
of the obtained adaptive control system. k(t), ρφ(t) and
ρm(t) are adjusted by the following parameter adjusting
laws:

k̇(t) = γkea(t)2 − σkk(t) (28)

ρ̇φ(t) = −γφ
(
φ(z̄∗u(t))− φ(z̄v(t))

)
ea(t)− σφρφ(t) (29)

ρ̇m(t) = −γmφω(ω(t))ea(t)− σmρm(t) (30)

We have the following theorem concerning the stability of
the obtained adaptive control system.

Theorem 1. Under Assumptions 1 to 4, all the signals in
the resulting control system with control input given in
(25) to (27) with parameter adjusting laws (28) to (30)
are bounded.

Proof. See Appendix

4.2 Adaptive Control via Kernel Method

In practical cases, it may be difficult to find the basis
function vectors φ(•), φω(•) which satisfy assumptions.
We consider solving this problem by applying the kernel
trick (Bishop, 2006).

If the basis function φ(•) is known, then unknown param-
eter vector ρφ(t) can be obtained from (29) as

ρ̇φ(t) = −γφ
(
φ(z̄∗u(t))− φ(z̄v(t))

)
ea(t)− σφρφ(t)

Supposing that the initial condition is ρφ(0) = 0, then
ρφ(t) is obtained by

ρφ(t) = −γφ
∫ t

0

e−σφ(t−τ)
(
φ(z̄∗u(τ))− φ(z̄v(τ))

)
ea(τ) dτ

(31)

Thus, defining

ȳf (t) = ȳfu(t)− ȳfv(t), (32)

we have from (21), (23) and (31) that

ȳf (t) = −γφ
∫ t

0

e−σφ(t−τ)ea(τ)
(
φ(z̄∗u(τ))T − φ(z̄v(τ))T

)

× (φ(z̄∗u(t))− φ(z̄v(t))
)
dτ (33)

Applying the kernel trick such as φ(z̄u1(τ))Tφ(z̄u2(t)) =
k(z̄u1(τ), z̄u2(t)) with an appropriate kernel function
k(•, •), ȳf (t) given in (33) can be obtained with the kernel
function instead of unknown basis functions as follows:

ȳf (t) = −γφ
∫ t

0

e−σφ(t−τ)ea(τ)

× {k(z̄∗u(τ), z̄∗u(t))− k(z̄v(τ), z̄∗u(t))

− k(z̄∗u(τ), z̄v(t)) + k(z̄v(τ), z̄v(t))
}
dτ (34)
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We implement ȳf (t) obtained in (34) by approximating via
Riemann Sum at a time instant t = tkas follows:

ȳf (t) ' ȳf (tk)

= −γφ
k∑

i=0

e−σφ(tk−ti)ea(ti)

× {k(z̄∗u(ti), z̄
∗
u(tk))− k(z̄v(ti), z̄

∗
u(tk))

− k(z̄∗u(ti), z̄v(tk)) + k(z̄v(ti), z̄v(tk))
}×∆t

(35)

with ∆t = tk − tk−1.

Now, define

ȳf,k(z̄u1(ti), z̄u2(tk))

:= −µφ
k∑

i=0

e−σφ(tk−ti)ea(ti)k(z̄u1(ti), z̄u2(tk)) (36)

with µφ = γφ∆t. ȳf,k(z̄u1(ti), z̄u2(tk)) can be expanded as
follows:

ȳf,k(z̄u1(ti), z̄u2(tk))

= −µφ
k−1∑

i=0

e−σφ(tk−ti)ea(ti)k(z̄u1(ti), z̄u2(tk))

− µφea(tk)k(z̄u1(tk), z̄u2(tk)) (37)

Moreover, since it follows from the property of kernel that

k(z̄u1(ti), z̄u2(tk))

= k(z̄u1(ti), z̄u2(tk−1))k(z̄u2(tk−1), z̄u2(tk))

we have

ȳf,k(z̄u1(ti), z̄u2(tk))

= −µφ
k−1∑

i=0

e−σφ(tk−ti)ea(ti)

× k(z̄u1(ti), z̄u2(tk−1))k(z̄u2(tk−1), z̄u2(tk))

− µφea(tk)k(z̄u1(tk), z̄u2(tk))

= −µφe−σφ(tk−tk−1)
k−1∑

i=0

e−σφ(tk−1−ti)ea(ti)

× k(z̄u1(ti), z̄u2(tk−1))k(z̄u2(tk−1), z̄u2(tk))

− µφea(tk)k(z̄u1(tk), z̄u2(tk))

= e−σφt ȳf,k−1(z̄u1(ti), z̄u2(tk−1))k(z̄u2(tk−1), z̄u2(tk))

− µφea(tk)k(z̄u1(tk), z̄u2(tk)) (38)

with σφt = σφ∆t.

Consequently, ȳf (tk) can be obtained as follows recur-
sively.

ȳf (tk)

= e−σφt
(
ȳf,k−1(z̄∗u(ti), z̄

∗
u(tk−1))

− ȳf,k−1(z̄v(ti), z̄
∗
u(tk−1))

)
× k(z̄∗u(tk−1), z̄∗u(tk))

− µφea(tk)
(
k(z̄∗u(tk), z̄∗u(tk))− k(z̄v(tk), z̄∗u(tk))

)

+ e−σφt
(
ȳf,k−1(z̄v(ti), z̄v(tk−1))

− ȳf,k−1(z̄∗u(ti), z̄v(tk−1))

)
× k(z̄v(tk−1), z̄v(tk))

− µφea(tk)
(
k(z̄v(tk), z̄v(tk))− k(z̄∗u(tk), z̄v(tk))

)
(39)

As for the feedforward input v(t), taking into consideration
from (27), (30) that

v(t) = ρTm(t)φω(ω(t))

ρ̇m(t) = −γmφω(ω(t))ea(t)− σmρm(t)

we have at time instant t = tk
v(t) ' vk(tk)

= −µm
k∑

i=0

e−σm(tk−ti)ea(ti)k(ω(ti),ω(tk))

= e−σmtvk−1(ω(ti),ω(tk−1))k(ω(tk−1),ω(tk))

− µmea(tk)k(ω(tk),ω(tk)) (40)

with µm = γm∆t, σmt = σm∆t.

Furthermore, the feedback control ue(t) is given by

ue(t) = −k(t)ea(t)− ρzk(z̄v(t), z̄v(t))ea(t) (41)

5. VALIDATION THROUGH NUMERICAL
SIMULATIONS

The effectiveness of the proposed method is confirmed
through the following numerical simulations.

In this simulation, we supposed that the considered system
is suddenly changed from second order system to third
order system as follows:

For 0 ≤ t < 100, 250 ≤ t < 400

G(s) =
1

s2 + 20s+ 50
and for 100 ≤ t < 250, 400 ≤ t ≤ 600

G(s) =
1

s3 + 50s2 + 10s+ 50

We assume that the controlled system is unknown but we
know the information that a first order PFC may make
the ASPR augmented system for the initial system. Thus
we set the ideal ASPR model and the stable filter for PFC
estimation by

G∗a(s) =
1

s+ 10
,

1

F (s)
=

1

s+ 90

Furthermore, we adopt the Gaussian kernel:

k(u, u′) = e−
1

2σ2 ‖u−u′‖2

for PFC estimation and ideal feedforward input estima-
tion.

The design parameters in the adaptive controller were set
as

γk = 1.0× 109, σk = 1.0× 10−6, ρz = 10

µφ = 50, σφ = 1.0× 102

µm = 50, σm = 1.0× 10−6, σ = 0.5

Fig. 3 shows the results with the proposed adaptive con-
troller with kernel method and Fig. 4 shows the results
with the previous adaptive control method presented by
Mizumoto and Kawabe (2017). Although the result with
previous adaptive method was degraded after the change
of the controlled system and the output diverged finally,
the result with the proposed method maintain the good
control performance for whole operation. Thus the adap-
tive algorithm via kernel method make it robust with
respect to systems uncertainties on the order.
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Fig. 3. Results with the proposed adaptive kernel method
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Fig. 4. Results with the previous adaptive PFC method:
output and reference signal

6. CONCLUSION

In this paper, an adaptive control system design method
based on the almost strictly positive real-ness (ASPR-ness)
is proposed via kernel method. In order to guarantee the
stability of the adaptive system, an adaptive parallel feed-
forward compensator (PFC) based on the kernel method,
which makes the resulting augmented system ASPR, was
derived. Moreover, an adaptive feedforward input design
scheme for attaining the output tracking was proposed by
applying the kernel method in stead of the RBF NN for
uncertain non-ASPR linear systems. The effectiveness of
the proposed method was confirmed through numerical
simulations.

Appendix A. SKETCH OF THE PROOF OF
THEOREM 1

The augmented system’s output with the PFC can be
represented by

ya(t) = y(t) + yf (t)

= y∗au(t)− y∗fu(t) + yf (t) (A.1)

Moreover, yf (t) is expressed from the definition given in
(24) that

yf (t) = yfu(t)− yfv(t)
=
(
yfu(t)− y∗fu(t)

)− yfv(t)
+ y∗fu(t) (A.2)

It follows form

y∗au(t) = G∗a(s)[u(t)]

yfu(t) = G∗a(s)[ρTφ (t)φ(z̄∗u(t))]

y∗fu(t) = G∗a(s)[ρ∗Tφ φ(z̄∗u(t)) + ε(z̄∗u(t))]

yfv(t) = G∗a(s)[ρTφ (t)φ(z̄v(t))]

that

ya(t) = G∗a(s)[ue(t) + ∆ρTm(t)φω(ω(t))− ε(ω)]

+G∗a(s)[v∗(t)]

+G∗a(s)[∆ρTφ (t)
(
φ(z̄∗u(t)

)− φ(z̄v(t))
)− ε(z̄∗u)]

−G∗a(s)[ρ∗Tφ φ(z̄v(t))] (A.3)

Taking the fact that r(t) = G(s)[v∗(t)] into consideration,
the error system can be obtained as

ea(t) = G∗a(s)
[
ue(t) + ∆ρTm(t)φω(ω(t))

+ ∆ρTφ (t)
(
φ(z̄∗u(t)

)− φ(z̄v(t))
)

+ ρ∗Tφ φ(z̄v(t))− ε(ω)− ε(z̄∗u) + εv(t)
]

(A.4)

∆ρm(t) = ρm(t)− ρ∗m, ∆ρφ(t) = ρφ(t)− ρ∗φ
Where εv(t) := G∗−1

a (s)[H∗(s)[v∗(t)]]. Since G∗a(s) is
ASPR, i.e. it has relative degree of 1 and is minimum-
phase, a realization of G(s) can be represented by the
following canonical form:

ėa(t) = aeea(t) + be

(
ue(t) + ∆ρTm(t)φω(ω(t))

+ ∆ρTφ (t)
(
φ(z̄∗u(t)

)− φ(z̄v(t))
)

+ ρ∗Tφ φ(z̄v(t))− ε(ω)− ε(z̄∗u) + εv(t)

)

+ cηηa(t) (A.5)

η̇a(t) = Aηηa(t) + bηea(t) (A.6)

with appropriate parameters ae, be, bη, cη and Aη. Since
the system is minimum-phase, Aη should be a stable
matrix.

Now, consider the following positive definite function V (t):

V (t) = e2
a(t) + ηTa (t)Pηηa(t) +

be
γk

∆k(t)2

+
be
γφ

∆ρTφ (t)∆ρφ(t) +
be
γm

∆ρTm(t)∆ρm(t) (A.7)

where ∆k(t) = k(t) − k∗ and k∗ is the ideal feedback
gain to be determined later. Pη is a symmetric positive
definite matrix such that the following Lyapunov equation
is satisfied for any symmetric positive definite matrix Qη.

ATη Pη + PηAη = −Qη < 0
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Taking the time derivative of V (t), it follows that

V̇ (t) = −2(bek
∗ − ae)e2

a(t)− 2be∆k(t)e2
a(t)

+ 2be∆ρ
T
m(t)φ(ω(t))ea(t)

+ 2be∆ρφ(t)(φ(z̄∗u(t))− φ(z̄v(t)))ea(t)

− 2beρzφ
T (z̄v(t))φ(z̄v(t))e

2
a(t)

− 2beρ
∗T
φ φ(z̄v(t))ea(t)

− 2beε(z̄
∗
u)ea(t)− 2beε(ω)ea(t)

+ 2beεv(t)ea(t) + 2cTη ηa(t)ea(t)

− ηTa (t)Qηηa(t) + 2bTη Pηηa(t)ea(t)

+ 2be∆k(t)e2
a(t)− 2beσk

γk
∆k2(t)− 2beσk

γk
∆k(t)k∗

− 2be∆ρ
T
φ (t)(φ(z̄∗u(t))− φ(z̄v(t)))ea(t)

− 2beσφ
γφ
‖∆ρφ(t)‖2 − 2beσφ

γφ
∆ρTφ (t)ρ∗φ

− 2be∆ρ
T
m(t)φω(ω(t))ea(t)

− 2beσm
γm

‖∆ρm(t)‖2 − 2beσm
γm

∆ρTm(t)ρ∗m (A.8)

and thus the time derivative of V (t) can be evaluated by

V̇ (t) ≤ −2

(
bek
∗ − ae − be

2δ1
− be

2δ2
− be

2δ3
− 1

2δ4

− 1

2δ5
‖Pηbη‖2

)
ea(t)2

− (λmin[Qη]− δ4‖cTη ‖2 − δ5)‖ηa(t)‖2

− beσk
γk

∆k2(t)− beσφ
γφ
‖∆ρφ(t)‖2

− beσm
γm
‖∆ρm(t)‖2 + beδ1ε

∗2
ω + beδ2ε

∗2
u + beδ3ε

∗2
v

+
beσk
γk

k∗2 +
( be

2ρz
+
beσφ
γφ

)‖ρ∗φ‖2 +
beσm
γm
‖ρ∗m‖2

(A.9)

with any positive constants δ1, δ2, δ3, δ4, δ5, and |ε(ω(t))| ≤
ε∗ω, |ε(z̄∗u(t))| ≤ ε∗u, |εv(t))| ≤ ε∗v. Finally, considering
sufficiently large k∗ and small δ’s such that

bek
∗ − ae − be

2δ1
− be

2δ2
− be

2δ3

− 1

2δ4
− 1

2δ5
‖Pηbη‖2 = α1 > 0

λmin[Qη]− δ4‖cTη ‖2 − δ5 = α2 > 0

we have

V̇ (t) ≤ −α1e
2
a(t)− α2‖ηa(t)‖2 − α3∆k2(t)

− α4‖∆ρφ(t)‖2 − α5‖∆ρm(t)‖2 +R (A.10)

with

R ≥ beδ1ε∗2ω + beδ2ε
∗2
u + beδ3ε

∗2
v

+
beσk
γk

k∗2 + (
be

2ρz
+
beσφ
γφ

)‖ρ∗φ‖2 +
beσm
γm
‖ρ∗m‖2

Consequently, we can conclude that V (t) is bounded and
then all the signals in the control system are bounded.
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