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Single-cell microscopy experiments have shown that the
instantaneous cellular growth rate of bacterial cells fluctu-
ates strongly (Taheri-Araghi et al. (2015)). At the same
time, reporter studies have demonstrated that, within
each cell, also the copy numbers of individual protein
species fluctuate significantly (Taniguchi et al. (2010)),
affecting the metabolic flux catalyzed by these proteins,
and eventually the growth rate (Kiviet et al. (2014)). This
raises the question to what extend the fluctuations in a
protein’s concentration contribute to the observed noise
in the cellular growth rate.

A common idea is that proteins with low copy numbers
are most relevant for the noisy behavior of cells, since
their relative fluctuations are largest (Elowitz et al. (2002),
Pedraza and Oudenaarden (2005)). In sharp contrast, we
here argue that actually the proteins with a high copy
number are likely to contribute most to noise in the growth
rate, despite their lower noise levels.

To show this, we must consider at least two factors: (i) the
strength of the protein’s noise, commonly quantified as its
coefficient of variation (CV, defined as standard deviation
over the mean) and (ii) the sensitivity of the growth rate
to fluctuations in that particular protein.

The first of these two factors has been studied exten-
sively, both experimentally and theoretically. When ex-
pression noise is dominated by the intrinsic stochasticity
of transcription and translation, the distribution of the
copy number of protein species i, Xi, commonly fits a
gamma distribution, where CV2 decreases with the mean
abundance, E [Xi] (Taniguchi et al. (2010)). For proteins
with a higher mean expression, noise levels reach a plateau
where noise is dominated by other, extrinsic, noise sources.

To gain insight into the second factor, we recently in-
troduced Growth Control Coefficients (GCCs, denoted as
Cµi ): first order coefficients that quantify for each protein
species i its control on the instantaneous cellular growth
rate µ (Kleijn et al. (2018)). Assuming that the growth
rate is fully determined given all the stochastic protein
copy numbers, the GCCs were defined as:

Cµi :=

(
Xi

µ(X)

∂µ

∂Xi

)∣∣∣∣
E(X)

. (1)

Using these GCCs, we were able to link the well-known
Flux Control Coefficients (FCCs) (Kacser et al. (1995)) to
noise propagation inside single cells (Kleijn et al. (2018)).

We moreover derived a sum rule for the GCCs (Kleijn et al.
(2018)), analogous to the sum rule for FCCs:∑

i

Cµi = 0. (2)

This sum rule originates from the observation that the
growth rate is to good approximation an intensive system
variable (Kiviet et al. (2014), Taheri-Araghi et al. (2015)),
as opposed to metabolic flux which is generally assumed
to be extensive.

The GCCs appear naturally after linearization of the

growth rate around a particular point, say X̃, assuming
that expression noise is small:

µ(X) ≈ µ(X̃)

(
1 +

∑
i

(
Xi

µ

∂µ

∂Xi

)∣∣∣∣
X̃

(
Xi − X̃i

X̃i

))
(3)

When we choose X̃ to be E [X], the vector with mean
abundances, we read:

µ(X) ≈ µ(E [X])

(
1 +

∑
i

Cµi

(
Xi − E [Xi]

E [Xi]

))
(4)

If protein abundances are independent, equation (4)
allows the variance in the growth rate to be decom-
posed uniquely intro contributions of each protein. Us-
ing standard properties of variance (i.e., for any scalars
a, b and independent stochastic variables Y1 and Y2,
Var {a+ bY1 + Y2} = b2Var {Y1} + Var {Y2}), we find for
the coefficient of varation of the growth rate:

CV2
µ ≈

∑
i

(Cµi )
2 Var(Xi)

E(Xi)2
=
∑
i

(Cµi )
2

CV2
i . (5)

In this decomposition the importance of the two factors
described above is directly apparent.

We note that in real cells abundances are likely to be
correlated. In that case, the contribution of each protein
to the noise in the growth rate cannot be defined uniquely,
although alternative methods exist to analyze the noise of
such systems (e.g., Bowsher and Swain (2012), Thomas
et al. (2018)). For the purpose of this paper, however, we
choose to keep the formulation simple and intuitive and
assume all protein abundances to be independent.

To now further quantify which proteins are important for
growth noise, we need to gain more insight into how control
is distributed between proteins. Below, we present two
reasons why the GCCs are not randomly distributed across
the protein species.
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First, bacterial cells are known to express a set of proteins,
here called H-proteins, that perform important functions
but do not contribute to cellular growth. Such proteins will
have a negative GCC, for although they do not produce
metabolic flux, their synthesis does take up resources. This
set H includes ‘house-keeping’ proteins involved in, e.g.,
stress-response, immunity, and DNA damage repair; in
bioengineering, H may also contain engineered pathways.
Assuming H-proteins are non-toxic and do not actively
hinder growth, their GCC equals minus the mean of their
mass fraction, i.e., Cµi∈H = −φi (Kleijn et al. (2018)).
Here we write φi := E [Xi] /

∑
j E [Xj ] for the proteome

mass fractions φi of each protein species and ignore, for
notational simplicity, that protein species have different
masses. Experiments estimating the total proteomic size
of the H-set have arrived at φH ≈ 25−40% (OBrien et al.
(2016)). In light of the sum rule (2), the H-sector has
an important consequence: because the H-proteins have
negative GCCs, other proteins species must have a positive
GCC.

Second, natural selection tends to favor cells that on av-
erage grow faster, shaping the (mean) expression levels
of proteins to be (near)-optimal for growth (Towbin et al.
(2017), Dekel and Alon (2005)). Such an evolutionary opti-
mization can mathematically be described as a constrained
optimization problem, where the mean growth rate, E[µ],
is optimized under two constrains. First, the total cell
density is fixed (

∑
i E [Xi] ≡ Ω) and second, only a fixed

part of the proteome (Ω−E [XH ]) can be allocated towards
proteins promoting growth. Mathematically, this can be
written as:

Max
E[X/∈H ]

[
E [µ]

∣∣∣∣ ∑
i/∈H

E [Xi] = Ω− E [XH ]

]
, (6)

with the corresponding Lagrange Multiplier function:

L = E [µ]− λ

(∑
i/∈H

E [Xi]− (Ω− E [XH ])

)
. (7)

In the vector of optimal abundances, ∇L = 0. Using (3) to
find an expression for E [µ], we can calculate the required
derivatives explicitly. For i /∈ H, this results in:

λ =
∂E [µ]

∂E [Xi]
=

(
Xi

µ

∂µ

∂Xi

)∣∣∣∣
X̃

/X̃i. (8)

Lastly, we set X̃, the point of linearization, equal to
E [X∗], the vector of optimal expression levels (optimality
is denoted with an astriks). Rearranging gives:

Cµ
∗

i/∈H = λE [X∗i ] . (9)

Using the sum rule for the GCCs and the constraint
of cellular density, it is straightforward to calculate λ.
We conclude that the evolutionary process affects the
distribution of growth control between metabolic proteins
in a very particular way (see also Berkhout et al. (2013),
Dourado and Lercher (2020)). To first order, we find:

Cµ
∗

i/∈H =

(
φH

1− φH

)
φ∗i , Cµi∈H = −φi. (10)

This expression shows that, in cells optimized for growth,
enzymes with a higher expression level have a higher
degree of control on the growth rate.

Now that we have an indication of the distribution of
control coefficients, we can use (5) to decompose the
noise in the growth rate after we set the noise level
for each protein. As mentioned, experiments have shown
that for proteins with a low mean expression, noise is
dominated by the intrinsic stochasticity of the chemical
reactions involved and CV2 scales as E(X)−1. For higher
mean expression, noise levels decrease and eventually
reach a plateau, where fluctuations in gene expression are
dominated by extrinsic noise (Taniguchi et al. (2010)).
In order to make a conservative estimate for the noise
contributed by highly expressed proteins, we here choose
to underestimate their noise levels and assume a fixed
scaling for all proteins, i.e., CV2

Xi
= F/E [Xi]. Using the

single parameter, F (the Fano factor), we can then set
noise levels inside the cell. For E. coli, F is measured to
be of the order of 100-102 (Taniguchi et al. (2010)).

Using this scaling, we can calculate the relative contri-
bution of protein species i to CV2

µ, denoted as κi, by
substituting (10) into (5). This results in:

κ∗i/∈H :=
(Cµi )

2
CV2

i

CV2
µ

=

(
φH

1− φH

)
φ∗i . (11)

The above result is highly counter-intuitive: highly abun-
dant proteins are actually predicted to contribute most
strongly to CVµ. Indeed, although their noise levels are
lower, their increased GCCs compensate and the product
of these two factors scales with the mean abundance.

We confirm this scaling in a simplistic model of cellular
growth (Figure 1A). After finding the optimal growth state
using a gradient-based hill-climbing algorithm, a positive
relationship emerges between a protein’s mean expression
and its GCC (Figure 1B) and, for small enough noise levels
(F ≈ 1, Ω = 104), also between the mean expression and
κi (Figure 1C, red points). Importantly, such positive rela-
tionships are not seen early in the evolutionary trajectory
(Figure 1B, gray lines and 1C, gray points). In fact, for
systems far from optimality the opposite is found: proteins
with a low expression are likely to have both a large CV
and a large GCC and hence tend to contribute strongly to
cellular growth noise.

In summary, we have argued that, contrary to common
intuitions, highly expressed proteins are expected to be
most relevant for cellular noise properties because evolu-
tion has shaped protein expression to be near optimal.
These results are strengthened by the fact that in the
above calculation we even underestimate the noise in
said highly expressed proteins by ignoring the noise floor
resulting from extrinsic noise. Interestingly, our results
do not hinge on specific reaction kinetics or a specific
structure of the metabolic network, since no kinetic details
are assumed during the derivation of (11). Therefore, we
believe the first order approximation presented here yields
important general insights. More detailed studies should,
however, examine noise propagation in specific systems
with higher noise levels. As mentioned before, correlations
between protein abundances blur the interpretation of
noise contributions. Imagine two proteins whose expres-
sion correlates strongly and that jointly affect growth.
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Fig. 1. (A) Toy model of cellular growth, where a linear re-
action chain converts a fixed external metabolite (m1)
into biomass. Each protein has Michaelis-Menten-like
kinetics with sampled kinetic parameters. The growth
rate is defined as the steady state flux J per total
expressed protein. Protein copy numbers are sampled
from independent gamma distributions with evolvable
means, but a fixed ratio between mean and variance
(F = 1, Ω = 104, φH = 0.4). (B) Example trajectory
of GCCs during optimisation (dotted line), ending
on the predicted scaling (10) (red points on dashed
line). (C) Predicted CV2

µ-contributions (dashed line)
compared to values measured in the simulation of 8
different ‘cells’ (sets of kinetic parameters) for optimal
(red points), and non-optimal (gray points) mean
abundances.

Attributing this noise in the growth rate to either protein
is then arbitrary. Therefore, our analysis here should be
interpreted in a general sense: typically a highly expressed
protein is expected to contribute more growth variance
than a lowly expressed protein. These observations can
have important consequences for synthetic biology as well.
The synthesis of byproducts often increases the set of H-
proteins (Borkowski et al. (2016)), and affects all GCCs
according to the sum rule (2), therewith changing cellular
properties of noise propagation. Previously mentioned as
one of the relevant topics in future research (Del Vecchio
et al. (2018)), this work hopefully contributes to the un-
derstanding and quantification of noise propagation on a
system level.
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