
Canonical Dynamic Programming
Equations subject to Ambiguity ?

Ioannis Tzortzis ∗ Charalambos D. Charalambous ∗

∗Department of Electrical Engineering, University of Cyprus, Nicosia,
Cyprus (e-mails: tzortzis.ioannis@ucy.ac.cy, chadcha@ucy.ac.cy).

Abstract: This paper studies the infinite horizon average cost Markov control model subject to
ambiguity on the controlled process conditional distribution. The stochastic control problem is
formulated as a minimax optimization in which, (i) the existence of optimal policies is established
through a pair of canonical dynamic programming equations derived for Borel state and action
spaces, and (ii) the controlled process maximizing conditional distribution is characterized
through a water-filling solution derived for finite state and action spaces. To obtain average
cost optimal policies numerically a policy iteration algorithm is also developed. Finally, as an
application of the proposed canonical dynamic programming equations, an example is provided.
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1. INTRODUCTION

This paper studies the infinite horizon, average cost per
unit-time, Markov Control Model (MCM) with determinis-
tic policies, for Borel state and action spaces. The main ob-
jective is to address the problem of ambiguous controlled
process conditional distributions, and study their effects
on the cost-to-go, the dynamic programming recursions,
and on the performance of the optimal policies.

MCMs under an average cost criterion have been studied in
an anthology of papers (Arapostathis et al., 1993; Borkar,
1984; Sennott, 1995). In such MCMs the existence of op-
timal policies is established, through the derivation of the
dynamic programming recursions, by assuming the con-
trolled process conditional distribution is perfectly known
to the control policies. In practice, precise knowledge of
the controlled process conditional distribution is rarely
available, since it is constructed based on modeling con-
siderations or statistical data. MCMs subject to modeling
uncertainties often deal with minimax and risk-sensitive
formulations (Bensoussan and Elliot, 1995; Charalambous
and Rezaei, 2007). In addition, several robustness ap-
proaches have been developed based on different types
of uncertainties, i.e., using confidence intervals and mo-
ment constraints (Mannor et al., 2016; Yu and Xu, 2016).
Distributionally robust approaches utilizing Wasserstein
distance can also be found in (Yang, 2019; Xie, 2020).
This work differs from existing works, since it is based
on a family of controlled process conditional distributions,
which are not necessarily absolutely continuous, and con-
tained in a ball with respect to the Total Variation (TV)
distance metric centred at a nominal conditional distri-
bution. The emphasis on TV distance metric to model
ambiguity is motivated (i) by its generality, since it applies
to conditional distributions induced by linear, nonlinear,
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finite, countable state-space models, etc., and (ii) due to
its relation via upper and lower bounds to other distances
or distance metrics (Gibbs and Su, 2002).

The current paper extends the results of (Tzortzis et al.,
2015; Tzortzis et al., 2019) to canonical dynamic pro-
gramming equations for Borel spaces. The necessary and
sufficient conditions of optimality are established for the
per unit-time average cost dynamic programming, based
on the concept of canonical triplets (Hernandez-Lerma
and Lasserre, 1996). This treatment characterizes optimal
policies without imposing any assumptions (i.e., ergodicity
assumptions) on the maximizing conditional distribution.
The main feature of the canonical dynamic programming
equations is that, by utilizing the water-filling properties
of the maximizing conditional distribution, they are able
to capture the level of ambiguity in distribution, and
codify the impact of incorrect distribution models on the
performance of the optimal policies. To obtain average cost
optimal policies numerically, a policy iteration algorithm
is provided. The main feature of the proposed policy it-
eration algorithm (which is applied for finite state and
action spaces), is that the policy evaluation and policy
improvement steps are performed using the controlled
process maximizing conditional distribution.

The rest of the paper is organized as follows. In Section 2,
we formulate the minimax optimization problem subject
to ambiguous controlled process conditional distribution.
In Section 3, we study the per-unit time infinite horizon
average cost Markov control model for Borel spaces, and
we derive a pair of canonical dynamic programming equa-
tions. In Section 4, we consider finite alphabet spaces, and
we provide the solution of the controlled process maximiz-
ing conditional distribution along with a policy iteration
algorithm. In Section 5, we present an illustrative example,
and in Section 6 we conclude with a brief discussion on the
main results obtained in this paper.
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2. PROBLEM FORMULATION

2.1 Infinite-Horizon MCM

An infinite horizon MCM with deterministic strategies is
a five-tuple(
X ,U , {U(x) : x ∈ X}, {Q(z|x, u):(x, u) ∈ X ×U}, f

)
(1)

consisting of the following:

a) State space. A Borel space X , which models the state
space of the controlled random process {xk ∈ X : k ∈
N}, N , 0, 1, . . . .

b) Control (or action) space. A Borel space U , which
models the control (or action) set of the control
random process {uk ∈ U : k ∈ N}.

c) Feasible Controls or Actions. A family {U(x) : x ∈
X} of non-empty subsets U(x) of U , where U(x)
denotes the set of feasible controls or actions, when
the controlled process is in state x ∈ X . The feasible
state-actions pairs are subsets of X × U defined by
K , {(x, u) : x ∈ X , u ∈ U(x)}.

d) Controlled Process Distribution. A conditional dis-
tribution or stochastic kernel Q(z|x, u) on X given
(x, u) ∈ K, which corresponds to the controlled pro-
cess transition probability distribution.

e) One-Stage-Cost. A non-negative function f : K 7−→
[0,∞], called the one-stage-cost.

To ensure the existence of measurable controls we make
the following assumption.

Assumption 1. (Hernandez-Lerma and Lasserre, 1996) K
contains the graph of measurable functions from X to
U ; that is, there is a measurable function ϕ : X 7−→ U
such that ϕ(x) ∈ U(x), for all x ∈ X . The set of all
such functions denoted by F are called selectors of the
multifunction x 7−→ U(x).

We equip the spaces X and U with the natural σ-
algebra B(X ) and B(U), respectively. For measurable
spaces (X ,B(X )), (U ,B(U)), we denote the set of stochas-
tic Kernels on (X ,B(X )) conditioned on K by Q(X|K),
and we denote the set of probability distributions on
(X ,B(X )) by M1(X ). Next, we give the definition of
deterministic stationary Markov control policies.

Definition 2. A deterministic stationary Markov control
policy is a function g : X 7−→ U such that g(xt) ∈ U(xt),
∀xt ∈ X , t = 0, 1, . . . . The set of such deterministic
stationary Markov policies is denoted by GSM , and the
set of all deterministic control policies (i.e., non-stationary,
possibly non-Markov) is denoted by G.

2.2 Total Variation Distance Ambiguity Class

The Total Variation (TV) distance between two probabil-
ity measures || · ||TV : M1(X ) × M1(X ) 7−→ [0,∞], is
defined by

||α− β||TV , sup
P∈P(X )

∑
Fi∈P

|α(Fi)− β(Fi)|, α, β ∈M1(X )

where P(X ) denotes the collection of all finite partitions
of X . In this paper, we derive new dynamic program-
ming equations, for the class of conditional distributions
Q(z|x, u), (x, u) ∈ K which are stationary, and belong

to a ball, with respect to TV distance metric, centered
at a nominal controlled process distribution Qo(z|x, u),
(x, u) ∈ K, with radius R(x) ∈ [0, 2], x ∈ X .

The precise definition is the following.

Definition 3. For each g ∈ GSM , let {xgt : t = 0, 1, . . . }
denote the nominal controlled process, with stationary
conditional distribution defined by

Prob(xt ∈ A|xt−1, ut−1) , Qo(A|xt−1, ut−1), ∀A ∈ B(X )

where Qo(·|·, ·) ∈ Q(X|K). Given the nominal controlled
process and R(x) ∈ [0, 2], x ∈ X , the true stationary
controlled process conditional distribution belongs to the
TV distance ambiguity class defined by

BR(Qo)(x, u) , {Q(·|x, u)∈M1(X ) :

||Q(·|x, u)−Qo(·|x, u)||TV ≤ R(x)}, (x, u) ∈ K. (2)

2.3 Minmax Formulation

For any g ∈ G, and Q(·|x, u) ∈ BR(Qo)(x, u), define the
n-stage expected cost by

Jn(g,Q, x) , Eg
x

{ n−1∑
k=0

f(xk, uk)
}

(3)

and the corresponding average cost per unit-time by

J(g,Q, x) , lim sup
n→∞

1

n
Jn(g,Q, x). (4)

Then, the average cost per unit-time subject to ambiguity
class (2) is defined by

J(g,Q∗, x) , sup
Q(·|x,u)∈BR(Qo)(x,u)

J(g,Q, x) (5)

where Q∗ denotes the maximizing element. The minimax
MCP is to choose a control policy g∗ ∈ G such that

J(g∗, Q∗, x) , inf
g∈G

J(g,Q∗, x) = J∗(x), ∀x ∈ X . (6)

A conditional distribution Q∗ that satisfies (5) is called
a maximizing conditional distribution, a policy g∗ that
satisfies (6) is called an average cost optimal policy, and
the corresponding J∗(·) is the minimum cost or value
function of the minimax MCP.

Next, we introduce an assumption for the minimax MCP
defined by (6).

Assumption 4. (a) The map f : X ×U 7−→ R is bounded,
continuous and non-negative.

(b) The set U(x) is compact for all x ∈ X .
(c) The map Qo(A|·, ·) is continuous on K for every Borel

set.

Note that it is possible to relax Assumption 4. For ex-
ample, f(x, ·) can be replaced by a lower semi-continuous
function on U(x) for every x ∈ X , which is non-negative
(see Hernandez-Lerma and Lasserre (1996) for several re-
laxations).

In the next section, we derive the canonical dynamic
programming equations which solves the minimax MCP.

3. MINIMAX STOCHASTIC CONTROL

Throughout this section it is assumed that Assumption
4 holds. The characterization of optimal policies for the
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minimax MCP defined by (6) will be based on the concept
of a canonical triplet adopted to the current formulation.

Consider the MCM (1), where (X ,U) are Borel spaces,
and let h : X 7−→ R be a bounded, continuous and non-
negative function. Denote the expected n-stage cost, with
a terminal cost h, policy g, and x0 = x, by J0(g,Q, x, h) =
h(x), and for n ≥ 1, by

Jn(g,Q, x, h) = Jn(g,Q, x) + Eg
x{h(xn)}

with Jn(g,Q, x) = Jn(g,Q, x, 0). The corresponding max-
imizing expected n-stage cost is given by

Jn(g, x, h) = sup
Q(·|x,u)∈BR(Qo)(x,u)

Eg
x

{ n−1∑
k=0

f(xk, uk)+h(xn)
}

= Eg,Q∗

x

{ n−1∑
k=0

f(xk, uk) + h(xn)
}

= Jn(g, x) + Eg,Q∗

x {h(xn)} (7)

with Jn(g, x) = Jn(g, x, 0), and with Q∗(·|x, u) denoting
the maximizing conditional distribution. Then,

J∗n(x, h) = inf
g∈G

Jn(g, x, h); (8a)

J∗n(x) = inf
g∈G

Jn(g, x, h), if h(·) = 0. (8b)

Throughout this section it is assumed that there exists
a policy g ∈ G and an initial state x ∈ X such that
J(g, x) < ∞ (i.e., see (5)). The definition of a canonical
triplet is introduced next, following (Hernandez-Lerma
and Lasserre, 1996) with a slight variation, to account
for the maximizing conditional distribution over which the
dynamic programming equation is expressed.

Definition 5. Let ρ and h be real-valued, bounded, contin-
uous, non-negative, measurable functions on X and ϕ ∈ F
a given selector. Then (ρ, h, ϕ) is said to be a canonical
triplet if for all x ∈ X and n = 0, 1, . . . ,

Jn(g∞, x, h) = J∗n(x, h) = nρ(x) + h(x). (9)

A selector ϕ ∈ F (of a stationary policy g∞ ∈ GSM ) is
called canonical if it is an element of some canonical triplet.

Note that with the appropriate choice of h as the terminal
cost the policy g∞ is optimal for the n-stage problem for
all n = 0, 1, . . . . The following Theorem characterizes the
canonical triplets for the minimax MCP problem, with
respect to the new dynamic programming equation.

Theorem 6. (ρ, h, ϕ) is a canonical triplet if and only if,
for every x ∈ X , the following holds.

ρ(x) = inf
u∈U(x)

∫
X
ρ(z)Q∗(dz|x, u) (a)

ρ(x) + h(x) = inf
u∈U(x)

{
f(x, u) +

∫
X
h(z)Q∗(dz|x, u)

}
(b)

ϕ(x)∈U(x) attains the minimum in (a)-(b), that is, (c)

ρ(x) =

∫
X
ρ(z)Q∗(dz|x, ϕ) (10)

ρ(x) + h(x) =
{
f(x, ϕ) +

∫
X
h(z)Q∗(dz|x, ϕ)

}
(11)

Proof. (Necessity). Suppose that (ρ, h, ϕ) is a canonical
triplet, i.e., (9) holds ∀x ∈ X and n ≥ 0. The dynamic
programming equation corresponding to minimax MCP
(6) is given by

Vj(x) = inf
u∈U(x)

sup
Q(·|x,u)∈BR(Qo)(x,u)

{
f(x, u)

+

∫
X
Vj+1(z)Q(dz|x, u)

}
. (12)

Letting Q∗(·|·, ·) denoting the maximizing conditional dis-
tribution, then (12) may be written as follows.

Vj(x) = inf
u∈U(x)

{
f(x, u) +

∫
X
Vj+1(z)Q∗(dz|x, u)

}
. (13)

Let us define V j(x) = Vn−j(x), (j = 0, 1, . . . , n). Then,
(13) may be expressed in the “forward” form

V j+1(x) = inf
u∈U(x)

{
f(x, u) +

∫
X
V j(z)Q

∗(dz|x, u)
}
. (14)

Substituting (14) into (7)-(8), we have

J∗n+1(x, h) = inf
u∈U(x)

{
f(x, u) +

∫
X
J∗n(z, h)Q∗(dz|x, u)

}
.

(15)
Thus, from (9) we have

(n+ 1)ρ(x) + h(x) = inf
u∈U(x)

{
f(x, u)

+

∫
X

(
nρ(z) + h(z)

)
Q∗(dz|x, u)

}
. (16)

Evaluating (16) at n = 0 we obtain (a). Furthermore,
since ρ(·), h(·) and f(·, ·) are bounded, then multiplying
both sides of (16) by 1/n and letting n −→ ∞ yields (b).
Finally, for any deterministic stationary policy g∞ ∈ GSM ,
we have that

Jn+1(g∞, x, h) = f(x, ϕ) +

∫
X
Jn(g∞, z, h)Q∗(dz|x, ϕ).

(17)
Thus, if ϕ ∈ F satisfies (9), then by (15)-(17) we have that

(n+1)ρ(x)+h(x) = f(x, ϕ)+

∫
X

(
nρ(z)+h(z)

)
Q∗(dz|x, ϕ)

which, as before, gives (10) and (11).

(Sufficiency). Conversely, suppose (ρ, h, ϕ) satisfy (a)-(c).
Proceeding by induction equation (9) is trivially satisfied
when n = 0. Suppose that is true for some n ≥ 0. Then,
the following is obtained

J∗n+1(x, h)=inf
u∈U(x)

{
f(x, u) +

∫
X

(
nρ(z)+h(z)

)
Q∗(dz|x, u)

}
≥ inf

u∈U(x)

{
f(x, u) +

∫
X
h(z)Q∗(dz|x, u)

}
+ n inf

u∈U(x)

{∫
X
ρ(z)Q∗(dz|x, u)

}
= (n+ 1)ρ(x) + h(x).

On the other hand,

J∗n+1(x, h) ≤ Jn+1(g∞, x, h)

= f(x, ϕ) +

∫
X

(
nρ(z) + h(z)

)
Q∗(dz|x, ϕ)

= f(x, ϕ) +

∫
X
h(z)Q∗(dz|x, ϕ)

}
+n

∫
X
ρ(z)Q∗(dz|x, ϕ)

= (n+ 1)ρ(x) + h(x)

This implies, J∗n+1(x, h) = Jn+1(g∞, x, h) = (n+ 1)ρ(x) +
h(x). �

Due to the fact that the average cost as an optimality
criterion is underselective, (i.e., with limitations in dis-
tinguishing optimal policies with different costs), next we
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introduce a more selective criterion. For other underselec-
tive and overselective optimality criteria see (Flynn, 1976,
1980).

Definition 7. A policy g† is said to be

(a) (Dynkin and Yushkevich, 1979) strong average cost
optimal if

J(g†, x) ≤ lim inf
n→∞

1

n
Jn(g, x), ∀g ∈ G, x ∈ X . (18)

(b) (Flynn, 1980) F-strong average cost optimal if

lim
n→∞

1

n

(
Jn(g†, x)− J∗n(x)

)
= 0, ∀x ∈ X (19)

where J∗n(x) = infg∈G Jn(g, x).

Based on Definition 7, next we derive stronger results.

Theorem 8. (Hernandez-Lerma and Lasserre, 1996) Sup-
pose the cost function f satisfies Assumption 4, and let
(ρ, h, ϕ) be a canonical triplet (with h not necessarily
bounded).

(a) If for every g ∈ G and x ∈ X

lim
n→∞

Eg,Q∗

x

{h(xn)

n

}
= 0 (20)

then g∞ is an average cost optimal policy and ρ is
the average cost value function

J∗(x) = ρ(x) = J(g∞, x) = lim
n→∞

1

n
Jn(g∞, x), ∀x.

(21)
(b) If for every x ∈ X

lim
n→∞

sup
g∈G

Eg,Q∗

x

{h(xn)

n

}
= 0 (22)

then g∞ is strong average cost optimal and F-strong
average cost optimal and

J∗(x) = lim
n→∞

1

n
J∗n(x). (23)

Proof. See (Hernandez-Lerma and Lasserre, 1996). �

Note that, in the case in which ρ(·) is constant (i.e., ρ
does not vary with x), then the optimality equation (a) of
Theorem 6 is redundant and hence (a)-(c) reduce to

ρ∗ + h(x) = inf
u∈U(x)

{
f(x, u) +

∫
X
h(z)Q∗(dz|x, u)

}
ρ∗ + h(x) = f(x, ϕ) +

∫
X
h(z)Q∗(dz|x, ϕ).

In the next section, we provide the solution of the inner
optimization in minimax MCP applied for finite state and
control spaces. Toward this end, we address the extremum
problem of maximizing a linear functional subject to TV
distance ambiguity.

4. MAXIMIZATION OVER TOTAL VARIATION
DISTANCE AMBIGUITY

Let (X ,U) be finite sets of cardinality |X | and |U|, respec-
tively. Define the set of conditional probability vectors on
|X | conditioned on x ∈ X , u ∈ U , by

Px,u(X ) ,
{
P (·|x, u) : P (z|x, u) ≥ 0, z = 1, . . . , |X |,∑
z∈X

P (z|x, u) = 1
}
, x ∈ X , u ∈ U . (24)

Let ` , {`(x) : x ∈ X} ∈ R|X |+ (i.e., the set of non-negative
vectors of dimension X ). The precise optimization problem
is the following.

Problem 9. For ` ∈ R|X |+ and Qo(·|x, u) ∈ Px,u(X ),
(x, u) ∈ X × U , define the average pay-off by

L1(Q) ,
∑
z∈X

`(z)Q(z|x, u). (25)

The objective is to find the solution of the extremum
problem

L(R) , max
Q(·|x,u)∈BR(Qo)(x,u)

L1(Q) (26)

where

BR(Qo)(x, u) (27)

, {Q(·|x, u) ∈ Px,u(X ) : ||Q(·|x, u)−Qo(·|x, u)||TV

=
∑
z∈X
|Q(z|x, u)−Qo(z|x, u)| ≤ R(x)}, (x, u) ∈ X × U .

Problem 9 is a convex optimization problem on the space
of probability measures with the property that, L(R) is a
non-decreasing concave function of R(x) and

L(R) = sup
Q(·|x,u)∈BR(Qo)(x,u)

L1(Q) (28)

for values of R(x) ≤ rmax(x, u), where rmax(x, u) is the
smallest non-negative number belonging to [0, 2] such that
L(R) is constant in [rmax(x, u), 2], (x, u) ∈ K. The proof of
the above statement can be found in (Charalambous et al.,
2014, Lemma 3.1).

Next, we recall results from (Charalambous et al., 2014),
adopted to conditional distributions, concerning the char-
acterization of the solution of Problem 9 for finite alphabet
spaces. In particular, the solution of Problem 9 is obtained
by first identifying the partition of X into disjoint sets
(X 0,X \X 0), and then by finding upper and lower bounds
on the probabilities of X 0 and X\X 0, which are achievable.

Toward this end, let us define the maximum and minimum
values of {`(x) : x ∈ X} by `max , maxx∈X `(x) and

`min , minx∈X `(x), respectively, and their corresponding
support sets by

X 0 , {x ∈ X : `(x) = `max} (29)

X0 , {x ∈ X : `(x) = `min}. (30)

For all remaining elements, {`(x) : x ∈ X \ {X 0 ∪ X0}},
such that X 0∪X0 ⊂ X , and for 1 ≤ r ≤ |X \{X 0∪X0}|, we
define recursively the set of indices for which the sequence
achieves its (k + 1)th smallest value by

Xk,
{
x∈X :`(x)= min

{
`(z):z∈X\X 0∪(

k⋃
j=1

Xj−1)
}}

(31)

for k ∈ {1, 2, . . . , r}, until all the elements of X are
exhausted. Further, we define the corresponding values of
the sequence on sets Xk by

`(Xk) , min
x∈X\X 0∪(

⋃k

j=1
Xj−1)

`(x), k ∈ {1, 2, . . . , r}

where r is the number of Xk sets which is at most |X \
X 0 ∪ X0|. Next, the solution of Problem 9 is given.

Theorem 10. The maximum pay-off (26) subject to the
TV distance ambiguity is given by
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L(R) = `maxQ
∗(X 0|x, u) + `minQ

∗(X0|x, u)

+

r∑
k=1

`(Xk)Q∗(Xk|x, u) (32)

and the maximizing conditional distribution is given by
the following water-filling equations

Q∗(X 0|x, u) = Qo(X 0|x, u) +
α(x, u)

2
(33a)

Q∗(X0|x, u) =
(
Qo(X0|x, u)− α(x, u)

2

)+
(33b)

Q∗(Xk|x, u) =
(
Qo(Xk|x, u)

−
(α(x, u)

2
−

k∑
j=1

Qo(Xj−1|x, u)
)+)+

(33c)

α(x, u) = min
(
R(x), rmax(x, u)

)
, (33d)

where rmax(x, u) = 2(1 − Qo(X 0|x, u)), R(x) ∈ [0, 2],

k ∈ {1, 2, . . . , r}, r is the number of Xk sets, and (x)+ ,
max(0, x).

Proof. See (Charalambous et al., 2014, Theorem 4.1). �

To obtain average cost optimal policies numerically next
a policy iteration algorithm is proposed. In the proposed
Algorithm 1 the policy evaluation and the policy improve-
ment steps utilize the maximizing conditional distribution.

Algorithm 1 Policy Iteration

Data: f : X × U 7−→ R cost function, Qo : U 7−→ R|X |×|X|
nominal transition probability matrix, R(x) ∈ [0, 2], ∀x ∈
X TV distance parameter, PX family of partitions of X
in the sense of (29) - (31), n number of partitions, m = 0
iteration index, g0 : X 7−→ U arbitrary stationary Markov
control policy.

1. (policy evaluation) For all P (i) ∈ PX , i = 1, 2, . . . , n,
calculate QP (i)(gm) using (33), and solve

JQP (i)(gm) = QP (i)(gm)JQP (i)(gm) (34a)

JQP (i)(gm) + hQP (i)(gm)

= f(gm) +QP (i)(gm)hQP (i)(gm) (34b)

for JQP (i)(gm) ∈ R|X | and hQP (i)(gm) ∈ R|X |. Identify
the support sets of (34b) using (29) - (31) (with h
replacing `) and let SP (i) denote the grouping of these
sets. For all i = 1, 2, . . . , n, calculate

LP (i)(gm) = QP (i)(gm)hQP (i)(gm). (35)

If

P (i) = arg max
P∈PX

LP (gm), and (36a)

P (i) is consistent with SP (i) (36b)

let P ∗(gm) = P (i), Q∗(gm) = QP∗(gm), hQ∗(gm) =
hQP∗ (gm), JQ∗(gm) = JQP∗ (gm), and proceed to step
2.

2. (policy improvement) Let

gm+1 = arg min
g∈R|X|

{
f(g) +Q∗(g)hQ∗(gm)

}
. (37)

3. If gm+1 = gm, let g∗ = gm; else let m = m + 1 and
return to step 1.

In the next section, an example is provided as an applica-
tion of the canonical dynamic programming equations.

5. EXAMPLE – INFINITE HORIZON MINIMAX MDP

Consider a stochastic control system with X = {0, 1}
and control set U = {u1, u2}. The nominal transition
probabilities under controls u1 and u2 are given by

Qo(u1) =
1

9

(
0 9
0 9

)
, Qo(u2) =

1

9

(
2 7
3 6

)
. (38)

The TV distance radius is set equal to R(x) = [6/9 12/9].
The cost function under each state and control is given by
f(0, u1) = 2, f(0, u2) = 0.5, f(1, u1) = 1, and f(1, u2) = 3.
Since |X | = 2, then the family of partitions P (i) ∈ PX ,
i = 1, 2, in the sense of (29) - (31) is given by P (1) =
{X 0 = {0},X0 = {1}}, and P (2) = {X 0 = {1},X0 = {0}}.
Select (arbitrarily) the initial policies g0 : X 7−→ U by
g0(0) = u1, g0(1) = u2, and apply Algorithm 1.

A. Let m = 0 (iteration index).

1. (policy evaluation) Under partition P (1) ∈ PX : From
(33d),

α(0, u1) = min(R(x = 0), rmax(0, u1))

= min(R(x = 0), 2(1−Qo(0|0, u1))) = min(
6

9
, 2)

α(1, u1) = min(R(x = 1), rmax(1, u1))

= min(R(x = 1), 2(1−Qo(0|1, u1))) = min(
12

9
, 2).

Following a similar procedure α(0, u2) = 6/9, and
α(1, u2) = 12/9. From (33a)-(33c),

QP (1)(g0)=

qo00(u1)+
α(0, u1)

2

(
qo01(u1)− α(0, u1)

2

)+
qo10(u2)+

α(1, u2)

2

(
qo11(u2)− α(1, u2)

2

)+


=
1

9

(
3 6
9 0

)
.

Next, we proceed to solve (34). The optimality equations
are given by

JQP (1)(g0, 0) =
3

9
JQP (1)(g0, 0) +

6

9
JQP (1)(g0, 1),

JQP (1)(g0, 1) = JQP (1)(g0, 0),

JQP (1)(g0, 0) + hQP (1)(g0, 0)

= 2 +
3

9
hQP (1)(g0, 0) +

6

9
hQP (1)(g0, 1),

JQP (1)(g0, 1) + hQP (1)(g0, 1) = 3 + hQP (1)(g0, 0).

Since hQP (1)(g0) is uniquely determined up to an additive
constant, we let hQP (1)(g0, 0) = 0. The solution is given by

hQP (1)(g0) = [0
3

5
], JQP (1)(g0, 0) = JQP (1)(g0, 1) =

12

5
.

Using (29) - (31), we identify the support sets and we let
SP (1) denote the grouping of these sets, i.e., SP (1) : {X 0 =
{1},X0 = {0}}. Calculating (35), we obtain LP (1)(g0) =
[2/5 0]T .

Under partition P (2) ∈ PX : From (33d), α(x, u1) = [0 0],
and α(x, u2) = [4/9 6/9]. Applying (33a)-(33c), we obtain

QP (2)(g0) =
1

9

(
0 9
0 9

)
.
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QP (i) J
QP (i) h

QP (i) SP (i) LP (i)

i=1 1
9

(
5 4

6 3

) (
7/10

7/10

) (
0

9/20

)
X 0

= {1}
X0 = {0}

(
4/20

3/20

)
i=2 1

9

(
0 9

0 9

) (
1

1

) (
0

1/2

)
X 0

= {1}
X0 = {0}

(
1/2

1/2

)
Table 1. Policy evaluation step for m = 1.

Next, we solve (34). The optimality equations are given by

JQP (2)(g0, 0)=JQP (2)(g0, 1), JQoP (2)(g0, 1)=JQP (2)(g0, 1),

JQP (2)(g0, 0) + hQP (2)(g0, 0) = 2 + hQP (2)(g0, 1),

JQP (2)(g0, 1) + hQP (2)(g0, 1) = 3 + hQP (2)(g0, 1).

Since hQP (1)(g0) is uniquely determined up to an additive
constant, let hQP (12)(g0, 0) = 0. The solution is given by

hQP (2)(g0) = [0 1], JQP (2)(g0, 0) = JQP (2)(g0, 1) = 3.

Using (29) - (31), the grouping of the support sets is given
by, SP (2) : {X 0 = {1},X0 = {0}}. Calculating (35), we
obtain LP (2)(g0) = [1 1]T .

Since partition P (2) is the one which satisfies (36) we
let P ∗(g0) = P (2), Q∗(g0) = QP (2)(g0), hQ∗(g0) =
hQP (2)(g0), and JQ∗(g0) = JQP (2)(g0).

2. (policy improvement) Let g1 = argming∈R2{f(g) +
Q∗(g)hQ∗(g0)}, where

Q∗(u1)=QP (2)(u1)=
1

9

(
0 9
0 9

)
=Q∗(u2)=QP (2)(u2). (39)

Then,

g1(0)

= argmin{f(0, u1)+q∗00(u1)hQ∗(g0, 0)+q∗01(u1)hQ∗(g0, 1),

f(0, u2) + q∗00(u2)hQ∗(g0, 0)+q∗01(u2)hQ∗(g0, 1)}
= argmin{3, 1.5}

and similarly, g1(1) = argmin{2, 4}. Thus, g1(0) = u2, and
g1(1) = u1.

3. Since g1 6= g0, let m = 1 and return to step 1.

B. Let m = 1 (iteration index).

1. (policy evaluation) Following similar calculations as in
m = 0, and using g1 : X 7−→ U , the results of the
policy evaluation step for all P (i) ∈ PX , i = 1, 2, are
summarized in Table 1. Since P (2) is the partition which
satisfies (36), we let P ∗(g1) = P (2), Q∗(g1) = QP (2)(g1),
hQ∗(g1) = hQP (2)(g1), and JQ∗(g1) = JQP (2)(g1).

2. (policy improvement) Let g2 = argming∈R2{f(g) +
Q∗(g)hQ∗(g1)}. Since P ∗(g1) = P ∗(g0) = P (2), the
maximizing transition probability matrix Q∗(·), under
each possible control, is given by (39). Then, g2(0) =
argmin{2.5, 1}, and g2(1) = argmin{1.5, 3.5}. Thus,
g2(0) = u2, and g2(1) = u1.

3. Since, g2 = g1, then g∗ = g1 is an optimal control policy
with JQ∗ = [1 1], and hQ∗ = [0 1/2].

6. CONCLUSION

In this paper, we studied the optimality of the minimax
Markov decision problem via dynamic programming on
an infinite horizon, when the ambiguity class is described
by the TV distance metric. As an optimality criterion
we considered the per unit-time average cost. By working

on Borel spaces, we established the existence of optimal
policies through a pair of canonical dynamic programming
equations, and a policy iteration algorithm was provided
and applied for finite alphabet spaces.
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