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Abstract: Autonomous driving at intersection has great potential on control for smart cities to
relieve the energy consumption and transportation congestion. However, it remains challenging
to find promising behavior sequence in multi-agent environment with uncertain participation
of obstacles. This work develops Event-driven Recurrent Q-Learning (ERQL) to focus on the
motion planning task towards intersection scenarios to conclude a sample path with safety
and efficiency. We elaborate the definition of events to capture the environment structure and
introduce recurrency to process sequence model. Besides, we incorporate collision-avoidance into
the event-driven framework and design a mechanism to extract recurrent feature from replay
buffer in Q-learning framework. Simulation results show that the developed off-line learning
procedure can adapt to on-line decision making towards uncertain agent behaviors.
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1. INTRODUCTION

Autonomous driving systems are built upon a modular
pipeline consisting of perception, localization, decision
making and motion planning, see Levinson et al. (2011)
and Geiger et al. (2012). Among them, decision making
module deals with the list of surrounding objects and
traffic participants extracted from upstream and plan a
dynamic trajectory with high uncertainty in environment
and target. Motion planning for autonomous vehicles is
challenging due to the influence of surrounding traffic
participants and the conflicting criteria between efficiency
and safety.
Autonomous vehicles are currently being tested in vari-
ous scenarios. Leading companies like Waymo, Momenta,
etc. have deployed business in highways and routine ur-
ban roads. However, motion planning towards intersection
scenarios remains follow-up study due to the high flow
density, see Fig. 1, which is responsible for the energy con-
sumption and transportation congestion. Besides, motion
planning at intersections may apply to typical businesses
like unmanned delivery, see Kimchi et al. (2017). Current
last-mile-logistics has great demands but high labor costs
at the same time. Thus, motion planning for autonomous
vehicles has potential prospects at intersection scenarios.
Krishnan et al. (2018) breaks down an intersection man-
agement into the different conundrums involved in motion
planning and current approaches to solve them. The com-
mon crux is that the environment changes and perception
noise will decrease the possibility of collision-free trajec-
tories at the intersection when confronting obstacles with
unexpected actions. It is necessary to consider the occur-

1 Qing-Shan Jia is the corresponding author.

Fig. 1. An intersection scenario (Camara et al. (2018))

rence of environment uncertainty and model inaccuracy in
finding computation-efficient paths.
This problem is usually challenging due to the following
difficulties. First, the scale of search space towards the
optimization problem may cause the curse of dimension-
ality when the scenario becomes complex. Second, the
reputedly high computational costs under dynamic pro-
gramming may cause the on-line decision making highly
time-consuming. Third, the uncertain environment and
inaccurate model may introduce the trade-off between fast
passage and collision avoidance when given an off-line
policy.
In order to address the above challenges, we make the
following major contributions. First, we introduce event-
based optimization to relieve the waste of exploration
budget on the basis of guaranteed performance. Second,
we extract recurrent feature from replay buffer in reinforce-
ment learning to process the sequence model with partial
observability. Third, we show the considerable adaptabil-
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ity of the developed method to couple with uncertain
agent behaviors in complex intersection scenario through
simulation results.
The rest of this paper is organized as follows. We briefly
review related literature in section II, formulate the prob-
lem in section III, introduce the proposed mechanism in
section IV, present the numerical results in section V, and
briefly conclude in section VI.

2. LITERATURE REVIEW

The motion planning in traffic has attracted much atten-
tion in recent years to ensure collision-free navigation. We
briefly review the related literatures in this section from
two mainstream aspects as rule-based and learning-based.
Classical rule-based decision-making systems can process
rule information directly, but are limited in light of am-
biguous and noisy sensor data. Van Den Berg et al. (2011)
adjusts velocity vector to specify one-step interaction rules
for the current geometric configuration. It is short-sighted
in time since the approach does not consider the evo-
lution of future states. Aoude et al. (2013) propagates
the dynamics forward of obstacles. Camara et al. (2018)
uses empirical data to measure behavior. While it may
be computationally prohibitive in anticipating motions to
account for real-time evaluation.
With the rise of artificial intelligence, reinforcement learn-
ing (Sutton and Barto (1998)) shows great potential in
a number of domains based on its capability of iterat-
ing decision policies from data automatically. Isele et al.
(2018) learns active behaviors for autonomous vehicles to
navigate in the case of occlusions. Chen et al. (2017) and
Everett et al. (2018) use value network to encode the
estimated target for finding a collision-free velocity vector
with the given joint configuration. Learning-based meth-
ods can effectively pretrain the online procedure during the
offline computation but only learn mapping from current
states.
While real scenarios often feature incomplete and noisy
state in current episode resulting from partial observabil-
ity, the ego agent needs to hedge against the uncertainty
in enduring intentions of nearby agents. Bai et al. (2015)
presents an intention-aware online planning scheme to
utilize the information from systematic states. Osipychev
et al. (2015) proposes a proactive collision avoidance sys-
tem to ensure the safety constraints. Despite these, it is
still ambiguous with the gap in sequential decision between
collision-free and faster alternatives. Thus, it remains open
to find an applied mechanism to coordinate the off-line
learning procedure with on-line decision making.

3. PROBLEM FORMULATION

Multi-agent motion planning can be formulated as Par-
tially Observable Markov Decision Process (POMDP) un-
der the assumption that the agent cannot communicate
to each other, as the full state of the system cannot be
provided to the agent or even determined. POMDP better
captures the system dynamic by explicitly acknowledging
that the underlying system state are only partial glimpses
of the agent.

3.1 System Dynamic

State Space The state vector can be divided into s =(
so, sh

)
, where so denotes the observable part, and sh

denotes the hidden part.
The observable state is constructed by concatenating the
individual state of ego agent and nearby agents, denoted
by so0 and s̃oi respectively, in which s̃oi , i = 1, 2, . . . , N is
the state for the ith nearby agent. Take the intended goal
position and preferred speed as hidden state sh.
We simplify the size of system to make the problem
tractable. Take the position and velocity vectors in plane
as state space. Define x, y as the axis of an agent, and
v, ϕ as the magnitude and heading of velocity. Let so0 =
(x, y, v, ϕ) ∈ R4, s̃oi = (xi, yi) ∈ R2. Then the observable
state space can be denoted as

so = (so0, s̃
o
1, . . . , s̃

o
N ). (1)

Action Space The action space is divided into the set of
permissible magnitude and heading value of acceleration.
The ego agent followed kinematic constraints derived from
second order alignment can better fit the downstream
control module. Denote the action set as

a = (η1, η2, . . . , ηm)× (φ1, φ2, . . . , φn), (2)
in which ηj , j = 1, 2, . . . ,m is the discrete magnitude
ranges from [−5, 3](m/s2) and φk, k = 1, 2, . . . , n is the
discrete heading angle ranges from [−π/12, π/12](rad).
The action space contains the control sequence from de-
celeration to acceleration and turning from left to right.

State Transition The objective function here is to min-
imize the expected time T for ego agent to pass the
intersection by developing a policy π : so 7→ a given
the observed sample path. Then it may derive into an
optimization problem:

argmin
π

E [T |so(t = 0))]

s.t. x(t+∆t) = x(t) + v(t) cosϕ(t)∆t
y(t+∆t) = y(t) + v(t) sinϕ(t)∆t
v(t+∆t) = v(t) + η(t)∆t
ϕ(t+∆t) = ϕ(t) + φ(t),

(3)

where (3) describes the kinematic constraints of ego agent,
which will not be influenced by the state distribution of
nearby agents. We set the frequency as 20Hz, which means
the time interval ∆t is 0.05s.

3.2 Q-Learning

Reinforcement learning is concerned with learning control
policies for agents interacting with unknown environments.
Q-Learning (Volodymyr et al. (2015)) is a model-free
algorithm for estimating the long-term expected return of
executing an action from a given state.
We can learn estimates for the optimal value of each
action, defined as the expected sum of future rewards
when taking that action and following the optimal policy
thereafter. Taking the observed reward and the max Q-
value over all actions a′ in the resulting state s′ into
account, Q-values are learned iteratively with a scalar step
size α in the way as
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Q(s, a) := Q(s, a) + α
(
r + γmax

a′
Q (s′, a′)−Q(s, a)

)
.

(4)
In the case of Deep Q-Learning (DQN), the model is a
neural network parameterized by weights and biases col-
lectively denoted as θ, which naturally generalizes beyond
the states and actions it has been trained on. Thus we can
take the neural network as a nonlinear approximator to
learn the parameterized value function Q(St, At; θt).
After taking action At in state St and observing the
immediate reward Rt+1 and resulting state St+1, DQN
update the parameters θ through gradient descent as
θt+1 = θt+α

(
Y Q
t −Q (St, At; θt)

)
∇θtQ (St, At; θt) . (5)

DQN uses the same values both to select and to evaluate an
action, which makes it more likely to select overestimated
values. To prevent this, we refer Double-DQN (Hasselt
et al. (2015)) to decouple the selection from the evaluation,
which can reduce the observed overestimations. In this
way, the target Y Q

t is defined as

Y Q
t ≡ Rt+1 + γQ

(
St+1, argmax

a
Q (St+1, a; θt) ; θ

′
t

)
, (6)

in which θt are the weights of online network to estimate
according to the current values, while θ′t are the weights of
target network to fairly evaluate the value of this policy.
The reward function Rt at here is specified to award
the agent for passing the intersection, and penalize the
agent for colliding with the other agents. As it relates to
the proposed methodology, we will describe it further in
section 5.2.

3.3 Sequence Model

Deep Q-Learning has no explicit mechanisms for deci-
phering the underlying state of the POMDP and is only
effective if the observations are reflective of underlying
system states.
RNN is a natural generalization of feedforward neural net-
works to sequences (Sutskever et al. (2014)). Hausknecht
and Stone (2015) investigate the effects by replacing the
first fully-connected layer with a recurrent layer in the
Deep Q-Network. Recurrency is a feasible alternative to
stacking a history of sequences in input layer, which could
better adapt at evaluation time if the quality of observa-
tions changes.
We take the sample path from several prior frames into
consideration to take advantage of the capability of re-
current network in predicting sequence patterns. In the
next section, we will discuss the bootstrapped updates of
sequence modeling in-depth.
In the setting of motion planning, the state space and
action space do not affect the environment in relevant way.
This work refers dueling-DQN (Wang et al. (2015)) into
network design, which may help to learn which states are
valuable, without having to learn the effect of each action
for each state. Coordinating with the sequence modeling
by recurrent network, we take shape of the network archi-
tecture with one LSTM and two fully-connected layer, see
Fig. 2 for the designed network architecture.
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Fig. 2. Network architecture

4. METHODOLOGY

In Section 3, we derived the multi-agent motion planning
into POMDP and formulated it by recurrent Q-learning.
However, when the numbers of agents increase and the
topology of scenarios become complex, the size of search
space will grow exponentially. Some basic property of the
problem may help to prune the searched space. Besides,
the concept of recurrency in sequence modeling is confus-
ing to combine with the experience of Q-learning as for the
randomness in sampling from replay buffer. Some designed
mechanism may help to extract the feature in fixed length.
In this section, we will discuss the improvements in detail.

4.1 Event-based Optimization

Many practical systems have event-driven features, and
the dynamic evolution of system states are triggered by
discrete events (Cao (2007)). Event-based Optimization
(EBO) can effectively mitigate the curse of dimensionality
and capture the structure of particular plant in Discrete
Event Dynamic System.
EBO provides a unified framework for problems in which
decisions can be made only when certain events occur (Xia
et al. (2014)). Most existing studies focus on memoryless
policies, which make decisions only based on the current
observable events. Jia (2011) extend studies on finite-stage
EBOs and convert infinite-stage EBO to POMDP.
As for the motion planning in intersection scenario, the
agent has no need to determine a state transition every-
where in the whole state space, which may cause the learn-
ing process difficult to access optimal sample path. Thus,
we define several sets of state transitions with certain
common properties. We named them as distance-driven,
boundary-driven and collision-driven, which capture the
information revealed in a physical event without expand-
ing the state space. How these events trigger the action
are described below, see Fig. 3 for details.
• distance-driven: When the ego agent arrives to a re-

gion scope in designated distance with nearby agents,
the action will be concluded from the network output,
which means both magnitude and heading will be
determined and rectified. The alternative actions are
the same as those in the original state space.
• boundary-driven: When the ego agent tends to reach

the boundary of the road, only the heading will
reset to opposite direction, which can soft correct to
feasible area. The action space here only aggregates
to the dimension of heading.
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• collision-driven: When the ego agent reaches the last
region defined in distance-driven events, an avoidance
policy will be triggered as emergent action. The
action is within the safe set through a geometric
projection check when the event occurs.

1

sample path
distance-driven
collision-driven
bound-driven

Fig. 3. Description of event-trigger
The controllable events defined above meet social norms
as human judgements and execute in a logical timing
order. To be mentioned, the event-based mechanism is
deployed in both training and evaluation procedure. The
potential collision risk is considered and the policy is
ensured to avoiding collision except in some extremely
limited scenario. Thus, we may take the average speed
along with the success rate as the measurement criteria in
passing the intersection.

4.2 Random Hybrid Episode

Hausknecht and Stone (2015) introduce recurrent layer
to Q-learning architecture, using bootstrapped sequential
updates or bootstrapped random updates to combine them
together. In Bootstrapped Random Updates, episodes are
selected randomly from the replay memory and updates
begin at random points in the episode but proceed for
only unroll backward call. Sequential updates have the
advantage of carrying the LSTM’s hidden state forward
from the beginning of the episode but violate random
sampling policy in DQN.
In order to better fit the bootstrapped updates of recurrent
layer and replay buffer mechanism in Q-learning. We
propose a method named Random Hybrid Episode (RHE),
which is motivated by the concept of Random Hybrid
Stroke (RHS) in writer identification task. According to
Zhang et al. (2016), each RHS is a randomly sampled
short sequence from the whole online data with both
pen-down (real stroke) and pen-up (imaginary stroke)
information. The added dimension of stroke helps to unify
the characters with different lengths.
In the proposed RHE method, we add an extra dimension
in input states to mark the transition from one or different
episode in experience memory. When a particular event
occurs, we define the connection between the same episode
as real episode, and the connection starts from the end
of one episode to the beginning of the next episode as
imaginary episode. The flag we set is binary, see Fig. 4 for
details.

Fig. 4. Definition of random hybrid episode
In this way, we simply distract the feature of RHE in
replay buffer and derive the bootstrapped updates to a
fixed-length vector as the input of LSTM layer. Then the
Recurrent Deep Q-networks can better approximate actual
Q-values from sequences of observations, leading to better
policies in partially observed environments. See Fig. 5 for
the complete workflow.
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Fig. 5. Workflow of ERQL

5. NUMERICAL RESULTS

In this section, we take the intersection scenario with
different kinds of obstacles into account, in which the
auxiliary cars and pedestrians may occur with uncertain
norms. To verify the efficiency of our method, we analysis
from the following aspects.

5.1 Approach

The learning procedure, outlined in Algorithm 1, gener-
alizes our idea to deal with the problem formulation in
Section 3. We make a few remarks about the value net-
work. The systematic state taken as input parameterizes a
vector range from [0, 1] to normalize the effect in different
dimensions. Specifically, we concatenate the binary flag
(line 11) with state vector to incorporate RHE feature
during the training process, while the flag is fixed to 1 (line
15) in test process as we can regard that the evaluation is
in a complete episode.
In the following experiment, we consider the scenario
similar as Fig. 3. The black car represents the ego agent,
while the red vehicles and the pedestrians wandering in
crosswalk are regarded as obstacles.
The ego agent aims to turn left in the intersection, and
the process could be divided into two stages. Before cross-
ing the crosswalk, the pedestrians walking from different
sides are potential conflicts. After arriving in the center
region of intersection, the prdestrians in the crosswalk no
longer threaten the ego agents. Then we consider about
vehicles from the side of west and north respectively. The
obstacles come from two directions in both stages, so we

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17291



Algorithm 1 Event-driven Recurrent Q-Learning
Input: joint state s and prior experience E
Output: off-policy action a for ego agent

1: initialize the value network V (·; θ0)
2: fulfill the replay buffer B ← E
3: for ep = 1, 2, . . . , N do
4: initialize the environment
5: while not passed intersection do
6: derive the transition T from current s
7: if T ∈ typical event then
8: emerge recurrent sequence to update B
9: distract RHE feature ← randSubset(B)

10: end if
11: update θep+1 ← backprop (V (·; θep))
12: update s based on system dynamic
13: end while
14: end for
15: return a← V (·; θN )

regulate the dimension of input states to switch in smooth.
When the selected nearby agents encompass the potential
adjacent conflicts, their input states will be substituted by
subsequent obstacles from the same direction as they are
ensured to be risk-free.
At least four obstacles are concluded in the case, it can
also be used under other settings to show the performance
of proposed method without loss of generality.

5.2 Performance Evaluation

The maximum speed of ego agent is limited as 10m/s
during the crossing. We consider average speed and event
proportion in final state into reward function with proper
weights allocation (0.5:0.5 at here), which represents the
efficiency and quality of sample path respectively. In par-
ticular, average speed is correspond with the time to pass
intersection, while event proportion will be adaptive ad-
justed to lessen the frequency of boundary-driven events.
A punishment -1 will be given if the ego agent collide with
nearby agents and the reward in middle process is set to
be sparse.
Due to the uncertainty in environment initialization, the
policy is evaluated by the mean performance in test set.
We conduct 1000 cases towards different initial states and
time-variant actions under uncertainty. We additionally
run random seeds to test generalization. See Fig. 6 for the
performance of different methods in learning procedure.
Among them, non-RHE method (EQL) cannot accomplish
optimal performance due to the short-sight in subsequent
sequences, non-EBO method (RQL) learned with a slow
slope due to the computation cost in exploration, while
ERQL is found to be quite robust through the confidence
interval of learning curve.
In Fig. 7(a), we present the iteration steps in each episode
before and after event-trigger. It is shown that the search
space with EBO reduced by an order of magnitude than
non-EBO method. We make a trade-off between explo-
ration adequacy and computation cost on the promise
of performance evaluation. The utilization of event space
not only matches the norms in reality, but also saves the
computation budget in training procedure. It is shown in

Fig. 6. Performance evaluation

(a) Computation budget (b) Bootstrap update

Fig. 7. Mechanism improvement
Fig. 7(b) that the RHE mechanism can improve the effi-
ciency of bootstrapped update. Learning procedure with
RHE always accomplish a more stable performance than
non-RHE method in unroll timesteps, and the latter al-
ways yield oscillation. It is ambiguous for the original boot-
strapped update mechanism when proceeding for more
than one backward call, while the proposed random hybrid
episodes could sufficiently utilize the sequence information
in experience memory with no limit.

5.3 Method Comparison

This part takes the rule-based and learning-based methods
as baseline to evaluate the effect of ERQL. The rule-
based strategy relies on a hand-engineered time to collision
strategy to decide when to cross. The learning-based
method adopt the orthodox Q-learning framework with
the same system dynamic and training rounds as ERQL.

Table 1. Method Comparison

Method average speed success rate

Rule-based 7.69 m/s 78.5%
Learning-based 7.43 m/s 93.0%

ERQL 8.12 m/s 98.2%

In Table 1, we present the effect between these methods in
different characterization. We can see that the proposed
ERQL takes the lead in the items of average speed and
success rate. Rule-based method has a better speed to-
wards learning-based method but a lower success rate for
the reason that it measures with prioritized pass order but
easy to confused by imperfect observations.
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The rule-base method is always a delicate designed numer-
ical method, which can obtain the local optimal solution
on the basis of a simple part. However, when the nearby
agents move with agnostic, the rule-based method may
stuck in dilemma unless making on-policy decision, which
is time-consuming. The learning-based method is a pre-
evolutionary version, which could apply to various prob-
lems and scenarios. However, a general one with sightless
large-scale computing does not excavate the structure of
transition and the recurrency of sequence, which may be
hard to reach a better solution.
According to the simulation results, the proposed ERQL
method helps to solve the problem of motion planning
with uncertain environment, which shows considerable
improvement in fast passage and collision avoidance.

6. CONCLUSION

This work develops Event-driven Recurrent Q-Learning
(ERQL) to focus on motion planning at intersections. In
the approach, we incorporate system structure into an
event-based framework and introduce recurrency to couple
with the partial observability. The designed mechanism
shows superiority in saving computation budget and ex-
tracting sequence features. However, there are some issues
remained for future study. First, the utilization of the open
dataset could help to describe the norm of uncertainty.
Second, policy-gradient algorithms could be developed to
search for continuous action space. Third, the efficiency of
migration ability to other scenarios subjects to subsequent
experiment verification.
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