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1. INTRODUCTION

Linear quadratic regulator (LQR) design is perhaps the
most classic example of optimal control problems (An-
derson and Moore, 1990; Lewis, 1986; Kwakernaak and
Sivan, 1972): it consists in finding an input sequence that
optimizes a quadratic cost under the constraint of linear
system dynamics. This convenient structure ensures the
convexity of the problem, whose unique solution can be
given in closed form, expressed as a linear state feedback
depending on a suitable Riccati equation (Lancaster and
Rodman, 1995). We start from the state-feedback struc-
ture and consider a discrete-time, finite-horizon setup.
Casting the optimizing input to be a static state-feedback,
we want to force the resulting closed-loop system to be
asymptotically stable. Hence, the main focus of this paper
is the trade-off between cost value and stability.
To our knowledge, this particular formulation of stability-
constrained LQR design is new in the literature. In fact,
stability in classic finite-horizon LQR is not reasonable, as
pointed out in Bitmead and Gevers (1991): under standard
hypotheses, the Riccati equation yields finite matrices.
On the other hand, this issue has been thoroughly in-
vestigated in the infinite-horizon case (Kalman, 1960).
Much more attention has been devoted to stability in the
model predictive control (MPC) literature (Mayne et al.,
2000): the main step in this approach requires solving a
finite-horizon optimal control problem. Stability may be
enforced by forcing the final state to lie in a neighborhood
of the origin; another approach treats the objective as a
Lyapunov function (Mayne et al., 2000).

In this paper, we formulate stability constraints as a linear
matrix inequality (LMI) derived from standard Lyapunov
theory (La Salle and Lefschetz, 1961), and combine this
LMI with the classic LQR optimization problem. The
decision variable is a static feedback matrix, and the prob-
lem trades off closed loop stability with the classic LQR
objective value. The overall problem is nonconvex, but it
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can be divided into two tractable programs that can be
solved efficiently using alternating minimization (Tseng,
1991). This approach differs from the MPC viewpoint;
in particular, we do not impose any constraint on the
final state value, nor do we tune cost parameters for the
purpose of stability. Moreover, observing that MPC can be
seen as the counterpart of Dynamic Programming (DP)
(Bertsekas, 2000), we argue that our methodology lies
between these two approaches. This is because DP seeks
for a closed-loop solution, dealing with a hard optimization
problem that is not able to deal with many constraints; on
the other hand, MPC approaches find open-loop solutions
that can be computed efficiently and allow for a large
number of constraints.

The paper proceeds as follows. After reviewing basic
concepts on linear systems theory and Lyapunov stability,
a brief recap of classic LQR design is provided in Section
2. In Section 3 we present our procedure, with numerical
tests presented in Section 4. We end with conclusions and
discussion of future research.

Notation A positive (semi-)definite matrix P will be de-
noted as P � (�) 0. When writing state/input/multiplier
vectors without time subscripts, we denote the full-state
vector x = [x>0 x>1 · · ·x>T ]>. We denote by diag(...) the
(block-)diagonal matrix whose elements are listed in the
parenthesis. In denotes the n×n identity matrix and 0n,m
an n ×m matrix of zeroes. ‖ · ‖F indicates the Frobenius
norm and ‖ · ‖ the standard 2-norm. Eigenvalues will
always be denoted with letter σ. Symbol ⊗ will denote
the Kronecker product, vec(·) the vectorization operator
and Kd the d× d commutation matrix.

2. PRELIMINARY NOTIONS AND CLASSIC LQR

2.1 Linear systems theory and stability

We focus on linear, time-invariant, discrete-time dynami-
cal systems of the form
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xt+1 = Fxt +Gut, x0 = x̄ (1)

where xt ∈ Rn is the state vector and ut ∈ Rm is the input
for all t ≥ 0. The state dynamics admits a closed form for
each t, which is

xt = F tx̄+

t−1∑
s=0

F t−s−1Gus. (2)

We first consider system dynamics without inputs. There,
the state evolves according to the eigenvalues of matrix F ,
denoted by σ1, · · · σn: in particular, the dynamics of xt
are controlled by {σti}ni=1 weighted by the initial condition
coefficients. It can be seen that if there exists an eigenvalue
with modulus greater than one, then the trajectory may
diverge. On the other hand, if all eigenvalues have modulus
strictly less than one, then all {σti}ni=1 reach asymptot-
ically zero as t increases: hence, the system is said to
be asymptotically stable 1 . Now, considering the whole
dynamics of (1), we aim at designing a state-feedback
ut = Kxt such that F + GK is asymptotically stable.
The first requirement is stabilizability: roughly speaking,
this property ensures that all the original unstable eigen-
values can be properly located inside the unit circle with
a suitable feedback matrix. For a more rigorous definition
we refer to Anderson and Moore (1990). The stabilizability
hypothesis will hold throughout the paper.
A standard way to assess whether a system is asymptot-
ically stable without performing the eigendecomposition
relies on Lyapunov’s Theorem (La Salle and Lefschetz,
1961). We state an extended version of this result, taking
both the classical statement and its formulation in terms of
a linear matrix inequality (LMI) (de Oliveira et al., 1999):

Theorem 1. The following are equivalent:

• system xt+1 = (F +GK)xt is asymptotically stable;
• for all Ξ � 0 there exists P � 0 such that

(F +GK)>P (F +GK)− P = −Ξ

• for some matrices P , C and D of suitable dimensions,[
P FC +GD

C>F> +D>G> C + C> − P

]
� 0. (3)

Moreover, when C is invertible, stabilizing feedback
matrix can be retrieved by setting K = DC−1.

2.2 Classic LQR

The LQR design problem is stated in this way:

min
u,x

x>T SxT +

T−1∑
t=0

x>t Qxt + u>t Rut (4)

s.t.

{
xt+1 = Fxt +Gut
x0 = x̄.

where Q, S are symmetric positive semidefinite and R
is symmetric positive definite. Since the objective is
quadratic and the dynamics is linear, problem (4) is con-
vex. Its unique solution can be found from different points
of view, e.g. resorting to dynamic programming (Bell-
man, 2003), KKT conditions (Kuhn and Tucker, 1951) or

1 We do not discuss the case in which |σi| = 1.

Pontryagin’s Maximum Principle (Pontryagin, 1987). The
solution is given by

ut = −(R+G>Mt+1G)−1G>Mt+1F︸ ︷︷ ︸
Kt

xt, (5)

where matrix sequence {Mt}Tt=0 satisfies the difference
Riccati equation (DRE)

Mt = Q+ F>Mt+1F

− F>Mt+1G(R+G>Mt+1G)−1G>Mt+1F

with boundary condition MT = S.

3. PROPOSED APPROACH FOR STABLE LQR

We have seen that the solution of the classic finite-horizon
LQR design problem is expressed as a time-varying state-
feedback. Suppose that we apply such feedback matrices
on an unstable system up to t = T − 1, and then let the
system evolve in closed loop according to F +GKT−1 for
t ≥ T . In this situation, it is reasonable to ask whether
the resulting closed-loop is asymptotically stable. This
depends on the choice of matrices R and S, that are tuned
in order to describe the desired cost on inputs and states.
Instead of inserting them as further optimization variables,
we force the structure of the input to be a static feedback.
In this way, we rely on Theorem 1 and obtain the following
problem:

min
x,K,P,C,D

x>T SxT +

T−1∑
t=0

x>t (Q+K>RK)xt (6)

s.t.


xt+1 = (F +GK)xt, x0 = x̄[

P FC +GD

(FC +GD)> C + C> − P

]
� ξI2n

KC = D.

Notice that the stability constraint differs from the state-
ment of Theorem 1, because strict inequality constraints
are related to non-closed sets. The problem is circum-
vented by introducing parameter ξ, which is set to a
sufficiently small value (e.g. 10−5).
We modify this problem as follows. First, we want to
include the constraint on the dynamics in the objective
via Lagrange multipliers. In particular, the Lagrangian is

L̄(x, λ,K) = x>T SxT + λ>0 (x0 − x̄)+

+

T−1∑
t=0

x>t (K>RK +Q)xt + λ>t+1(xt+1 − (F +GK)xt)

= x>B̄(K)x+ λ>(Ā(K)x− b), (7)

where B̄(K) = diag
(
IT−1 ⊗ (Q + K>RK), S

)
, Ā(K) ∈

Rn(T+1)×n(T+1) and b ∈ Rn(T+1) are such that

Ā(K) =


In

−(F +GK) In

0
. . .

. . .
0 · · · −(F +GK) In

 , b =


x̄
0
...
0

 .
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At this point, we relax the problem by adding constraint
KC = D as a regularization term tuned by parameter
µ > 0. Hence, the final formulation becomes

min
x,K,P,C,D

max
λ
L̄(x, λ,K) +

1

2µ
‖KC −D‖2F (8)

s.t.

[
P FC +GD

(FC +GD)> C + C> − P

]
� ξI2n

The problem is nonconvex, but this formulation allows
for a solution hinging on the alternating minimization
paradigm (Parikh and Boyd, 2014; Tseng, 1991): in fact,
it can be decomposed in two simple programs, denoted
by (C1) and (C2), that can be efficiently solved using
alternating optimization, see Algorithm 1.

Algorithm 1 The inputs are system matrices F and G,
initial state x̄, objective matrices Q, R and S, parameters
µ and ξ. The desired output is the (stabilizing) feedback
matrix K.
i = 0;
initialize K(0), C(0), D(0), P (0) randomly;
i = 1;
while not converge do
C1) K(i) = minK L̄(x(K), λ(K),K) + 1

2µ‖KC(i − 1) −
D(i− 1)‖2F ;

C2) P (i), C(i), D(i) = minP,C,D ‖K(i)C −D‖2F
subject to

[
P FC +GD

(FC +GD)> C + C> − P

]
� ξI2n;

• i = i+ 1;
end while

To solve C1, we have to optimize w.r.t. (x, λ,K). However,
thanks to the special structure of the problem, we can
partially minimize and maximize over the primal and dual
variables (x, λ), leaving a value function in K alone:

v(K) = min
x

max
λ
L̄(x, λ,K)

= L̄(x(K), λ(K),K) (9)

where the tuple (x(K), λ(K)) denotes the optimal primal-
dual pair at a fixed K, and L̄ is as in (7). Again, exploiting
problem structure, we get explicit expressions of those
quantities:

{
x = Ā−1b

λ = −1

2
Ā>(K)B̄(K)Ā(K)b.

(10)

The expressions x(K) and λ(K) depend on K in a complex
way. However, the dependence does not affect the first
derivative of the value function, and so in fact we do
not use the specific closed form expressions (10) to imple-
ment the method; any computational routine that returns
(x(K), λ(K)) is just as good. In other words, ∇v(K) can
be completely captured using the values (x(K), λ(K)).
Again, through the structure (9):

∇v(K) = x(K)>∂KB̄(K)x(K)

= +λ(K)>
(
∂KĀ(K)x(K)− b

)
,

where the differentials with respect to the matrix K
are written formally and must be correctly computed in
coordinates. To compute it, we resort to properties of
Kronecker products and vectorization operators (Magnus
and Neudecker, 1985), and obtain

∇v(K) =

T−1∑
t=0

2RKxtx
>
t −G>λt+1x

>
t +

KCC> −DC
µ

.

(11)
The computations are briefly explained in the Appendix.
Once the derivative is available, we use L-BFGS to solve
C1.

To solve C2, we observe that for a fixed matrix K, we get
the following convex program, solved in Matlab via cvx
(Grant and Boyd, 2014):

min
P,C,D

‖KC −D‖2F

s.t.

[
P FC +GD

(FC +GD)> C + C> − P

]
� ξI2n

The block-alternating scheme of Algorithm 1 has been
studied in the literature. In particular, with only two
blocks and one block a convex model, we know the al-
gorithm is guaranteed to converge using the main results
of Tseng (2001).

4. NUMERICAL EXPERIMENTS

Our method can be effectively applied to population
growth models where the population size has to be con-
trolled while keeping the control cost as low as possible.
For this reason, in this Section we test our approach
on Leslie models (Leslie, 1945) whose structure is briefly
explained below.

4.1 Leslie population growth models

A common approach to model population evolution in
discrete-time is to consider #n age classes. Each compo-
nent of the state vector stores the cardinality of each age
class. Referring to (1), matrix G rules the immigration and
is usually fixed as G = In (hence, m = n). The matrix F
has the following structure:

F =


ν1 ν2 · · · νn−1 νn
κ1

κ2

. . .
κn−1 0


where νi ≥ 0 is the fecundity, i.e. the average number of
newborns that a member of the i-th class expects between
t and t+ 1, and κi ∈ (0, 1) represents the survival rate of
the i-th class, i = 1, ..., n.

4.2 Monte Carlo test

We consider N = 50 random Leslie models of dimension
n = m = 5 with νi and κi uniformly distributed in
(0,3) and (0,1) respectively. The initial condition is taken
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as x̄ = [5 01,4]>. The cost function is formulated with
matrices Q = diag(5, 4, 3, 2, 1), S = Q, R = 5Im and time-
horizon T = 8. We use parameters ξ = 10−4 and µ = 0.8.
Figure 1 compares the maximum eigenvalue modulus of
the open-loop system with the solutions of classic and
stable LQR. The open loop is mostly unstable, and the
classic LQR solution is not able to provide a stabilizing
solution. On the other hand, it can be seen that our
approach leads to stable closed-loop systems.

Figure 2 plots objective values for both classic and stable
LQR. This is the counterpart of the trade-off between
stability and cost value: we can see that out method yields
a cost value which tends to be higher w.r.t. the optimal
value obtained by classic LQR.
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5. CONCLUSIONS

In this work we motivated the concept of Lyapunov sta-
bility in finite-horizon LQR problem by casting the solu-
tion to be a static state-feedback. Then, we formulated
a suitable optimization problem in which the trade-off
between LQR objective value and closed-loop stability
plays a crucial role. The resulting nonconvex problem
can be solved with a simple efficient alternating method
that is guaranteed to converge to a stationary point. The
proposed setup is useful e.g. in controlling the size of a

cell population while keeping some cost objective as low
as possible, as illustrated in the numerical example based
on random unstable Leslie population growth models.

This work has shown in LQR design what other research,
e.g. deep networks (Goodfellow et al., 2016), has already
highlighted in the field of machine learning: suitable non-
convex problems can provide good solutions in a compu-
tationally efficient way. Future research efforts will be de-
voted to other nonconvex formulations of the problem, and
to new extensions, such as cases when system dynamics are
uncertain.
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Appendix A. COMPUTATIONS FOR (11)

Recall that the objective is

L̄(x, λ,K) +
1

2µ
‖KC −D‖2F =: Ω(K)

with L̄(x, λ,K) defined in (7). Our aim is to compute the
gradient of Ω(K) w.r.t. K. To this end, we first have that

∂Ω

∂K
=

dΩ

dvec(K)
.

For this reason, we have to (1) write dΩ and exploit
Kronecker product properties to isolate dvec(K) at the
rightmost side, (2) perform the division and (3) recover
a matricial expression using again Kronecker product
properties. The crucial role in steps (2) and (4) is played
by vec(Y XZ) = (Z>⊗ Y )vec(X) for matrices X, Y , Z of
consistent dimensions.

Step (1) Let us first focus on dL̄(x, λ,K).

dL̄(x, λ,K) =

T−1∑
t=0

‖R1/2(dK)xt‖2 − λ>t+1G(dK)xt

=

T−1∑
t=0

‖(x>t ⊗R1/2)vec(dK)‖2−

− (x>t ⊗ λ>t+1G)vec(dK)

=

T−1∑
t=0

(vec(dK))>(xt ⊗R1/2)(x>t ⊗R1/2)vec(dK)−

− (x>t ⊗ λ>t+1G)vec(dK)

=

T−1∑
t=0

(vec(dK))>(xtx
>
t ⊗R)vec(dK)−

− (x>t ⊗ λ>t+1G)vec(dK),

where the definition of 2-norm and the property (X ⊗
Y )(W ⊗ Z) = (XW ) ⊗ (Y Z) have been exploited. As

regards ‖KC − D‖2F = tr
(

(KC − D)>(KC − D)
)

, we

have

dtr((KC −D)>(KC −D)) =

tr(C>(dK>)KC) + tr(C>K>(dK)C)︸ ︷︷ ︸
(a)

−

− tr(D>(dK)C)︸ ︷︷ ︸
(b)

− tr(C>(dK>)D)︸ ︷︷ ︸
(c)

Those addends can be written as follows. As regards (a),
recalling that tr(XY ) = tr(Y X), tr(X>) = tr(X) and
tr(Z>dX) = (vec(Z))>vec(dX),

(a) = 2(vec(KCC>))>vec(dK).

Similarly, we obtain that

(b) = vec(CD>)>vec(dK).

Now we prove that (c)=(b). The role of commutation
matrices will be crucial, in order to pass from vec(X>) to
vec(X). For a thorough tractation of commutation matrix
properties, we refer to (Magnus and Neudecker, 1985).

(c) = (vec(CD>))>vec(dK>)

= ((D ⊗ C)vec(In))>Kmnvec(dK)

= (vec(In))>(D> ⊗ C>)Kmnvec(dK)

= (vec(In))>Kn2(C> ⊗D>)vec(dK)

= [Kn2vec(In)]>(C> ⊗D>)vec(dK)

= [(C ⊗D)vec(In)]>vec(dK)

= (vec(DC>))>vec(dK)

= (b).

Step (2) Using the expressions above computed, we get

dΩ

dvec(K)
=

T−1∑
t=0

2(xtx
>
t ⊗R)vec(dK)− (xt ⊗G>λt+1)

+
1

2µ
(2(vec(KCC>))> − 2(vec(DC>))>).

Step (3) Expression (11) is easily found using again
property vec(Y XZ) = (Z> ⊗ Y )vec(X). To retrieve the
coordinate-wise expressions for x and λ, we use their
matrix expression (10): xt is as in (2); defining FK = F +
GK, λt is

λt=−2

[
(F>K )T−tSF>K +

∑T−t−1

i=0
(F>K )i(K>RK+Q)FT+i

K

]
x̄.
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