
Distributed Job Shop Scheduling using
Consensus Alternating Direction Method of

Multipliers

Toshiyuki Miyamoto ∗ Toyohiro Umeda ∗∗ Shigemasa Takai ∗

∗ Osaka University, Suita, 565-0871 Japan (e-mail:
miyamoto@eei.eng.osaka-u.ac.jp).

∗∗ Kobe Steel, Ltd., Kobe, 651-2271 Japan

Abstract: Scheduling problems belong to NP-hard and are not easily solved in large systems.
In recent years, the development of optimization methods in multi-agent systems has been
remarkable. In this paper, we consider a large-scale system as a multi-agent system and discuss a
method of solving a scheduling problem using consensus among agents. We propose a distributed
method using the alternating direction method of multipliers and evaluate the method using a
small-scale instance of the scheduling problem.

Keywords: distributed scheduling, consensus, optimization, ADMM, job shop scheduling

1. INTRODUCTION

Since the manufacturing cost in large-scale production
systems such as steel manufacturing processes is enor-
mous, optimization on its operation plan is important
from the viewpoint of cost reduction and effective use of
resources. However, there is a practical problem in terms
of calculation time on obtaining the optimal schedule
or optimizing the entire manufacturing process. Even if
an optimal schedule for the entire manufacturing process
was obtained, keeping the operation on the schedule is
extremely difficult due to the fact that there exists some
gap between the model and the actual plant and there
exist various variable factors that cannot be avoided in
actual operation. For this reason, even if a manufacturing
plan can be obtained as a guideline, the operation is
often left to the field. As a result, some concerns such
as unnecessary job accumulation, the material shortage at
the neck equipment, equipment stoppage due to overflow
of the storage location (buffer), delay in delivery, and a
shortfall in production happen. On the other hand, the
environment where equipment and logistics information in
the factory can be acquired in real-time is being improved
by introducing IoT. In addition, an environment has been
rapidly introduced in which operation and transport in-
structions can be transmitted directly to the equipment
in real-time. Therefore, in this paper, we consider a multi-
agent approach that guides the entire system in the desired
direction while satisfying local constraints by exchanging
information between agents.

As an important problem in multi-agent systems, the
consensus problem exists. The consensus problem is an
optimization problem aiming at minimizing the sum of the
objective functions of agents while keeping some variables
common to multiple agents. Various applications of the
consensus problem (Ren et al. (2005)) have been reported
such as scheduling problems (Moore and Lucarelli (2007)),
QoS fairness control of computing resources (Hayashi et al.

(2010)), cooperative tracking by camera sensor network
(Segawa et al. (2015)), source identification (Hayashi and
Takai (2017)), economic dispatch problem in smart grids
(Nguyen et al. (2018)).

In this paper, we propose to apply the distributed algo-
rithm of the consensus problem to the job shop scheduling
problem as the first step toward the construction of an
autonomous distributed scheduling method for large-scale
production systems. After describing the consensus prob-
lem and its distributed algorithm in Sect.2, we propose an
application method for the job shop scheduling problem
in Sect.3. Section 4 explains the proposed method using a
simple example and shows the results of computer exper-
iments.

2. CONSENSUS PROBLEM AND ITS DISTRIBUTED
ALGORITHM

Let X be a convex set, I be a set of agents, fi : X → R be
a closed, proper, and convex objective function of agent
i ∈ I. Then, the consensus problem can be formulated as
follows:

(CP1) min
x∈X

∑
i∈I

fi(x) (1)

In the consensus problem, the sum of objective functions
is minimized while consensus on shared common variable
x is achieved.

Distributed optimization is achieved by repeating opti-
mization by each agent and information exchange between
agents. If there are restrictions on the communication
among agents, the restriction structure is represented by a
graph G = (I, E), where E ⊆ I2. In this paper, we assume
that the graph is connected and undirected (meaning
that a communicable partner can communicate in both
directions). Let Ni = {i′ ∈ I | (i, i′) ∈ E} be the set of
neighboring agents of agent i, the domain of variables for

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10929

agent i ∈ I be Xi, and X = ∩i∈IXi. Then, the consensus
problem can be rewritten as follows:

(CP2) min
xi∈Xi

∑
i∈I

fi(xi) (2)

s.t. xi = xi′ , i′ ∈ Ni, i ∈ I (3)

The Alternating Direction Method of Multipliers (ADMM)
(Boyd et al. (2010)) is a solution to the convex opti-
mization problem, by alternatively updating variables by
optimizing the augmented Lagrangian function of the ob-
jective function. If a problem can be decomposed into
subproblems of each agent’s variable set, it can be used
as a distributed optimization technique. The ADMM algo-
rithm for the consensus problem on the graph is as follows
(Mateos et al. (2010); Chang et al. (2015)), where ai is a
parameter of agent i, c is a parameter common to agents,
and the number of right shoulders indicates the number of
iterations:

(1) Initialize a
(0)
i and x

(0)
i for each agent i and let k := 0.

(2) Exchange xi with neighboring agents and let k := k+
1.

(3) Update ai and xi for each agent i as follows:

a
(k)
i = a

(k−1)
i + c

∑
i′∈Ni

(x
(k−1)
i − x

(k−1)
i′) (4)

x
(k)
i = arg min

xi∈Xi

{
fi(xi) + xT

i a
(k)
i

+ c
∑
i′∈Ni

∥∥∥∥∥xi −
x
(k−1)
i + x

(k−1)
i′

2

∥∥∥∥∥
2

2

}
(5)

(4) Repeat steps (2) and (3) while a stopping condition
is not satisfied.

At step (1) in the algorithm, there is a condition on a
(0)
i .

An easy way to satisfy the condition is setting 0 to each

a
(0)
i (Chang et al. (2015)).

At step (2), agents exchange decision variable values.

The step (3) can be executed in parallel for each agent.
Each agent updates the dual variable ai by eq. (4), then,
he or she updates the decision variable xi by solving
optimization problem in eq. (5).

The algorithm converges to an optimal solution with k →
∞. Actually, it is repeated until a stopping condition is
satisfied as in step (4). As the stopping criteria, the primal
residual r(k) and dual residual s(k) given by the following
equation are used.

r(k) =
∑
i∈I

∑
i′∈Ni

∥x(k)
i − x

(k)
i′ ∥22 (6)

s(k) =
∑
i∈I

∥x(k)
i − x

(k−1)
i ∥22 (7)

3. APPLICATION TO JOB-SHOP SCHEDULING

In this paper, we propose to apply the ADMM algorithm
to Job-shop Scheduling Problem (JSP). Note that since
JSP is a non-convex optimization problem, optimality is
not guaranteed. Furthermore, convergence by the proposed
method is not guaranteed.

Ｍ１ Ｍ３Ｂ２ Ｂ４
y11 = x21 y21 = x31

Fig. 1. Example system

A production system consists of machines and buffers,
where transport equipment is considered buffers. The
machine and the buffer are collectively called equipment.
We consider a multi-agent system where an agent exists
for each piece of equipment and each agent independently
determines the schedule of the piece of equipment. At this
time, if there is a discrepancy between the end time and the
start time of consecutive pieces of equipment, execution of
the schedule is not possible. Therefore, we formulate JSP
as the consensus problem on these times.

Let I be the set of equipment, J be the set of jobs.
Each job j ∈ J visits every piece of equipment in a
beforehand determined order and the ı-th equipment of
job j is denoted by mj,ı.

The decision variables are the process start time and
process end time. The processing start time of job j ∈ J
in equipment i ∈ I is xij , and the processing end time
is yij . When the equipment i is a buffer, xij represents
the time when the job j is placed in the buffer, and
yij represents the time it is taken out of the buffer.
The decision variables vector of equipment i is xi =
[xi,1, . . . , xi,|J|, yi,1, . . . , yi,|J|]

T and its domain is Xi. It
is assumed that the processing time constraint on the
machine, the number of jobs that can be processed simul-
taneously, the job ready time constraint, the delivery time
constraint, the transfer time constraint between machines,
the buffer capacity constraint, etc. are all expressed as Xi.

JSP is formulated as a consensus problem as follows
because the end time and the start time need to be agreed
among consecutive processes.

(JSP) min
xi∈Xi

∑
i∈I

fi(xi) (8)

s.t. ymj,ıj = xmj,ı+1j ,

ı ∈ {1, . . . , |I| − 1}, j ∈ J (9)

4. COMPUTATIONAL EXPERIMENTS

4.1 Example

Consider a production system consisting of two machines
(M1, M3), an intermediate buffer (B2), and a finished
product buffer (B4) shown in Fig. 1. All jobs are placed
in buffer B2 after processing on machine M1. Jobs sent
from buffer B2 to machine M3 are placed in buffer B4
after processing on machine M3. The processing times on
machines M1 and M3 are given constant and buffer B2 is
given a lower limit for the time to be placed. The job has a
due date, and a penalty occurs if the time placed in buffer
B4 exceeds the due date. Table 1 shows the ready time,
process time, and due date of jobs.

In the proposed method, agents exist in M1, B2, M3, and
B4. Each agent makes a schedule while agreeing a time
with neighboring agents. For example, y11 is the time in

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10930

Table 1. Ready time, process time, and due-
date of jobs

Job ready time process time due-date
M1 B2 M3 B4
p1j p2j p3j dj

j1 0 3 5 4 18
j2 0 6 1 2 10
j3 0 2 2 8 16

Table 2. Optimal solution

(a) x∗
ij (b) y∗ij

i j
1 2 3

1 2 5 0
2 5 11 2
3 14 12 4
4 18 14 12

i j
1 2 3

1 5 11 2
2 14 12 4
3 18 14 12

the schedule of machine M1 when machine M1 places job
1 in the buffer, x21 is the time in the schedule of buffer B2
when job 1 is placed in buffer B2 , y21 is the time in the
schedule of buffer B2 when job 1 is taken out from buffer
B2, and x31 is the time in the schedule of machine M3 when
machine M3 takes out job 1 from the buffer. The agents
need to create a schedule while agreeing that y11 = x21

between machine M1 and buffer B2 and y21 = x31 between
buffer B2 and machine M3.

Let I = {1, 2, 3, 4} be the set of equipment, J = {1, 2, 3}
be the set of jobs, pij be the processing time of job j in
equipment i, and dj be the due date of job j, where the
processing time in the buffer represents the time interval
required before moving from the previous machine to the
next machine.

The above scheduling problem is formulated as a central-
ized optimization problem as follows:

min
∑
j∈J

max{0, x4j − dj} (10)

s.t. x1j ≥ 0, j ∈ J (11)

yij − xij = pij , i ∈ {1, 3}, j ∈ J (12)

yij − xij ≥ pij , i ∈ {2}, j ∈ J (13)

yij1 ≤ xij2 ∨ yij2 ≤ xij1i ∈ {1, 3}, j1 ̸= j2 (14)

yij = xi+1,j , i ∈ {1, 2, 3}, j ∈ J (15)

The objective function was set to minimize the sum of
delays to the due date (tardiness). (11) is a ready time
constraint, and (12) and (13) are processing time con-
straints. The processing time constraint in the buffer is an
inequality constraint because it represents the minimum
interval. (14) is a constraint on the number of jobs that
can be processed simultaneously on a machine, and (15) is
a consensus constraint.

The objective function value of the optimal solution of the
example shown in Table 1 is 4, and values of the optimal
solution x∗

ij and y∗ij are shown in Table 2.

The objective function (10) can be seen as
∑

i∈I fi(xi)
when f1(x1) = f2(x2) = f3(x3) = 0, and f4(x4) =∑

j∈J max{0, x4j − dj}. The constraints (11) – (14) are

local, i.e., they define Xi. The constraint (15) is the
consensus constraint. Thus, the scheduling problem has
the form of CP2.

4.2 Formulation for distributed optimization

Since the scheduling problem has the form of CP2, the
ADMM algorithm can be applied. The optimization prob-
lem solved by each agent at eq. (5) when the above
optimization problem is distributively optimized using
ADMM is as follows, where xi = [xi,1, . . . , xi,|J|]

T, yi =

[yi,1, . . . , yi,|J|]
T.

Machine M1:

y
(k)
1 =argmin

y1

yT1 a
(k)
1 + c

∥∥∥∥∥y1 − y
(k−1)
1 + x

(k−1)
2

2

∥∥∥∥∥
2

2

s.t. x1 ≥ 0

y1 − x1 = p1
y1j1 ≤ x1j2 ∨ y1j2 ≤ x1j1 , j1 ̸= j2

Buffer B2:[
x
(k)
2

y
(k)
2

]
=arg min

x2,y2

{
[xT

2 , y
T
2]a

(k)
2

+ c

∥∥∥∥∥x2 −
x
(k−1)
2 + y

(k−1)
1

2

∥∥∥∥∥
2

2

+

∥∥∥∥∥y2 − y
(k−1)
2 + x

(k−1)
3

2

∥∥∥∥∥
2

2

s.t. y2 − x2 ≥ p2

Machine M3:[
x
(k)
3

y
(k)
3

]
=arg min

x3,y3

{[
xT
3

yT3

]
a
(k)
3

+ c

∥∥∥∥∥x3 −
x
(k−1)
3 + y

(k−1)
2

2

∥∥∥∥∥
2

2

+

∥∥∥∥∥y3 − y
(k−1)
3 + x

(k−1)
4

2

∥∥∥∥∥
2

2

s.t. y3 − x3 = p3

y3j1 ≤ x3j2 ∨ y3j2 ≤ x3j1 , j1 ̸= j2

Buffer B4:

x
(k)
4 =argmin

x4

∑
j∈J

max{0, x4j − dj}+ xT
4 a

(k)
4 +

c

∥∥∥∥∥x4 −
x
(k−1)
4 + y

(k−1)
3

2

∥∥∥∥∥
2

2

4.3 Experiments

Figs. 2 and 3 show the execution results when parameter
c = 0.5 and 0.1, respectively, and the decision variables
are integers. Fig. 4 shows the result when c = 0.1 and the
decision variables are real numbers. In all the results, the
horizontal axis is the number of iterations and the vertical
axis is the variable xij . The dotted lines in the figures show
the optimal solution in Table 2.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10931

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45

x
11
x
12
x
13
x
21
x
22
x
23
x
31
x
32
x
33
x
41
x
42
x
43

knumber of iterations

x i
j

s
ta

rt
 t

im
e

Fig. 2. Change of start time xij when c = 0.5 and decision
variables are integers. The algorithm converges, but
objective function value is 20.

 0

 5

 10

 15

 20

 25

 0 5 10 15 20 25 30 35 40 45

x
11
x
12
x
13
x
21
x
22
x
23
x
31
x
32
x
33
x
41
x
42
x
43

knumber of iterations

x i
j

s
ta

rt
 t

im
e

Fig. 3. Change of start time xij when c = 0.1 and decision
variables are integers. Objective function value is 4,
but the algorithm has not converged.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

x
11
x
12
x
13
x
21
x
22
x
23
x
31
x
32
x
33
x
41
x
42
x
43

knumber of iterations

x i
j

s
ta

rt
 t

im
e

Fig. 4. Change of start time xij when c = 0.1 and decision
variables are real numbers. The algorithm converges
and objective function value is 4.

In Fig. 2, the algorithm converges, but the objective
function value is 20. In Fig. 3, the objective function value
is 4, but it has not converged. In Fig. 4, the algorithm
converged to the optimal solution.

In our formulation in equation (5), the parameter c is
multiplied by the norm that represents the difference

form the mean value of the consensus variable in the
previous iteration. When the parameter c is large, the
ADMM algorithm hurries to converge. As a result, the
algorithm goes to bad solution as shown in Fig. 2. When
the parameter c is small, it is expected that the ADMM
algorithm goes to good solution; however, we need more
iterations.

In Fig. 3, the value of x23 vibrates. What happens there is
as follows. At k = 29, 32, 35, 38, 41, and 44, the consensus
was achieved, i.e. the primal residual was zero, however,
the dual residual was not enough small. Thus, the stopping
condition was not satisfied. Furthermore, the ADMM
algorithm can be seen a dynamical system, and thus, it has
a kind of inertia. So the algorithm passed by the solution
and oscillated near the solution. Because the inertia comes
from the second term (xT

i a
(k)
i) in equation (5), one possible

countermeasures to make stop the algorithm is increasing
the parameter c. In fact, varying penalty parameter is an
issue in convex optimization (Boyd et al. (2010)).

The vibration of values is not only the case as x23 in Fig. 3.
Suppose that x−y = 1 and we want to achieve a consensus
between x and y. The ADMM algorithm updates their
value as x := x− 1 and y := y + 1 to achieve a consensus.
Then x and y will exchange their values forever because
they are integers.

Another countermeasure against these vibrations is chang-
ing the type of variables from integers to real numbers. As
shown in Fig. 4, the algorithm converged to the optimal
solution. However, due to the slow update of variables, the
algorithm requires a large number of iterations when the
stopping condition is strict. It is known that increasing the
parameter c is effective also in such a case.

In the above three cases, although the variables, which
represent start and end times, vibrate, the order of pro-
cessing jobs is fixed. So another countermeasure is that we
watch the order too and stop the iteration when the order
is fixed. After fixing the order, we can set the start and
end times by forward/backward simulation of the entire
system using the fixed order.

If we run the ADMM algorithm in another instance, we
can see a case where the order of processing jobs vibrates.
One of the reasons that this kind of vibration occurs is
that each agent does not have its own objective function
in the formulation in Sect.4.2. In the formulation, only
buffer B4 has its own objective to minimize the sum
of tardiness; other agents have only penalty terms come
from the Lagrangian relaxation and do not have their own
objective. So even if a vibration on the order occurs in
the preceding three agents, these agents have no intention
stabilizing the vibration. When we apply the proposed
method to a more complicated production system, each
agent may have its own objective. We are expecting that
the agents’ own objective has some effects on stabilizing
this kind of vibrations.

5. RELATED WORKS

In this paper, we studied a multi-agent-based schedul-
ing problem. The concept of multi-agent-based scheduling
itself is not new. The Intelligent Manufacturing System

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10932

(IMS) program 1 started in 1995 as a trilateral cooper-
ative research project among the US, EU, and Japan.
We can find agent-based manufacturing in some of early
projects such as Next Generation Manufacturing Systems
project (Okabe et al. (1998)), (Bunce et al. (1997)) and
Holonic Manufacturing Systems project (Van Brussel et al.
(1997)).

The scheme of multi-agent-based scheduling can be clas-
sified into three types: heuristic-based, meta-heuristic-
based, and optimization-based.

In heuristic-based methods, agents exist for each machine
and/or job; agents make a decision using classical dis-
patching rules. Miyamoto et al. (2002) applied context-
dependent agents (CDAs) to JSP, where an agent exists for
each machine, each agent has a set of dispatching rules and
selects one or a couple of rules depending on the context
of the production system to decide the next operation.
Lee et al. (2012) considered a distributed scheduling where
each agent holding a job selects a machine to process its
own job and gave bounds for the price of anarchy for some
objectives: the makespan, the total congestion time, the
total completion time, the maximum tardiness, the total
tardiness, and the number of tardy jobs.

In meta-heuristic-based methods, a multi-agent system
solves JSP using meta-heuristics. Ennigrou and Ghédira
(2008) proposed multi-agent approaches based on the
tabu search. Xiong and Fu (2015) proposed a multi-agent
scheduling approach using immune system.

In optimization-based methods, distributed optimization
methods are used to solve JSP. Gou et al. (1994), Liu et al.
(2007), and Xu et al. (2012) use Lagrangian decomposition
(LD) (Guignard and Kim (1987)) to solve JSP in a
distributed way. When we solve an optimization problem
in a distributed way, we have to decompose it into a
set of the optimization problem for each agent. LD is
often used for such a purpose in many applications, for
example, vehicle scheduling (Nishi and Tanaka (2012))
and assignment problem (Hanada and Hirayama (2011)).
In LD, global constraints that lie among multiple agents
are relaxed and added to the objective function with
penalty parameters called Lagrangian multipliers, which is
ai in our formulation (4) and (5). Lagrangian multipliers
represent degrees of competitiveness of shared resources.
In (Gou et al. (1994)) and (Liu et al. (2007)), job agents
try to acquire machine agents to complete the job and LD
is used to resolve conflicts among job agents. In (Xu et al.
(2012)), LD is used to achieve consensus on start and end
times among jobs, so, it is very close to our approach.

The difference between LD and ADMM is how to relax the
problem. In LD, Lagrangian is used, whereas augmented
Lagrangian is used in ADMM. Therefore if we choose 0
as the value of parameter c, the method described in this
paper becomes LD. Comparing to LD, ADMM has better
convergence. In fact, in convex optimization, LD requires
the objective function fi to be strictly convex, whereas
ADMM can be applied even when the objective function
is convex. So, ADMM can be applied to wider class. Fig. 5
shows the result when c = 0. As readers can see, we cannot
get a solution by LD for the JSP in this paper.

1 https://www.ims.org/

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5 10 15 20

x
11
x
12
x
13
x
21
x
22
x
23
x
31
x
32
x
33
x
41
x
42
x
43

knumber of iterations

x i
j

s
ta

rt
 t

im
e

Fig. 5. Change of start time xij when LD is used and
decision variables are real numbers. The algorithm has
not converged and objective function value is 10000.

6. CONCLUSION

This paper proposes a method using the ADMM algorithm
for the consensus problem as a distributed solution to the
job shop scheduling problem. Since the ADMM algorithm
for the consensus problem is a solution to the convex
optimization problem, the scheduling problem, which is
a non-convex optimization problem, does not guarantee
optimality or convergence. The result of a computer ex-
periment in a simple example also showed that.

In the future, we will continue to make further evaluations
by applying it to larger examples, and we will investigate
methods to ensure convergence and a certain degree of
optimality.

REFERENCES

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2010). Distributed optimization and statistical learning
via the alternating direction method of multipliers.
Foundations and Trends in Optimization, 3(1), 1–122.

Bunce, P., Limoges, R., and Okabe, T. (1997). NGMS —
Next Generation Manufacturing Systems (IMS Project),
274–283. Springer Berlin Heidelberg, Berlin, Heidelberg.

Chang, T.H., Hong, M., and Wang, X. (2015). Multi-agent
distributed optimization via inexact consensus ADMM.
IEEE Transactions on Signal Processing, 63(2), 482–
497.

Ennigrou, M. and Ghédira, K. (2008). New local diversifi-
cation techniques for flexible job shop scheduling prob-
lem with a multi-agent approach. Autonomous Agents
and Multi-Agent Systems, 17(2), 270–287.

Gou, L., Hasegawa, T., Luh, P.B., Tamura, S., and Oblak,
J.M. (1994). Holonic planning and scheduling for a
robotic assembly testbed. In Proceedings of the 4th
International Conference on Computer Integrated Man-
ufacturing and Automation Technology, CIMAT 1994,
142–149. United Technologies Research Center, East
Hartford, United States, IEEE Comput. Soc. Press.

Guignard, M. and Kim, S. (1987). Lagrangean decom-
position: A model yielding stronger lagrangean bounds.
Mathematical Programming, 39(2), 215–228.

Hanada, K. and Hirayama, K. (2011). Distributed La-
grangian relaxation protocol for the over-constrained
generalized mutual assignment problem.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10933

Hayashi, N. and Takai, S. (2017). Distributed source iden-
tification by two-hop consensus dynamics with uniform
time-varying communication time-delays. SICE Jour-
nal on Control, Measurement, and System Integration,
10(2), 70–76.

Hayashi, N., Ushio, T., and Kanazawa, T. (2010). Adap-
tive arbitration of fair qos based resource allocation
in multi-tier computing systems. IEICE Transactions
on Fundamentals of Electronics Communications and
Computer Sciences, E93-A(9), 1678–1683.

Lee, K., Leung, J.Y.T., and Pinedo, M.L. (2012). Co-
ordination mechanisms for parallel machine scheduling.
European Journal of Operational Research, 220(2), 305–
313.

Liu, N., Abdelrahman, M.A., and Ramaswamy, S. (2007).
A complete multiagent framework for robust and adapt-
able dynamic job shop scheduling. IEEE Transactions
on Systems Man and Cybernetics Part C-Applications
and Reviews, 37(5), 904–916.

Mateos, G., Bazerque, J.A., and Giannakis, G.B. (2010).
Distributed sparse linear regression. IEEE Transactions
on Signal Processing, 58(10), 5262–5276.

Miyamoto, T., Krogh, B., and Kumagai, S. (2002).
Context-dependent agents for real-time scheduling in
manufacturing systems. IEICE Transactions on Funda-
mentals of Electronics Communications and Computer
Sciences, E85-A(11), 2407–2413.

Moore, K.L. and Lucarelli, D. (2007). Decentralized adap-
tive scheduling using consensus variables. International
Journal of Robust and Nonlinear Control, 17(10-11),
921–940.

Nguyen, D.H., Narikiyo, T., and Kawanishi, M. (2018).
Optimal demand response and real-time pricing by a
sequential distributed consensus-based admm approach.
IEEE Transactions on Smart Grid, 9(5), 4964–4974.

Nishi, T. and Tanaka, Y. (2012). Petri net decomposition
approach for dispatching and conflict-free routing of
bidirectional automated guided vehicle systems. IEEE
Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 42(5), 1230–1243.

Okabe, T., Bunce, P., and Limoges, R. (1998). Next
generation manufacturing systems (NGMS) in the IMS
program. In Advances in Production Management Sys-
tems, 43–54. Springer, Boston, MA, Boston, MA.

Ren, W., Beard, R.W., and Atkins, E.M. (2005). A survey
of consensus problems in multi-agent coordination. In
American Control Conference, 1859–1864.

Segawa, K., Hamada, K., Hayashi, N., and Takai, S.
(2015). Cooperative target tracking by 2-level hierar-
chical ptz camera sensor networks. In IEEE Conference
on Decision and Control, 2975–2980.

Van Brussel, H., Valckenaers, P., and Wyns, J. (1997).
HMS — Holonic Manufacturing Systems Test Case
(IMS Project), 284–292. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Xiong, W. and Fu, D. (2015). A new immune multi-agent
system for the flexible job shop scheduling problem.
Journal of Intelligent Manufacturing, 29(4), 857–873.

Xu, C., Sand, G., Harjunkoski, I., and Engell, S. (2012).
A new heuristic for plant-wide schedule coordination
problems: The intersection coordination heuristic. Com-
puters and Chemical Engineering, 42, 152–167.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10934

