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Abstract: The robust tracking and model following problem is investigated for a class of
uncertain systems with completely unknown dead-zone inputs and any nonlinear perturbations.
It is supposed that the uncertain nonlinearities are any continuous and bounded nonlinear
functions which are unknown. Based on Wu inequality, a new design method is developed so
that (i) the resulting robust tracking control schemes are direct, instead of the complicated ones
consisting of two parts, to overcome the constraint of control input; (ii) it is unnecessary to
understand any information on the nonlinear upper bound functions of uncertain nonlinearities,
which results in the structural simplicity of robust tracking control schemes. In addition, it is
also proved that the tracking error between the output of an actual nonlinear system with input
constraints and the dynamical signals of the given reference model is uniformly exponentially
bounded.
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1. INTRODUCTION

In many engineering control problems, the robust tracking
and model following have been widely investigated for
uncertain linear or/and nonlinear systems. In fact, the
research of robust tracking and model following have been
one of the main topics in control literature. Some design
approaches for a engineering system to tracking some
dynamical signals of the reference model have been also
developed (see, e.g. Hopp and Schmitendorf (1990); Sugie
and Osuka (1993); Wu (2004); Shigemaru and Wu (2007);
Wu (2008); Shyu and Chen (1995), and the references
therein).

On the other hand, any engineering system often consists
of many electrical and mechanical components, such as
hydraulic and pneumatic valves, electronic circuits, electric
servomotors, and other devices. In general, such electrical
and mechanical devices should have some dead-zone non-
linearity. It is obvious fact that the dead-zone nonlinearity
included in systems should degrade the performances of
systems, and may even lead to the instability of systems.
Therefore, it is rather important to study the uncertain
dynamical systems with dead-zone input nonlinearities.
Moreover, some methods have been also developed to
design a robust stabilizing or tracking controllers for such

uncertain dynamical systems with dead-zone inputs (see,
e.g. Tao and Kokotovic (1994); Selmic and Lewis (2000);
Wang et al. (2004); Zhou et al. (2006); Ibrir et al. (2007);
Wu (2017a,b), and the references therein).
In the current design methods, reported in contol litera-
ture, to deal with the model following control problems,
an actual plant is generally described by some linear
differential equations. That is, uncertain linear systems
without any constraint control input are considered, and
the uncertainties are assumed to be linear or to be lin-
ear norm-bounded in the state. Under such assumptions,
the standard robust tracking control schemes are always
composed of two parts, i.e. the linear feedback due to the
state of reference model and an additional control function
called auxiliary control. Then, by introducing an auxiliary
state vector, one can transform uncertain linear systems
and reference model into an uncertain linear auxiliary
system with the auxiliary control, and further synthesize
some types of auxiliary control schemes such that the
stability of uncertain linear auxiliary dynamical systems
can be guaranteed. However, in the conventional design
methods, there are two main shortcomings which should
limit the applications of conventional design methods to
practical model following control problems. The first one
is that the standard robust tracking control schemes with
two parts cannot be used to obtain an uncertain linear
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auxiliary dynamical system, since the control input has
some constraints, e.g. the dead-zone input nonlinearities.
The second one, more critical shortcoming of the conven-
tional design methods, is that when the uncertainties of
the considered systems are completely nonlinear, i.e. not
linear norm-bounded in the states, it is quite difficult to
synthesize some types of robust tracking control schemes
with a simple structure.

In this paper, we investigate the robust tracking and model
following problem for a class of uncertain nonlinear sys-
tems with completely unknown dead-zone inputs and any
nonlinear perturbations. We assume that the uncertain
nonlinear functions are continuous and bounded in their
arguments, where their nonliner upper bounds are not
required to be known. For such a class of robust tracking
and model following problem, on the basis of a new integral
inequality (Wu (2018a)), which has been highlighted and
called Wu inequality in AIE 1 , we present a novel design
method so that

(i) the resulting adaptive robust tracking control schemes
are direct, instead of the complicated ones consisting
of two parts, to overcome the constraint of control
input;

(ii) it is unnecessary to understand any information on
the nonlinear upper bound functions of uncertain
nonlinearities, which results in the structive simplicity
of robust tracking control schemes.

We also show that the output of the uncertain nonlinear
systems with dead-zone input can track the output of the
given reference model in the sense of uniform exponential
boundedness.

2. PROBLEM FORMULATION

We consider a class of uncertain dynamical systems with
any dead-zone input constraint and uncertain nonlineari-
ties, described by

dx(t)

dt
=Ax(t) +BD(u(t)) + ∆F(x(t), t) (1a)

y(t) =Cx(t) (1b)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, and y(t) ∈ Rl is the system output , and A, B, and
C are the known constant matrices. Here, the sufficiently
smooth function ∆F(·) : Rn × R+ → Rn represents the
system uncertain nonlinearities.

Moreover, the nonlinear vector function D(u(t)) : Rm →
Rm represents any dead-zone input in the form of

D(u) :=
[
D1(u1) D2(u2) · · · Dm(um)

]⊤
(2a)

where for any i ∈ {1, 2, . . . ,m},

1 https://advanceseng.com/wu-inequality-applications-control-
theory/

Di(ui) =


m̃ir

(
ui − b̃ir

)
, if ui ≥ b̃ir

0, if − b̃il ≤ ui ≤ b̃ir

m̃il

(
ui + b̃il

)
, if ui ≤ −b̃il

(2b)

where for any i ∈ {1, 2, . . . ,m}, the parameters m̃ir and
m̃il represent the right and the left slope of the dead-zone
characteristic, and b̃ir and b̃il are the breakpoints of the
input nonlinearity. Such parameters m̃ir, m̃il, b̃ir, and b̃il
are generally assumed to be any positive constants.

For this robust tracking and model following problem, the
reference signal yr(t) is assumed to be the output of a
reference model given by

dxr(t)

dt
=Arxr(t) +Brr(t) (3a)

yr(t) =Crxr(t) (3b)

where xr(t) ∈ Rnr and yr(t) ∈ Rlr are respectively the
state vector and the output vector of the reference model,
r(t) ∈ Rmr is the input vector of the reference model, and
Ar, Br, Cr are known constant matrices. Here, yr(t) has
the same dimension as y(t), i.e. lr = l. Since for any
practical robust tracking and model following problems,
the model state should be required to be bounded, we
assume that for the reference model, there exists a finite
positive constant M such that for all t ≥ t0, ∥xr(t)∥ ≤ M.
Moreover, without loss of generality, the input vector
of reference model is also assumed to be bounded, i.e.
∥r(t)∥ ≤ r̄, where r̄ is any positive constant.

Similar to Hopp and Schmitendorf (1990); Shigemaru and
Wu (2007); Wu (2008), for the reference model described
by (3), there exist some the matrices Gr ∈ Rn×nr , Hr ∈
Rm×nr , Fr ∈ Rm×mr , such that the following matrix
algebraic equation holds.A B 0

C 0 0

0 0 B


 Gr

Hr

Fr

 =

 GrAr

Cr
GrBr

 (4)

It is worth noticing that some approaches to finding the
solution of this algebraic matrix equation are also dis-
cussed in detail (see, e.g. Hopp and Schmitendorf (1990);
Shigemaru and Wu (2007); Shyu and Chen (1995) and the
references therein).

In this paper, the question is how to synthesize a state
feedback control scheme such that the output y(t) of the
uncertain system described by (1) and (2) can follow the
output yr(t) of the reference model described by (5).

Assumption 2.1. The nominal dynamical system of (1)
is assumed to be stabilizable. That is, the pair

(
A, B

)
is

completely controllable.

Assumption 2.2. For all (x, t) ∈ Rn × R+, there
exists an uncertain nonlinear function E(·) of appropriate
dimensions such that ∆F(·) = BE(·). Moreover, the
uncertain E(·) is assumed to be bounded with respect
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to their arguments, in Euclidean norm. More specifically,
there exist a nonlinear function ξ0(·) : Rn×R+ → Rh and
a constant vector θ∗0 ∈ Rh such that for all x ∈ Rn and all
t ≥ t0, ∥∥∥E(x(t), t)∥∥∥≤ (θ∗0)⊤ξ0(x(t), t) (5)

where the nonlinear nonnegative function ξ0(x, t) is as-
sumed to be sufficiently smooth.

Remark 2.1. As given in most all control literature,
Assumption 2.1 is very standard (see, e.g. Zhang et al.
(1996)). In particular, it should be pointed out that the
nonlinear function vector ξ0(·) and constant vector θ∗0 do
not need to be known for designing robust tracking control
schemes by using the design method proposed later.

Remark 2.2. There are some methods to deal with dead-
zone functions in the control literature. In this paper, we
will utilize a direct method proposed in Wu (2017a,b) to
deal with such a nonsymmetric dead-zone input nonlinear-
ity where its information is completely unknown.

It follows from Assumption 2.1 that for any given matrix
Q ∈ Rn×n where Q = Q⊤ > 0, there exists an unique
positive definite matrix P ∈ Rn×n as the solution of the
Riccati equation in the form of

A⊤P + PA− µ̂PBB⊤P = −Q (6)

where µ̂ is any given positive constant.

In this paper, we will make use of a new integral inequality,
called Wu inequality (see, Wu (2018a)), to implement our
stability analysis in the next section. Here, such an integral
inequality is given in the following lemma.

Lemma 2.1. (Wu (2018a)) Let Y(t) and Z(t) be any
continuous functions with Y(t0) ̸= 0. Moreover, θ, γ, β1,
and β2 are any given positive constants, and ρ̌j(Y,Z)
is any nonnegative continuous function. Then, there are
always some positive constants ϵj , j = 1, 2, . . . , l, such that
the inequality∣∣∣Y(t)

∣∣∣ ≤ γe−θ(t−t0)

+β1

l∑
j=1

ϵ−1
j

t∫
t0

e−θ(t−s)ρ̌j

(
Y(s),Z(s)

)
ds+ β2 (7)

implies that∣∣∣Y(t)∣∣∣≤ γ

1− η∗
e−θ0(t−t0) +

β2

1− η∗
(8)

where θ0 and η∗ are some positive constants which satisfy
θ0 < θ and η∗ < 1, respectively.

In the rest of this paper, with respect to the concept of
the conventional uniform ultimate boundedness, similar to
Wu (2017b, 2018b), we also introduce a concept of uniform
exponential boundedness as follows.

Definition 2.1. (Uniform exponential boundedness) The
dynamical systems described by a differential equation are

said to be uniformly exponentially bounded, if there exist
some positive constants ε, α, and κ(δ) > 0 such that for
any δ > 0 and for any t > t0,∥∥x(t)∥∥ ≤ κ(δ)e−α(t−t0) + ε

where x(t) is the solutions of differential equation with
initial condition x(t0), and

∥∥x(t0)∥∥ < δ.

3. ROBUST TRACKING CONTROL SCHEMES

In this section, we synthesize a class of tracking control
schemes. Firstly, we define the tracking error as follows.

e(t) = y(t)− yr(t) (9)

Secondly, we also define a new state vector z(t), called the
auxiliary state, as follows:

z(t) = x(t)− Grxr(t) (10)

where Gr ∈ Rn×nr satisfies the matrix algebraic equation
given in (4).

It is obvious from (4) and (10) that the relationship
between the tracking error e(t) and the auxiliary state
vector z(t) can be obtained in the form of

e(t) = Cz(t) (11)

Now, from (1), (4), and (10), we can obtain an auxiliary
dynamical system in the form of

dz(t)

dt
=Az(t) +BD(u(t))

+∆F̃(z(t), t) +Bg(xr(t), r(t)) (12)

where

g(xr(t), r(t)) :=−Hrxr(t)−Frr(t) (13a)

∆F̃(z(t), t) :=∆F
(
z(t) + Grxr(t), t

)
(13b)

Here, because of the boundedness of the given reference
model, we can define for (13a) a positive constant β∗

0 as
follows.

β∗
0 := max

{ ∥∥∥Hrxr(t) + Frr(t)
∥∥∥ : t ∈ R+

}
Thus, we propose a class of robust tracking control schemes
with a relatively simple structure of form

u(t) =K(z(t), ϱ̂(t), t)

=− 1

2
µ̂ϱ̂(t)B⊤Pz(t) (14)

where µ̂ is any given positive constant, P is a solution
of algebraic Riccati equation (6), and ϱ̂(t) is a self-tuning
control gain updated by

dϱ̂(t)

dt
= −γσϱ̂(t) +

1

2
γµ̂
∥∥B⊤Pz(t)

∥∥2 (15)

where γ and σ are some given positive constants, and the
initial condition of the self-tuning control gain ϱ̂(t) is given
as ϱ̂(t0) ≥ 0.
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Remark 3.1. As stated in the introduction section, in
order to transform (1) and (3) into an auxiliary dynamical
system, in the conventional design methods, the control
schemes should be composed of two parts, i.e.

u(t) = K1(xr(t), r(t)) +K2(z(t), t)

where

K1(xr(t), r(t)) = Hrxr(t) + Frr(t)

and K2(z(t), t) will be redesigned. However, if the control
input has some constraints, e.g. the dead-zone input non-
linearities, by using such a control scheme with two parts,
it is not possible to obtain an auxiliary system.

Remark 3.2. It can be observed from (14) that our
robust tracking control schemes are structurally linear in
the state, and have a time-varying control gain function.
Moreover, it is obvious from (14) and (15) that the non-
linear upper bound function ξ0(·) of the system uncer-
tainties are not used to construct such a class of robust
tracking control schemes. That is, the proposed robust
control schemes are completely independent of uncertain
nonlinearity ∆F(x(t), t), which results in the simplicity of
our design method.

We also define that ϱ̃(t) := ϱ̂(t)−ϱ∗, and ϱ∗ is an unknown
positive constant which will be defined latter. Thus, we can
rewrite (15) as the adaptation error systems in the form
of

dϱ̃(t)

dt
= −γσϱ̃(t) +

1

2
γµ̂
∥∥B⊤Pz(t)

∥∥2 − γσϱ∗ (16)

Moreover, we will define (z, ϱ̃)(t) as a solution of the
closed-loop auxiliary systems and the adaptation error
systems. Thus, we can have the following results.

Theorem 3.1. Consider the adaptive closed-loop auxil-
iary systems with dead-zone input, described by (12) and
(14) with (15), which satisfyAssumptions 2.1 andAssump-
tions 2.2. Then, the solutions (z, ϱ̃) (t; t0, z(t0), ϱ̃(t0)) of
the closed-loop auxiliary dynamical systems and the adap-
tation error systems uniformly exponentially bounded.
That is, the auxiliary state z(t) converges uniformly ex-
ponentially towards a ball.

Proof : Here, similar to some known method (see, e.g. Wu
(2017a,b)), for any i ∈ {1, 2, . . . ,m}, we will rewrite the
dead-zone function Di(ui) described in (2) as follows.

Di(ui(t)) = βi(t)ui(t) + di(t) (17)

where βi(t) and di(t) are respectively defined as follows.

βi(t) :=

{
m̃il, if ui(t) ≤ 0

m̃ir, if ui(t) > 0
(18)

and

di(t) :=


−m̃ir b̃ir, if ui(t) ≥ b̃ir

−βi(t)ui(t), if − b̃il < ui(t) < b̃ir

m̃ilb̃il, if ui(t) ≤ −b̃il

(19)

Moreover, we can also define that m̄i := max
{
m̃il, m̃ir

}
and b̄i := max

{
b̃il, b̃ir

}
. Thus, it is obvious from these

definitions that ∣∣∣di(t)∣∣∣ ≤ d̄i := m̄i · b̄i (20)

Thus, the nonlinear dead-zone input vector given in (2)
can be redescribed as follows.

D(u(t)) = M(t)u(t) + d(t) (21a)

where

M(t) := diag
{
β1(t), β2(t), . . . , βm(t)

}
(21b)

d(t) :=
[
d1(t) d2(t) . . . dm(t)

]⊤
(21c)

From (18)–(21), it can be known that for any t ≥ t0, the
matrix M(t) is positive definite, and the vector d(t) is
norm-bounded. Therefore, we can introduce the following
definitions.

η∗ :=min
{
λmin (M(t)) , t ∈ R+

}
(22a)

ρ∗ :=max
{
λmax

(
d(t)d⊤(t)

)
, t ∈ R+

}
(22b)

where for any i ∈ {1, 2, . . . , N}, η∗ and ρ∗ are two unknown
positive constants.

Then, we construct a Lyapunov-like function for the adap-
tive closed-loop auxiliary dynamical systems, which is de-
scribed by

V(z, ϱ̃) = z⊤(t)Pz(t) + η∗γ−1ϱ̃2(t) (23)

By taking the derivative of V(·) along the trajectories of
the adaptive closed-loop auxiliary dynamical systems, we
have that for any t ≥ t0,

dV(z, ϱ̃)
dt

= z⊤(t)
[
A⊤P + PA

]
z(t)

+2z⊤(t)PBD(u(t)) + 2z⊤(t)P∆F̃(z(t), t)

+2z⊤(t)PBg(xr(t), r(t)) + 2η∗γ−1ϱ̃(t)
dϱ̃(t)

dt
(24)

Moreover, according to Assumption 2.2, (6), and (21) we
can obtain that for any t ≥ t0,

dV(z, ϱ̃)
dt

≤ z⊤(t)

[
−Q+ µ̂PBB⊤P

]
z(t)

+2z⊤(t)PBM(t)u(t) + 2z⊤(t)PBd(t)

+2
∥∥B⊤Pz(t)

∥∥(θ∗0)⊤ξ̂0(z(t), t)
+2β∗

0

∥∥B⊤Pz(t)
∥∥+ 2η∗γ−1ϱ̃(t)

dϱ̃(t)

dt
(25)

where

ξ̂0(z(t), t) := ξ0

(
z(t) + Grxr(t), t

)
(26)
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Now, in the light of the fact that for any positive constant
ε > 0, 2x⊤y < ε∥x∥2 + ε−1∥y∥2, it follows from (25) that
for any t ≥ t0,

dV(z, ϱ̃)
dt

≤−z⊤(t)Qz(t) + 2z⊤(t)PBM(t)u(t)

+ϵ−1
1 + ϵ−1

3 + µ̂η∗ϱ∗
∥∥B⊤Pz(t)

∥∥2
+ϵ−1

2

∥∥∥ξ̂0(z(t), t)∥∥∥2 + 2η∗γ−1ϱ̃(t)
dϱ̃(t)

dt
(27)

where for any j ∈ {1, 2, 3}, εj is any positive constant, and
the unknown positive constant ϱ∗ is defined by

ϱ∗ :=
1

µ̂η∗

(
µ̂+ ϵ1ρ

∗ + ϵ2

∥∥∥θ∗0∥∥∥2 + ϵ3

(
β∗
0

)2)
(28)

Substituting the robust tracking control schemes with
adaptation laws into (27) yields

dV(z, ϱ̃)
dt

≤−z⊤(t)Qz(t)− µ̂η∗ϱ̂(t)
∥∥B⊤Pz(t)

∥∥2
+ϵ−1

1 + ϵ−1
3 + µ̂η∗ϱ∗

∥∥B⊤Pz(t)
∥∥2

+ϵ−1
2

∥∥∥ξ̂0(z(t), t)∥∥∥2 − 2ση∗ϱ̃2(t)

+µ̂η∗ϱ̃(t)
∥∥B⊤Pz(t)

∥∥2 − 2ση∗ϱ̃(t)ϱ∗

≤−z⊤(t)Qz(t)− ση∗ϱ̃2(t)

+ϵ−1
2

∥∥∥ξ̂0(z(t), t)∥∥∥2 + ϵ∗ (29)

where

ϵ∗ := ϵ−1
1 + ϵ−1

3 + ση∗
∣∣∣ϱ∗∣∣∣2 (30)

Since P and Q are positive definite, it can be obtained
from (23) and (29) that for any t ≥ t0,

dV(z, ϱ̃)
dt

≤−θminV(z, ϱ̃) + ϵ−1
2

∥∥∥ξ̂0(z(t), t)∥∥∥2 + ϵ∗ (31)

where

θmin :=min
{
λmin(Q)λ−1

max(P ), σγ
}

Then, if defining V(t) := V(z(t), ϱ̃(t)), from (23) and (31),
we can obtain that for any t ∈ R+,∥∥∥z(t)∥∥∥2 ≤ λ−1

min(P ) exp{−θmin(t−t0)}V(t0)

+λ−1
min(P )ϵ−1

2

t∫
t0

exp{−θmin(t−s)}
∥∥∥ξ̂0(z(s), s)∥∥∥2ds

+λ−1
min(P )θ−1

minϵ
∗ (32)

Finally, noting that ϵ2 is any positive constant, and in
terms of Wu inequality given in Lemma 2.1, from (32) it
is not difficult that we can obtain a bound on the auxiliary
state as follows.∥∥∥z(t)∥∥∥2 ≤ λ−1

min(P )V(t0)
1− κ̂

e−θ0(t−t0)+
λ−1
min(P )θ−1

minϵ
∗

1− κ̂
(33)

where θ0 and κ̂ are some positive constants which satisfy
θ0 < θmin and κ̂ < 1, respectively.

Thus, it is obvious from (33) that the auxiliary state
z(t) converges uniformly exponentially to a ball B(ρ̂0)
described by

B(ρ̂0) :=

z
∣∣∣ ∥z∥ ≤ ρ̂0 :=

√
λ−1
min(P )θ−1

minϵ
∗

1− κ̂

 (34)

Thus, we complete the proof of Theorem 3.1. ∇∇∇

Moreover, from Theorem 3.1 we can easily obtain the
following theorem.

Theorem 3.2. Consider the model following problem of
the uncertain nonlinear systems with dead-zone inputs,
described by (1) and (2). Suppose that Assumption 2.1
and Assumption 2.2 is satisfied. Then, by using the state
feedback control schemes u(t) given in (14) with (15), one
can guarantee that the tracking error e(t) between the
uncertain systems and the reference model is uniformly
exponentially bounded. That is, the output y(t) of the
uncertain nonlinear systems described by (1) and (2) can
track the output yr(t) of the reference model described by
(5) in the sense of uniform exponential boundedness.

Remark 3.3. In the proof of Theorem 3.1, some positive
parameters θ0, ϵ

∗, κ̂, ϵj , j = 1, 2, 3, have been utilized.
However, these parameters are completely independent of
the proposed robust tracking control schemes described
by (14) with (15). That means that these parameters are
employed only for the theoretical proof of our results.
Therefore, we do not need to know or select them in this
paper.

4. ILLUSTRATIVE EXAMPLE

In this section, we provide a numerical example to de-
scribe the design procedure of the presented method, and
to demonstrate the efficiency of the results through its
simulations.

dx(t)

dt
=

[
−3 1

0 3

]
x(t) +

[
1

1

]
D(u(t)) + ∆F(x(t), t)

(35a)

y(t) = [ 0 1 ]x(t) (35b)

where D(u) is a dead-zone function. For simulation, the

uncertain nonlinear function ∆F
(
x(t), t

)
is given by

∆F
(
x(t), t

)
=

[
1

1

](
θ1

1−e−x1(t)

1+e−x1(t)
+ θ2 sin(x2(t))

)
and where θ1 and θ2 are some unknown parameters.

The reference model is described by the differential equa-
tion in the form of

dxr(t)

dt
=

[
2 4

−2 −2

]
xr(t) +

[
1

0

]
r(t) (36a)

yr(t) = [ 2 −1 ]xr(t) (36b)

Now, for this numerical example, in the light of (4), (37),
and (38), it is not difficult to obtain the following matrices.
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Gr =

[
2 4

2 −1

]
, Hr = [ 0 13 ] , Fr = 2

For the given constant µ̂ = 5 and matrix Q = diag{1, 1},
from (8) we can have that

P =

[
1.433 −0.167

−0.167 0.430

]

and for the adaptation law, the following parameters are
selected.

γ = 0.5, σ = 0.1

Moreover, for simulation, we also give the characteristic
parameters of the dead-zone function D(u(t)) as follows.

m̃l = 1.0, m̃r = 0.7

b̃l = 3.0, b̃r = 1.0

Finally, we select the reference input r(t), the unknown
parameters θ1, θ2, and all the initial conditions as follows.

r(t) = 0.2, θ1 = θ2 = 0.5

x(0) = [−3.0 3.0 ]
⊤

xr(0) = [−8.0 8.0 ]
⊤

ϱ̂(0) = 5.0

Thus, the results of simulation can be depicted in Fig.1
and Fig.2. It can be observed from Fig.1 and Fig.2 that
the output y(t) of uncertain system (37) can indeed track
the output yr(t) of reference model (38) in the sense of
uniform exponential boundedness.

(The details of the illustrative numerical example
and the figures of the simulation will be displayed
in the oral presentation.)

5. CONCLUDING REMARKS

In the paper, the problem of robust tracking and model
following has been investigated for a class of uncertain non-
linear systems with completely unknown dead-zone inputs
and uncertain nonlinearity. The system uncertainties have
been assumed to be any continuous and bounded nonlinear
functions. Based on Wu inequality, a new design method
has been proposed by which some adaptive robust tracking
control schemes with a relatively simple structure can be
obtained. It has been also shown that the output of the
uncertain nonlinear systems can be guaranteed to track
the output of the given reference model in the sense of
uniform exponential boundedness.
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