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Abstract: This paper proposes a slow flow model for a weakly nonlinear and parametrically
driven Duffing oscillator and a complex valued state space model for the oscillator with
noncollocated external disturbances. The combination of the parametrically driven duffing
oscillator and noncollocated disturbances can be observed in resonant MEMS mirrors with a
reinforcement structure to reduce dynamic mirror deformation. The model is based on a rational
function approximation for the angular derivative of the out-of-plane comb drive capacitance,
enabling qualitative analysis at large amplitudes while the stability analysis is maintained as the
conventional cubic function approximation. The slow flow model is extended including a single
tone noncollocated disturbance and is linearized at an equilibrium point for a small disturbance.
The linearized disturbance model is reformulated by a complex valued state space model to cope
with general wideband disturbances, allowing various analytic methods in traditional system
theory. The simulation results demonstrate a good agreement between the proposed models and
the ODE simulation, verifying the accuracy and benefits of the proposed models.

Keywords: Duffing oscillator, complex valued model, perturbation theory, disturbance model,
noncollocated disturbance, MEMS mirror, automotive lidar

1. INTRODUCTION

For MEMS mirrors designed for various scanning appli-
cations such as pico projectors (Hsu et al. (2008)) and
lidars (Hofmann et al. (2013); Brunner et al. (2019)), a
well-known figure of merit is θmax · D · f product, i.e. a
multiplication of the maximum deflection angle, the size
of the mirror, and the scanning frequency (Holmström
et al. (2014)). The reason behind is that the number of
pixels are defined by the maximum deflection angle, optical
resolution depends on the mirror size, and the frequency
defines the line or frame rate of the scanning system, and
high number of this figure of merit allows high resolution
and high definition imaging. To achieve a large angle, large
aperture, and fast oscillation at the same time is, however,
difficult due to design tradeoffs.

One of the main limiting factors in the MEMS mirror
design is dynamic mirror deformation (Urey et al. (2000)),
causing a blurred and degraded light spot in its size and
shape. The analysis simply shows that more mirror thick-
ness is required to maintain the dynamic deformation for
a larger mirror, which increases the inertia significantly.
Several approaches has been studied to reduce this addi-
tional burden on the inertia (Farrugia et al. (2018)). One
idea uses a reinforcement structure with a thin mirror to
reduce the low order surface deformation with a modest
inertia increase (Nee et al. (2000); Milanovic et al. (2004);
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Hsu et al. (2008)). Hofmann et al. (2013) shows a finite
element analysis to evaluate dynamic deformation with
various choices on reinforcement structure. However, a
thick reinforcement structure may result in a mismatch
between the rotational axis and the center of mass of the
mirror, which can make the MEMS mirror susceptible to
external vibrations (Yoo et al. (submitted)). This is crucial
for some applications such as automotive lidars (Wolter
et al. (2005)). Currently no analysis has been made so far
on this disturbance influence for resonant MEMS mirrors
with a reinforcement structure.

The contributions of this paper are the developments of the
slow flow model based on an approximation of the torque
and its linearized state space model for a parametrically
driven Duffing oscillator with noncollocated disturbances.
The noncollocated disturbances with the parametric os-
cillator are observed in resonant MEMS mirrors with a
reinforcement structure in hash environment conditions,
e.g. automotive MEMS lidars. For an analysis at large
amplitudes, a rational function is used as an approxima-
tion for the angular derivative of an out-of-plane comb
drive capacitance, keeping the stability properties as the
conventional cubic function approximation (Lee (2007);
Linzon et al. (2013); Ataman and Urey (2006)). The slow
flow model is extended for an additional single tone noncol-
located disturbance, which is due to the mismatch between
the center of mass and the rotational axis of the mirror.
By its linearization, a complex valued state space model
is derived for general wideband disturbances, enabling
various analytic tools in system theory. Numerical sim-
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Fig. 1. Rational function (blue solid line) and cubic func-
tion approximation (magenta dashed dot line) for the
measured angular derivative of an out-of-plane comb
drive capacitance (black dots).

ulation results verify the accuracy and the computational
efficiency of the developed models.

2. PROBLEM DESCRIPTION

Consider a Duffing oscillator with a positive cubic spring
constant k3 as

Iθ̈ + cθ̇ + k1θ + k3θ
3 =

1

2

dC

dθ
V 2 + τdy, (1)

where θ is the mechanical deflection angle of the mirror, I
denotes the inertia of the mirror, c is the linear damping
parameter, and k1 denotes the linear spring constant.
The comb drive torque is defined by a product of the
squared input voltage of V and the angular derivative
of the comb drive capacitance of C. For convenience in
analysis, the input voltage is set by a square rooted sine,
i.e. V 2(t) = U2

(
1+cosΩt

2

)
, where U is the peak input

voltage and Ω denotes the actuation frequency. τdy is an
additional torque caused by a disturbance.

2.1 Comb drive torque model based on a rational function

The angular derivative of the comb drive capacitance is
modeled by a rational function as (Lee (2007); Linzon et al.
(2013))

dC

dθ
=

αθ

θ2 + θ20
, (2)

where α and θ0 are the actuator model parameters. This
rational function approximation has several benefits. First,
the rational function has a steep gradient near the zero
angle defined by a ratio of α to θ20, which keeps stability
analysis at the zero amplitude as cubic function approxi-
mation (Ataman and Urey (2006)). Secondly, the extreme
points can be located at a low angle and the value ap-
proaches to zeros without a sign change as the mechanical
angle increases. Finally, it is an analytic function for all θ,
allowing various analytic tools such as perturbation theory.

Fig. 1 illustrates a rational function approximation and
a cubic function approximation of the measured angular
derivative of a comb drive capacitance, which is of a variant
MEMS mirror on one in (Brunner et al. (2019)). The

Rota�onal axis

Center of mass

..

Fig. 2. Noncollocated disturbance model of an oscillating
MEMS mirror. Due to the mismatch between the
rotational axis and the center of mass, the disturbance
dÿ along y axis changed into the disturbance induced
torque τdy to the MEMS mirror.

rational function approximation still has mismatches from
the measurements while it preserves the exact gradient
near the zero angle and the overall trend at large angles.
This allows qualitatively analysis on the MEMS mirror in
a wide deflection angle.

2.2 Noncollocated disturbance model

Assume an acceleration dÿ along y axis as an external
disturbance to the oscillating mirror. Noncollocated dis-
turbances occur when the external acceleration is applied
to the center of mass of the mirror while the mirror rotates
at a distinct rotational axis. Fig. 2 shows an example of
the noncollocated disturbance in case of unbalanced mirror
thickness along the mirror rotational axis. The disturbance
induced torque on the rotational axis is given by (Yoo et al.
(submitted))

τdy = mLdÿ cos θ, (3)
where m and L denote the mass of the mirror and the
length between the rotational axis and the center of mass,
respectively. The disturbance torque is scaled by the cosine
of the mirror angle due to the movement of the center of
mass. The acceleration on the z axis also influences in a
similar way. Further discussions can be found in (Yoo et al.
(submitted)).

3. ANALYTIC MODELS OF THE OSCILLATOR
WITH DISTURBANCES

The parametrically driven Duffing oscillator with its dis-
turbance provides understanding how the external vibra-
tion influences to the oscillator. Due to the nonlinearity
and inhomogeneity, however, the exact analytic solution is
barely available while the brute-force numerical simulation
of (1) requires a large computational effort. Perturbation
theory with dimensionless formulation allows a good ap-
proximation of the solution (Nayfeh (1981)). This section
derives a slow flow model from (1), (2), and (3) by the
averaging method, and attain a complex valued state space
model for general wideband disturbances by the lineariza-
tion at the stationary solutions.

3.1 Duffing oscillator with a rational function torque
model

First of all, a dimensionless form of the dynamic equation
is derived by the normalized angle as x(τ) = θ/θ0 with

the normalized time τ = t/t0 where t0 =
√
I/k1, and the

normalized actuation frequency Ωa = Ωt0. Then Eq. (1)
and (2) can be rewritten as

ẍ+ 2µẋ+ x+K3x
3 =

αnx

x2 + 1
(1 + cosΩaτ) , (4)
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where the normalized damping, cubic stiffness, and actu-
ator model parameters are defined by

µ =
ct0
2I

, K3 =
k3θ

2
0t

2
0

I
, αn =

αt20U
2

4Iθ20
, (5)

respectively. From (Nayfeh (1981); Han et al. (2018)),
Eq. (4) can be rewritten as

ẍ+ σ2x = ϵ
[
−2µẋ+

(
σ2 − 1

)
x−K3x

3

+
αnx

x2 + 1
(1 + cosΩaτ)

]
, (6)

where ϵ is a book keeping parameter for small perturbation
and separates high order terms from the approximation.
σ denotes an oscillation frequency, which is defined by
a half of the actuation frequency, i.e. σ = Ωa/2. The
normalized time τ can be rewritten as Ti = ϵiτ , i.e. T0 = τ ,
T1 = ϵτ . Assume that nonlinearities in the right hand side
of (6) is small so that solution can be approximated by
x = x0 + ϵx1. With partial derivative operators defined as
Di =

∂
∂Ti

and by considering only the terms of ϵ0 and ϵ1,

Eq. (6) can be rewritten as

D2
0x0 + σ2x0 = 0, (7)

D2
0x1 + σ2x1 = Ψ(x0, σ, T0)− 2D0D1x0, (8)

where

Ψ(x0, σ, T0) = −2µD0x0 +
(
σ2 − 1

)
x0 −K3x

3
0 +

αnx0

x2
0 + 1

× (1 + cos 2σT0) . (9)

From (7), the approximated solution is given by

x0 = A(T1) cos (σT0 + β (T1)) , (10)

where A(T1) and β(T1) denote the amplitude and the
phase of the mirror in the slow evolution along T1, re-
spectively. The solvability condition by averaging along a
period (Nayfeh (1981); Elshurafa et al. (2011)) provides∫ 2π

0

(Ψ(x0, σ, T0)− 2D0D1x0) e
−iωdω = 0, (11)

where ω is an integration variable, defined by ω = σT0 +
β(T1). For A ≥ 0, the real part and the imaginary part
of (11) generate partial differential equations of the phase
and the amplitude of the oscillator, respectively. For A >
0, this leads to a slow flow model as

∂A

∂T1
= −µA− αn(2 +A2 − 2

√
1 +A2)

σA3
sin 2β, (12)

∂β

∂T1
=

3K3A
2

8σ
− (σ2 − 1)

2σ
−

αn

(
1− 1√

1+A2

)
A2σ

− αn(2 +A2 − 2
√
1 +A2)

σA4
√
1 +A2

cos 2β. (13)

The name “slow flow” is defined by the different time
scale compared to the original dynamics of (4). Primary
frequencies can be obtained by the solution of stationary
points, i.e. ∂A

∂T1
= 0, ∂β

∂T1
= 0, as

σ2 = 1 +
3K3A

2

4
−

2αn

(
1− 1√

1+A2

)
A2

± 2σ√
1 +A2

×

√√√√(αn(2 +A2 − 2
√
1 +A2)

A4σ

)2

− µ2. (14)

Eq. (14) cannot be fully solved analytically, but the
solution can be obtained by an iterative manner with
an initial unit frequency, i.e. σ ≈ 1. The phase solution
satisfies both (12) and (13) to resolve ambiguity of the
inverse sine and cosine. By applying αn = 0 to (13), the
well known backbone curve of the Duffing oscillator is
obtained as well.

3.2 Duffing oscillator with a noncollocated disturbance

The slow flow model of (12) and (13) is extended with the
additional noncollocated disturbance. As a simple case, a
single tone sinusoidal signal is considered, i.e.

dÿ = ay cos(Ωydt+ ϕy), (15)

where ay denotes the acceleration amplitude along the
y axis with its frequency of Ωyd and phase of ϕy. This
single tone disturbance allows an analysis by the averaging
method in perturbation theory and is used in various stud-
ies for nonlinear oscillators with more than two external
forces (Nayfeh (1981); Yagasaki et al. (1990)).

With the dimensionless parameters in Sec. 3.1, the distur-
bance frequency Ωyd = Ωyt0 is added. Since the nonlinear
cosine term in the disturbance is also approximated by
Taylor series for a small angle of θ, the dimensionless
dynamics of (1) and (3) is given as

ẍ+ 2µẋ+ x+K3x
3 =

αnx

x2 + 1
(1 + cosΩaτ) +mLay

×
(
dy0 − dy2x

2
)
cos(Ωyτ + ϕy),

(16)

where normalized disturbance parameters are defined by

dy0 =
t20
Iθ0

, dy2 =
t20θ0
2I

. (17)

The slow flow model is derived by the similar procedure as
Sec. 3.1. By the solvability condition in (11), the averaged
terms of the disturbance are obtained by the real part as

1

2πσA

∫ 2π

0

1

4

{
(4dy0 − 3dy2A

2) cosω − dy2A
2 cos 3ω

}
×mLay cos(Ωyτ + ϕy)dω, (18)

and by the imaginary part as

1

2πσ

∫ 2π

0

1

4

{
(4dy0 − dy2A

2) sinω − dy2A
2 sin 3ω

}
×mLay cos(Ωyτ + ϕy)dω. (19)

Due to the approximated cos θ, the integrals of (18) and
(19) result in the frequency difference between the dis-
turbance frequency and the mirror frequency and between
the disturbance frequency and the 3rd harmonic frequency.
The high order odd harmonics can be coupled if the high
order Taylor approximation is required for significantly
large amplitudes. Without loss of generality, the distur-
bance frequencies near the mirror frequency are considered
as

ΩyT0 = σT0 + δyT1, δy =
Ωy − σ

ϵ
(20)

where δy denotes the frequency difference between the mir-
ror frequency and the disturbance frequency. Substitute
(20) into (18) and (19), the slow flow model of (12) and
(13) is extended as
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∂A

∂T1
= −µA− an(2 +A2 − 2

√
1 +A2)

σA3
sin 2β

− dyA(A, σ)mLay sin (β − δyT1 − ϕy) , (21)

∂β

∂T1
=

3K3A
2

8σ
− (σ2 − 1)

2σ
−

an

(
1− 1√

1+A2

)
A2σ

− an(2 +A2 − 2
√
1 +A2)

σA4
√
1 +A2

cos 2β

− dyβ(A, σ)mLay cos (β − δyT1 − ϕy) , (22)

where the disturbance coefficients are defined by

dyA(A, σ) =
1

8σ
(4dy0 − dy2A

2), (23)

dyβ(A, σ) =
1

8σ
(4dy0A

−1 − 3dy2A). (24)

This slow flow model approximates the behavior of the
Duffing oscillator with a single tone noncollocated dis-
turbance. These sine and cosine terms with a frequency
δy lead to an invariant tori (Yagasaki et al. (1990)). In
addition, the sine term in (21) is influenced by the sign
of the frequency difference δy, which results in a distinct
response for negative frequency differences compared to
that for positive frequency differences. Before illustrating
the distinct frequency response for negative frequency dif-
ferences, the slow flow model is further investigated by
linearization.

3.3 Linearization of the slow flow model

For further analysis on the invariant tori, the local dy-
namics of the Duffing oscillator is approximated by a
linearized model at a stationary solution. At the specific
frequency of σ̄, the amplitude and the phase near the i-th
stationary amplitude solution and phase solution, Āi and
β̄i, respectively, are assumed by (Yagasaki et al. (1990))

Ai(T1) = Āi(σ̄) + εξ(Āi, β̄i, σ̄, T1),

βi(T1) = β̄i(σ̄) + εζ(Āi, β̄i, σ̄, T1),

where ξ and ζ denote the linearized amplitude and phase
error of the oscillator, respectively. ε is the other book
keeping parameter that is multiplied to the disturbances
to define it as a small signal and is used for Taylor ap-
proximations of the nonlinear terms to eliminate the high
order terms from the approximation. The linearization of
(21) and (22) results in a model as

ẋr = Asxr +Byruyr, (25)

where the state vector xr ∈ R2, the disturbance input
vector uyr ∈ R2, the system matrix As ∈ R2×2, and the
disturbance input matrix Byr ∈ R2×2 are defined by

xr =

[
ξ
ζ

]
,uyr =

[
ay cos (δyT1 + ϕy)
ay sin (δyT1 + ϕy)

]
,

As =

[
A11 A12

A21 A22

]
,Byr =

[
B11,y B12,y

B21,y B22,y

]
,

respectively. The elements of As are given by

A11 = −µ+
αnA11,s sin 2β̄i

σ̄Ā4
i

√
1 + Ā2

i

,

A12 = −
2αn(2 + Ā2

i − 2
√

1 + Ā2
i ) cos 2β̄i

σ̄Ā3
i

,

magnitude

freq.

LP filter freq. shi!

0

0 0< >

Fig. 3. Procedure of an image reject down converter for
generating the complex disturbance variable. The
banded signal around the mirror frequency σ̄ is shifted
to the zero frequency and a low pass filter is applied
to remove unnecessary high frequency components.

A21 =
3K3Āi

4σ̄
−

αn

(
2 + 3Ā2

i − 2(1 + Ā2
i )

3
2

)
σ̄Ā3

i (1 + Ā2
i )

3
2

−
αnA21,c cos 2β̄i

σ̄Ā5
i

(
1 + Ā2

i

) 3
2

,

A22 =
2αn(2 + Ā2

i − 2
√

1 + Ā2
i ) sin 2β̄i

σ̄Ā4
i

√
1 + Ā2

i

,

A11,s = Ā2
i

(
−4 +

√
1 + Ā2

i

)
+ 6

(
−1 +

√
1 + Ā2

i

)
,

A21,c = −3Ā4
i + 8

(
−1 +

√
1 + Ā2

i

)
+ 4Ā2

i

(
−3 + 2

√
1 + Ā2

i

)
,

and the elements of Byr are

B11,y = −dyA(Āi, σ̄)mL sin β̄i, B12,y = dyA(Āi, σ̄)mL cos β̄i,

B21,y = −dyβ(Āi, σ̄)mL cos β̄i, B22,y = −dyβ(Āi, σ̄)mL sin β̄i.

The linearized model of (25) provides a fast solution of os-
cillator dynamics with a disturbance. However, the gener-
ation of uyr needs both sine and cosine terms, which ham-
pers further analysis on general wideband disturbances.

3.4 Complex valued state space model for general wideband
disturbances

Since Eq. (25) considers a local linear model for a small dis-
turbance, superposition of various frequency components
can generalize the disturbance. This leads to a complex
valued state space model as

ẋ = Asx+Byuy, (26)

where x denotes the complex valued state vector, i.e.
x ∈ C2. The complex disturbance input matrix By ∈ C2×1

and the complex disturbance variable uy ∈ C are given by

By =

[
B11,y − jB12,y

B21,y − jB22,y

]
,uy =

∫ ∞

−∞
ay(δy)e

ϕy(δy)ejδyT1dδy ,

(27)

where ay and ϕy are extended as a function of δy. The
complex disturbance input variable is just an inverse
Fourier transform, and it is generally complex valued
signal since the frequency components at positive and
negative frequency differences are usually not conjugated.
Assuming full-state measurements, the influence of the
disturbance y is the real part of the state variable, i.e.
y = Re(x) and y ∈ R2.

Besides, the disturbance dÿ to the oscillator for (15) and
(20) can be generalized by

dÿ =

∫ ∞

−∞
ay(δy)e

ϕy(δy)ej(δy+
σ̄
ϵ )T1dδy. (28)

Since dÿ is a real signal, the coefficients satisfies ay(δy) =
ay(−2σ̄/ϵ−δy) and ϕy(δy) = −ϕy(−2σ̄/ϵ−δy). If the gen-
eralized disturbance is bandlimited, dÿ can be converted
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to the complex disturbance variable uy by an image reject
down converter (Martin (2004)) as

uy = (dÿ × e−jσ̄τ ) ∗ pL(τ), (29)

where pL(τ) denotes the impulse response of the low
pass filter and ∗ is a convolution operator. Fig. 3 shows
the procedure of an image reject down converter. First,
the frequency components near σ̄ are shifted to near
zero. This procedure also shifts the frequency components
near −σ̄ to near −2σ̄. To remove these high frequency
components, the low pass filter of pL is applied, which leads
to uy. In general, the disturbance violates this bandlimit
assumption, causing aliasing, but the influence can be still
approximated by a bandlimited signal since the system of
(26) is bandlimited.

The complex valued state space model can be converted
to a complex valued transfer function as[

Ξ(s)
Z(s)

]
= (As(Āi, β̄i, σ̄)− sI)−1By(Āi, β̄i, σ̄), (30)

where Ξ(s) and Z(s) are the disturbance transfer functions
of the amplitude error and the phase error of the oscillator.
These complex valued models allow various analytic tools
and methods in system theory (Troeng et al. (2017)), en-
abling control and observer design with the consideration
of the disturbance. A simple analysis example is discussed
in the following section.

4. SIMULATION VERIFICATION

This section provides numerical verification of the pro-
posed models for a parametrically driven Duffing oscillator
with a noncollocated disturbance. First, the slow flow
model is verified by the primary frequencies, a set of
stationary solutions. Next, the proposed complex valued
models are analyzed using a pole zero map and frequency
responses for single tone disturbances. Finally, the models
are evaluated with a general wideband disturbance. For
verification, the ODE simulator in (Brunner et al. (2019))
is used as a reference since it describes the full nonlinear
behavior of (1) and allows any disturbance. The amplitude
and phase of the ODE simulation results are sampled by
every period of the input voltage for comparison.

4.1 Primary frequency of the nonlinear slow flow model

Fig. 4 illustrates primary frequencies by the slow flow
model in (14) along the various amplitudes, compared to
the ODE simulation results of (1). The stability of the
solutions is determined by As of (25), and the stable
solutions and unstable solutions are drawn with solid lines
and dotted lines, respectively. For most amplitudes, the
analytic solution of (14) matches well with the numerical
solutions of (1). As shown in Fig. 4(a), the resonance peak
by the ODE simulation is only 1.4 % larger amplitude
and 0.2 % higher frequency than that of the slow flow
model, proving the accuracy of the proposed slow flow
model. Comparing to the measured mirror response curve
in (Brunner et al. (2019)), the qualitative behavior of
the models is similar including bifurcations. This also
verifies that the rational function approximation is also
a reasonable choice for the model of an out-of-plane comb
drive to analyze behaviors at large amplitudes.
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Fig. 4. Primary frequencies by the slow flow model (blue
and red solid and dotted line) and the numerically ob-
tained stationary solutions (thick black dashed lines)
and bifurcations (thin black dashed lines) by the ODE
simulation. The backbone curve (green dashed line)
by the slow flow model is drawn as a reference.
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Fig. 5. Pole zero map of the amplitude and mirror phase
transfer function.

4.2 Frequency response of single tone disturbances

The complex valued model of (30) contains complex conju-
gate poles with an arbitrary complex zero since By is the
only complex valued matrix. For the disturbance analysis,
an amplitude of 0.85 is chosen as an operational point,
which is marked by a blue circle in Fig. 4(b). Fig. 5 illus-
trates the pole zero map for the complex valued transfer
function of amplitude and phase errors. In both cases, the
poles are complex conjugated while the zero is a single
complex value in negative frequencies.

Fig. 6 illustrates the frequency response of the complex
valued transfer functions for positive and negative fre-
quency differences of δy. Due to the location of the complex
zeros in Fig. 5, the complex zeros influence only nega-
tive δy, resulting in a deep notch and smaller resonance
peaks compared to that of the positive δy. The frequency
response is verified by the transient responses of single
tone disturbances with the slow flow model of (21) and
(22) and the ODE simulation of (1), (3), and (15). For
the ODE simulation, the operational point has a slight
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Fig. 6. Frequency responses of the complex valued trans-
fer function (CvTF) of the Duffing oscillator with
the noncollocated disturbance along the absolute fre-
quency differences |δy| (light blue colored solid line for
positive δy and light red dashed line for negative δy),
which are compared to the single tone disturbance
influences using the slow flow model (dark dotted
lines) and the ODE simulation (x marks).

higher amplitude (a black square) at the same frequency
σ̄ (magenta dashed dot line) in Fig. 4(b), which is due to
the approximation error of the slow flow model. While the
responses of the ODE simulation slightly increase at high
frequency differences due to aliasing, the complex valued
transfer function show a good agreement with both the
slow flow model and the ODE simulation. This verifies the
accuracy of the proposed complex valued models for single
tone disturbances.

4.3 Transient response for general wideband disturbances

The complex valued state space model is evaluated for
a general wideband disturbance to analyze the influences
in time domain. The general wideband disturbance is
generated by a Gaussian random noise, filtered by a zero
phase bandpass filter with a passband of σ̄ ± 0.706 in
normalized frequency. In the generation of the complex
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Fig. 7. Transient responses of amplitude and phase errors
by the complex valued state space model (CvSS) and
the ODE simulation by a general wideband distur-
bance.

disturbance variable, a zero phase lowpass filter is used
as an extension of (29) to remove the phase lag during
the image reject down conversion. For comparison, the
ODE simulation evaluates the response with the general
wideband disturbance. For the ODE simulation, the start
point of the disturbance is matched with a zero phase of
the mirror actuation for simplicity.
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Fig. 7 shows transient responses of the amplitude error and
phase error by the disturbance using the complex valued
state space model and the ODE simulation. The overall
response of the complex valued model shows a good match
with the ODE simulation. The normalized mean square
errors (NMSE) for the amplitude error trajectory between
two models are 0.0289 and that of phase error trajectory
is 0.0307. For the simulation time, the ODE simulation
takes 403.08 s while the complex valued model only takes
0.64 s by a laptop PC (Matlab 2018b, Intel Core-i7 8850H,
2.6 GHz). Although the level of information are different,
the proposed model shows high computational efficiency
compared to the brute force simulation.

These results prove that the proposed complex valued
models for noncollocated disturbances provides an ac-
curate and computationally efficient solution, allowing a
fast and systematic analysis on disturbances for resonant
MEMS mirrors with a reinforcement structure.

5. CONCLUSION

The influences of noncollocated disturbances are analyzed
for a weakly nonlinear and parametrically driven Duffing
oscillator based on perturbation theory and the complex
valued state space model. First of all, a rational function
approximates the angular derivative of an out-of-plane
comb drive capacitance, allowing a qualitative analysis at
large amplitudes. Then a slow flow model is derived with
the rational function approximation and is extended by the
noncollocated disturbances, leading to a complex valued
state space model. The numerical verification of the pri-
mary frequencies illustrates the accuracy of the proposed
slow flow model compared to the ODE simulation. The
frequency responses of single tone disturbances show that
the proposed complex valued model matches well with the
results of the slow flow model and the ODE simulation.
The transient response by a general wideband disturbance
shows also a good agreement with the ODE simulation,
showing normalized mean square errors of 0.0289 and
0.0307 in amplitude and phase errors, respectively. The
computation time by the proposed complex valued model
is significantly shorter than the ODE simulation. This
verifies the proposed complex valued models for resonant
MEMS mirrors with noncollocated disturbances, enabling
further systematic analysis and control system design for
a robust operation in applications under harsh vibrations
e.g. automotive lidars.
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