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Abstract: In this paper, we study the leader-following formation tracking problem for multiple
quadrotor helicopters over static and connected communication networks via the distributed
observer approach. With the virtual leader system being modeled by a linear exosystem, we
develop a distributed control law that can accomplish the formation tracking for a large class
of leader’s trajectories.
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1. INTRODUCTION

Recently, the formation control of multiple quadrotor he-
licopters is drawing attention due to its potential in var-
ious applications such as persistent surveillance (Nigam
et al. (2012)), drag reduction (Ning (2011)), and contour
mapping (Han and Chen (2014)). In particular, the for-
mation tracking problem aims to design a control law
such that all the vehicles can track a desired reference
trajectory asymptotically while maintaining a prescribed
formation pattern. With the attitude being represented
by unit quaternion, the formation tracking problem was
studied over undirected and connected static networks in
Abdessameud and Tayebi (2010, 2011) by a control law
without relying on the linear velocity measurements of
each quadrotor helicopter. Also with the attitude being
represented by unit quaternion, the formation tracking
problem was further studied over directed and every-time
connected switching networks by state feedback control in
Kabiri et al. (2018) in which the quadrotor helicopters are
subject to constant unknown disturbances. It is noted that,
though all vehicles can asymptotically track a desired ref-
erence velocity in Abdessameud and Tayebi (2010, 2011);
Kabiri et al. (2018), the steady states of the position of the
vehicles cannot be specified. Moreover, since the velocity
and the acceleration of the desired formation trajectory
are assumed to be available to all the vehicles and are used
explicitly in the control laws in Abdessameud and Tayebi
(2010, 2011); Kabiri et al. (2018), the control protocols are
not fully distributed.

The formation tracking problem is also studied under
the leader-following framework in Du et al. (2019) over
directed and connected static networks, where the desired
formation trajectory is generated by a virtual leader and
all quadrotor helicopters are viewed as followers. However,
⋆ This work was supported in part by the Research Grants Council
of the Hong Kong Special Administration Region under grant No.
142119516, in part by Natural Science Foundation of China (NS-
FC) under grant No. 61973260, and in part by Projects of Major
International (Regional) Joint Research Program NSFC (Grant no.
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the result of Du et al. (2019) has two limitations. First,
the virtual leader in Du et al. (2019) can only produce a
constant velocity. Second, since the Euler angles instead of
unit quaternion are used to represent the attitude in Du
et al. (2019), the issue of singularity remains.

In this paper, we study the leader-following formation
tracking problem for multiple quadrotor helicopters over
directed and connected static communication networks via
the distributed observer approach (Su and Huang (2012)).
Since our virtual leader is modeled by a linear exosystem,
it can generate a large class of time signals including step
functions of any magnitudes, quadratic functions of any
coefficients, sinusoidal functions of any amplitudes, fre-
quencies, and initial phases, and their combinations. Like
in Abdessameud and Tayebi (2010, 2011); Kabiri et al.
(2018), we also represent the attitude of the quadrotor heli-
copter by unit quaternion. But unlike in Abdessameud and
Tayebi (2010, 2011); Kabiri et al. (2018), this paper offers
at least two new features. First, since our communication
network can be directed, the approaches in Abdessameud
and Tayebi (2010, 2011) cannot handle our problem with
directed graphs. Second, due to the employment of the
distributed observer, our control law is distributed.

Throughout this paper, we adopt the following notation:
∥x∥ denotes the Euclidean norm of vector x and ∥A∥
denotes the induced norm of matrix A by the Euclidean
norm. For a piecewise continuous bounded function f :
[0,∞) 7→ Rn, ∥f∥∞ = supt≥0 ∥f(t)∥. e3 = [0, 0, 1]T . For

xi ∈ Rni , i = 1, . . . ,m, col(x1, . . . , xm) = [xT
1 , . . . , x

T
m]T .

diag(a1, . . . , an) denotes the diagonal matrix with ai ∈ R,
i = 1, . . . , n, on the diagonal. block diag (A1, . . . , An)
denotes the block diagonal matrix with Ai, i = 1, . . . , n,
on the diagonal. For x = col(x1, x2, x3) ∈ R3, x× =[ 0 −x3 x2

x3 0 −x1
−x2 x1 0

]
. Q denotes the set of all quaternions, Q =

{q|q = col(q̂, q̄), q̂ ∈ R3, q̄ ∈ R}. Qu denotes the set of all
unit quaternions, Qu = {q|q ∈ Q, ∥q∥ = 1}. SO(3) denotes
the special orthogonal group of order three, SO(3) = {R ∈
R3×3|RTR = RRT = I3, detR = 1}. For qi, qj ∈ Q, the
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quaternion product is defined by qi⊙qj =
[
q̄iq̂j+q̄j q̂i+q̂×

i
q̂j

q̄iq̄j−q̂Ti q̂j

]
.

For q ∈ Qu, the quaternion inverse is defined by q−1 =
col(−q̂, q̄). For x ∈ R3, Q(x) = col(x, 0) ∈ R4. For q ∈ Qu,
R(q) = I3 + 2q̄q̂× + 2(q̂×)2 ∈ SO(3). For two sets A and
B, B \A = {x ∈ B|x /∈ A}.

2. PRELIMINARIES AND PROBLEM
FORMULATION

A quadrotor helicopter is a nonlinear underactuated sys-
tem. It has six degrees of freedom but only four control
inputs, namely, Ti and τi = col(τ ix, τ

i
y, τ

i
z). The coordinate

systems and the free body diagram of the ith quadrotor
helicopter are shown in Fig. 1, where M i

j and f i
j denote

the rotor torque and the rotor thrust generated by the
jth rotor of the ith quadrotor helicopter, respectively. The
inertial frame I is defined by I = {I1, I2, I3}, where
I3 is pointing downward vertically. The body-fixed frame
Bi = {Bi

1,Bi
2,Bi

3} is attached to the center of mass of
the ith quadrotor helicopter, with Bi

1 pointing towards the
prescribed forward direction and Bi

3 pointing downward.
Rotors 1 to 4 are on the positive Bi

1 axis, the negative
Bi
2 axis, the negative Bi

1 axis, and the positive Bi
2 axis,

respectively.
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Fig. 1. Free body diagram.

Consider the quadrotor helicopters described by the equa-
tions of motion as follows:

mip̈i = mige3 − TiR(qi)e3 (1a)

q̇i =
1

2
qi ⊙Q(Ωi) (1b)

JiΩ̇i = −Ω×
i JiΩi + τi, i = 1, . . . , N (1c)

where, for the ith quadrotor helicopter, i = 1, . . . , N ,
mi ∈ R is the mass, g ∈ R is the gravitational acceleration,
pi = col(pix, p

i
y, p

i
z) ∈ R3 is the position vector of the center

of mass with respect to I, qi = col(q̂i, q̄i) ∈ Qu is the unit
quaternion representation of the attitude of Bi relative to
I, Ji ∈ R3×3 is the symmetric and positive definite inertia
matrix expressed in Bi, Ωi ∈ R3 is the angular velocity of
Bi relative to I expressed in Bi, τi = col(τ ix, τ

i
y, τ

i
z) ∈ R3 is

the control torque vector, and Ti ∈ R is the total thrust.

GivenN > 0, a desired formation is specified by the trajec-
tory p0(t) ∈ R3 of the virtual leader, and N other vectors
hi(t) ∈ R3, i = 1, . . . , N , representing the desired relative
displacements between the ith quadrotor helicopter and
the trajectory of the virtual leader. Thus, let

pri , hi + p0, i = 1, . . . , N. (2)

Then, pri is the desired trajectory of the ith quadrotor
helicopter. The N quadrotor helicopters (1a)–(1c) are said
to achieve asymptotic formation tracking, if the trajectory
of each quadrotor helicopter exists for all t ≥ 0, and is such
that

lim
t→∞

(pi(t)− pri(t)) = 0 (3)

lim
t→∞

(ṗi(t)− ṗri(t)) = 0, i = 1, . . . , N. (4)

Fig. 2 shows a triangular formation composed of three
quadrotor helicopters.

Quadrotor 3

Virtual leader

Quadrotor 2

Quadrotor 1

 

!

"#

"$

"%"&

'$

'& '%

Fig. 2. A triangular formation.

The formation tracking problem described above has been
studied in several papers. In particular, under the assump-
tion that pri(t), i = 1, . . . , N , are sufficiently smooth with
bounded second to fourth derivatives, using the approach
in Abdessameud and Tayebi (2013), the above problem can
be solved by a state feedback control law of the following
form:

Ti = αi(pi, ṗi, pri, ṗri, p̈ri)

τi = βi(pi, ṗi, qi,Ωi, pri, ṗri, p̈ri, p
(3)
ri , p

(4)
ri )

(5)

where, for i = 1, . . . , N , the specific forms of the functions
αi and βi can be found in Abdessameud and Tayebi (2013).

A control law of the form (5) is called a purely decen-
tralized full information control law since, for each i,
i = 1, . . . , N , αi and βi not only depend on the state of the
ith quadrotor helicopter but also the reference trajectory
pri as well as its first to fourth derivatives.

In practice, due to the communication constraints, the
control of some subsystems of (1a)–(1c) may not access the
information of the reference trajectory. To overcome this
difficulty, it is desirable to design a so-called distributed
control law to solve the above formation tracking problem.
For this purpose, denote the three components of p0(t)

and hi(t), i = 1, . . . , N , by p0 , col(p0x, p
0
y, p

0
z) and

hi , col(hi
x, h

i
y, h

i
z), i = 1, . . . , N . Then we need to limit

the (N + 1) functions p0(t) and hi(t), i = 1, . . . , N , such
that they can be generated by the following exosystems:

v̇x = Sxvx, p0x = F 0
xvx, hi

x = Gi
xvx (6)

v̇y = Syvy, p0y = F 0
y vy, hi

y = Gi
yvy (7)

v̇z = Szvz, p0z = F 0
z vz, hi

z = Gi
zvz (8)

where, for k = x, y, z, vk ∈ Rn, and Sk ∈ Rn×n, F 0
k ∈

R1×n, and Gi
k ∈ R1×n are constant matrices. Also denote

the three components of pri by pri , col(prix , priy , priz ), and

let F i
k , Gi

k + F 0
k , k = x, y, z. Then, for i = 1, . . . , N ,

k = x, y, z, prik = F i
kvk.

We assume the exosystems (6)–(8) satisfy the following:
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Assumption 2.1. None of the eigenvalues of the matrices
Sx and Sy have positive real parts. All the non-zero
imaginary eigenvalues of the matrices Sx and Sy are
semi-simple, and all the eigenvalues of the matrix Sz are
at the origin. Moreover, the dimensions of the Jordan
blocks corresponding to the eigenvalue at the origin of
the matrices Sx and Sy are not greater than three, and
the dimensions of the Jordan blocks corresponding to the
eigenvalue at the origin of the matrix Sz are not greater
than two.

Remark 2.1. Under Assumption 2.1, priz (t) can be step
and ramp functions of any coefficients while prix (t) and
priy (t) can be quadratic functions of any coefficients, sinu-
soidal functions of any magnitudes, frequencies, and initial
phases, and their combinations. Thus, for i = 1, . . . , N , the
reference accelerations p̈ri = col(p̈rix , p̈riy , p̈riz ) are bounded

and p̈riz (t) = 0 for all t ≥ 0.

Let v , col(vx, vy, vz), S , block diag(Sx, Sy, Sz), Fi ,
block diag(F i

x, F
i
y, F

i
z), i = 0, 1, . . . , N . Then, the exosys-

tems (6)–(8) as well as the reference trajectories can be
compactly put as follows:

v̇ = Sv, p0 = F0v, pri = Fiv, i = 1, . . . , N. (9)

We can view the system composed of (1a)–(1c) and (9) as a
multi-agent system of (N+1) agents with (9) as the virtual
leader and the N subsystems of (1a)–(1c) as followers.
Given systems (1a)–(1c) and (9), we can define a digraph 1

G = (V, E) with V = {0, 1, . . . , N} and E ⊆ V × V. Here,
node 0 is associated with the virtual leader (9) and node
i, i = 1, . . . , N , is associated with the ith subsystem of
(1a)–(1c), and, for i = 1, . . . , N , j = 0, 1, . . . , N , i ̸= j,
(j, i) ∈ E if and only if agent i can use the information of
agent j for control.

We now describe our control law as follows:

Ti = fi(ϑi, ξi)

τi = gi(ϑi, ξi, ξj , j ∈ Ni)

ξ̇i = ki(ξi, ξj , j ∈ Ni), i = 1, . . . , N

(10)

where, for i = 1, . . . , N , fi(·), gi(·), ki(·) are some nonlinear
functions, ϑi = col(pi, ṗi, qi,Ωi) is the state of the ith
quadrotor helicopter, ξi is the state of the distributed dy-
namic compensator, ξ0 = v, and Ni denotes the neighbor
set of the ith quadrotor helicopter.

Since the control law (10) satisfies the communication
constraints described by the digraph G, we call such a
control law a distributed control law.

We now describe our problem as follows:

Problem 1. Given the plant (1a)–(1c), the virtual leader
(9), and a digraph G, find a control law of the form
(10) such that, for any initial condition of the closed-loop
system satisfying ∥qi(0)∥ = 1, i = 1, . . . , N , the solution
of the closed-loop system exists for all t ≥ 0 and satisfies
(3) and (4). Moreover, Ti(t) and τi(t), i = 1, . . . , N , are
bounded over t ∈ [0,∞).

For the solvability of Problem 1, we make one more
assumption as follows:

1 See Su and Huang (2012) for a summary of digraph.

Assumption 2.2. The digraph G contains a directed
spanning tree with node 0 as the root, that is, every node
i, i = 1, . . . , N , is reachable from node 0 in the digraph G.
Remark 2.2. Under Assumption 2.2, the digraph G is
said to be connected.

3. MAIN RESULTS

3.1 Existing Results

Our approach is a composition of the purely decentralized
full information control law developed in Abdessameud
and Tayebi (2013) and a so-called distributed observer. Let
us summarized some results in Abdessameud and Tayebi
(2013) in this subsection.

For x = col(x1, x2, x3) ∈ R3, let

χ(x) , col(tanh(x1), tanh(x2), tanh(x3))

h(x) , diag

(
d tanh(x1)

dx1
,
d tanh(x2)

dx2
,
d tanh(x3)

dx3

)
and let ḣ(·) be the time derivative of h(·).
Remark 3.1. It can be verified that tanh : R 7→ (−1, 1)
is a strictly increasing and continuously differentiable
function with the following properties:

(1) tanh(0) = 0 and x tanh(x) > 0 for all x ̸= 0.
(2) |tanh(x)| < 1 for all x ∈ R.
(3) d tanh(x)

dx = 1− tanh2(x) is bounded for all x ∈ R.

Thus, for any x ∈ R3, χ(x) and h(x) are bounded.

Let us first rephrase Lemma 2.9 of Abdessameud and
Tayebi (2013) as follows.

Lemma 3.1. Consider the following second-order nonlin-
ear system:

θ̈ = −kpχ(θ)− kdχ(θ̇) + ζ(t) (11)

where θ ∈ R3, kp and kd are positive constants. If ζ(t) ∈ R3

is piecewise continuous and bounded over t ∈ [0,∞), and

limt→∞ ζ(t) = 0, then, for any initial condition θ(0), θ̇(0),

the solution θ, θ̇ of system (11) are bounded and satisfy

limt→∞ θ(t) = 0, limt→∞ θ̇(t) = 0. 2

For i = 1, . . . , N , let qri(t) ∈ Qu be any sufficiently smooth
time functions defined over t ∈ [0,∞) called the reference
attitudes. Then, we can put the translational dynamics
(1a) to the form

p̈i =
Ti

mi
(R(qri)−R(qi)) e3 −

Ti

mi
R(qri)e3 + ge3. (12)

Motivated by Cao and Lynch (2016), performing on (12)
the following transformation:

ui = − Ti

mi
R(qri)e3 + ge3, i = 1, . . . , N (13)

gives

p̈i = ui +
Ti

mi
(R(qri)−R(qi))e3, i = 1, . . . , N. (14)

For i = 1, . . . , N , let p̄i , pi − pri and

ui = p̈ri − kpχ(p̄i)− kdχ( ˙̄pi) (15)
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where kp and kd are any positive constants. Then, (14)
becomes the following

¨̄pi = −kpχ(p̄i)− kdχ( ˙̄pi) +
Ti

mi
(R(qri)−R(qi))e3. (16)

Thus, by Lemma 3.1, if, for i = 1, . . . , N ,

lim
t→∞

Ti(t)

mi
(R(qri(t))−R(qi(t)))e3 = 0, (17)

then, for i = 1, . . . , N , we have limt→∞ p̄i(t) = 0 and
limt→∞ ˙̄pi(t) = 0.

Nevertheless, the true control is Ti not ui. In order to
obtain Ti from ui through (13), as noted in Abdessameud
and Tayebi (2011), for any ui ∈ R3, i = 1, . . . , N , (13) is
satisfied if Ti and qri, i = 1, . . . , N , are such that

Ti = mi∥ge3 − ui∥ (18)

and

TiR(qri)e3 = mige3 −miui. (19)

Moreover, as a special case of Lemma 4 of Abdessameud
and Tayebi (2011), the following lemma presents a method
to compute a qri(t) that satisfies the constraint (19).

Lemma 3.2. Let ui , col(ui
x, u

i
y, u

i
z), i = 1, . . . , N .

Suppose Ti, i = 1, . . . , N , is given by (18). If ∥ui
z∥∞ < g,

then a qri = col(q̂ri, q̄ri) satisfying (19) is given by

q̄ri =

√
1

2
+

mi(g − ui
z)

2Ti
, q̂ri =

mi

2Tiq̄ri

 ui
y

−ui
x

0

 . (20)

2

Remark 3.2. Suppose ui is differentiable and qri is as
described in Lemma 3.2. Then, qri satisfies the following
equation (Abdessameud and Tayebi (2011)):

q̇ri =
1

2
qri ⊙Q(Ωri) (21)

where

Ωri = Ξ(ui)u̇i (22)

and

Ξ(ui) =
1

γ2
1iγ2i

 −ui
xu

i
y −ui

y
2
+ γ1iγ2i ui

yγ2i

ui
x
2 − γ1iγ2i ui

xu
i
y −ui

xγ2i
ui
yγ1i −ui

xγ1i 0


with γ1i =

Ti

mi
, γ2i = γ1i+g−ui

z. Differentiating Ωri gives

Ω̇ri = Ξ̄(ui, u̇i)u̇i + Ξ(ui)üi (23)

where Ξ̄(ui, u̇i) is the time derivative of Ξ(ui). In the

sequel, for i = 1, . . . , N , we call Ωri and Ω̇ri the reference
angular velocities and the reference angular accelerations,
respectively.

Remark 3.3. Similar to Luo et al. (2005); Chen and
Huang (2009), given the reference attitudes qri ∈ Qu and
the reference angular velocities Ωri ∈ R3, i = 1, . . . , N , let

ϵi , q−1
ri ⊙ qi (24)

Ω̃i , Ωi −RT (ϵi)Ωri, i = 1, . . . , N. (25)

Then, for i = 1, . . . , N , ϵi = col(ϵ̂i, ϵ̄i) ∈ Qu are called

the attitude tracking errors, and Ω̃i ∈ R3 are the relative
angular velocities between Ωi and Ωri expressed in Bi.
Since, for i = 1, . . . , N , R(qi) ∈ SO(3) is bounded and
R(qri) − R(qi) = R(qi)(RT (ϵi) − I3), if limt→∞ ϵ̂i(t) =
0, then limt→∞ R(ϵi(t)) = I3 and limt→∞(R(qri(t)) −
R(qi(t))) = 0.

3.2 Distributed Observer

We recall the distributed observer for the virtual leader
(9) from Su and Huang (2012) as follows:

η̇i = Sηi + µ
N∑
j=0

aij(ηj − ηi), i = 1, . . . , N (26)

where, for i = 1, . . . , N , ηi ∈ R3n, η0 = v, aij is the
element of the weighted adjacency matrix of G, and µ is
any positive constant.

The following lemma is extracted from Remark 4 of Su
and Huang (2012).

Lemma 3.3. Under Assumptions 2.1 and 2.2, for any
µ > 0 and any initial condition ηi(0), i = 1, . . . , N , and
v(0), we have

lim
t→∞

(ηi(t)− v(t)) = 0, i = 1, . . . , N (27)

exponentially. 2

Remark 3.4. For i = 1, . . . , N , let ηdi , µ
∑N

j=0 aij(ηj −
ηi). From (27), we have limt→∞ ηdi(t) = 0 exponentially,
which together with (26) imply that limt→∞(η̇i(t)−v̇(t)) =
limt→∞(Sηi(t) + ηdi(t)− Sv(t)) = 0 exponentially.

The control law (15) relies on pri as well as its first and
second derivatives, and thus relies on v as well as its first
and second derivatives. In order to obtain a distributed
control law, for each i, i = 1, . . . , N , in (15), we can
replace v by ηi and v̇ by η̇i. Nevertheless, from (26), η̈i
depends on η̇j , j ∈ Ni \ {0}, which is available to the
ith quadrotor helicopter only if the neighbor sets satisfy
Nj ⊆ Ni for all j ∈ Ni \ {0}. Such a condition does not
hold in general. Therefore, we cannot replace v̈ by η̈i. To
circumvent this difficulty, we introduce another distributed
dynamic compensator in the following lemma.

Lemma 3.4. Under Assumptions 2.1 and 2.2, consider a
distributed dynamic compensator as follows:

˙̂ηi = Sη̂i + L(η̂i − ηi), i = 1, . . . , N (28)

where, for i = 1, . . . , N , η̂i ∈ R3n and L ∈ R3n×3n is such
that (S + L) is Hurwitz. Then, for any initial condition
η̂i(0), ηi(0), i = 1, . . . , N , and v(0), we have

lim
t→∞

(η̂i(t)− v(t)) = 0 (29)

lim
t→∞

( ˙̂ηi(t)− v̇(t)) = 0 (30)

lim
t→∞

(¨̂ηi(t)− v̈(t)) = 0, i = 1, . . . , N (31)

all exponentially.

Proof: For i = 1, . . . , N , let η̃i , η̂i − ηi. Then, from (26)
and (28), we have

˙̃ηi = (S + L)η̃i − ηdi, i = 1, . . . , N. (32)

Under Assumptions 2.1 and 2.2, by Remark 3.4, for i =
1, . . . , N , we have limt→∞ ηdi(t) = 0 exponentially. Since
(S+L) is Hurwitz, we have limt→∞ η̃i(t) = 0 exponentially

and limt→∞ ˙̃ηi(t) = 0 exponentially.

Under Assumptions 2.1 and 2.2, for i = 1, . . . , N , it
follows from Lemma 3.3 that limt→∞(η̂i(t) − v(t)) =
limt→∞(η̃i(t)+ηi(t)−v(t)) = 0 exponentially. By Remark

3.4, we have limt→∞( ˙̂ηi(t)− v̇(t)) = limt→∞( ˙̃ηi(t)+ η̇i(t)−
v̇(t)) = 0 exponentially.
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To show (31), differentiating on both sides of (28) gives

¨̂ηi = S ˙̂ηi + L( ˙̂ηi − η̇i)

= S2η̂i + SLη̃i + L ˙̃ηi, i = 1, . . . , N. (33)

Thus, for i = 1, . . . , N , we have limt→∞(¨̂ηi(t) − v̈(t)) =
limt→∞ S2(η̂i(t)− v(t)) = 0 exponentially. 2

Remark 3.5. Differentiating on both sides of (33) gives

η̂
(3)
i = S2 ˙̂ηi + SL ˙̃ηi + L¨̃ηi. Thus Lemma 3.4 implies

that, for i = 1, . . . , N , limt→∞(η̂
(3)
i (t) − v(3)(t)) =

limt→∞ S2( ˙̂ηi(t)− v̇(t)) = 0 exponentially.

3.3 Distributed Position Control

To define our distributed position control law, let η̂i =
col(η̂ix, η̂

i
y, η̂

i
z) be a partition of η̂i with η̂ik ∈ Rn, k = x, y, z.

For i = 1, . . . , N , let

p̂ri , col(p̂rix , p̂riy , p̂riz ), φi , col(φi
x, φ

i
y, φ̄

i
z) (34)

where, for i = 1, . . . , N , k = x, y, z,

p̂rik , F i
kη̂

i
k, φi

k , F i
kS

2
k η̂

i
k, φ̄i

z , φi
z

1 + φi
z
2 (35)

and let

p̃i , pi − p̂ri. (36)

Then our distributed intermediary control law is proposed
as follows:

ui = φi − kpχ(p̃i)− kdχ( ˙̃pi) (37)

η̇i = Sηi + µ

N∑
j=0

aij(ηj − ηi) (38)

˙̂ηi = Sη̂i + L(η̂i − ηi), i = 1, . . . , N (39)

where kp and kd are positive constants to be specified, µ
is any positive constant, and L is a constant matrix such
that (S + L) is Hurwitz.

Lemma 3.5. Under Assumptions 2.1 and 2.2, for i =
1, . . . , N , we have

lim
t→∞

(φi(t)− p̈ri(t)) = 0 (40)

lim
t→∞

(φ̇i(t)− p
(3)
ri (t)) = 0 (41)

lim
t→∞

(φ̈i(t)− p
(4)
ri (t)) = 0, (42)

all exponentially.

Proof: Under Assumptions 2.1 and 2.2, by Lemma 3.4, for
i = 1, . . . , N , k = x, y, z, we have limt→∞(φi

k(t)− p̈rik (t)) =

0, limt→∞(φ̇i
k(t) − prik

(3)
(t)) = 0, and limt→∞(φ̈i

k(t) −
prik

(4)
(t)) = 0, all exponentially. By Remark 2.1, p̈riz (t) = 0

for all t ≥ 0, thus limt→∞ φi
z(t) = 0, limt→∞ φ̇i

z(t) = 0,
and limt→∞ φ̈i

z(t) = 0, all exponentially. Since φ̄i
z =

φi
z

1+φi
z
2 , ˙̄φi

z =
φ̇i

z(1−φi
z
2
)

(1+φi
z
2)2

, and ¨̄φi
z =

(2φi
z
3−6φi

z)φ̇
i
z
2
+(1−φi

z
4
)φ̈i

z

(1+φi
z
2)3

,

we further have limt→∞ φ̄i
z(t) = 0, limt→∞ ˙̄φi

z(t) = 0,
and limt→∞ ¨̄φi

z(t) = 0, all exponentially. The proof is
completed upon noting (34). 2

Remark 3.6. Since, under Assumption 2.1, p̈ri, p
(3)
ri , p

(4)
ri ,

i = 1, . . . , N , are bounded, Lemmas 3.4 and 3.5 imply
that ¨̂pri, φi, φ̇i, φ̈i, i = 1, . . . , N , are bounded. Thus,
there exists a positive constant δd such that ∥φi∥∞ ≤ δd,

i = 1, . . . , N . By Remark 3.1, the distributed intermediary
control law (37) is bounded by ∥ui∥∞ ≤ δd +

√
3(kp + kd).

Let δm , max{mi|i = 1, . . . , N} and T̄ , δm(g + δd +√
3(kp + kd)). Then, for all t ≥ 0 and i = 1, . . . , N , we

have Ti(t) ≤ T̄ .

Remark 3.7. From (37), for i = 1, . . . , N , direct calcula-
tion gives

u̇i = φ̇i − kph(p̃i) ˙̃pi − kdh( ˙̃pi)¨̃pi (43)

üi = φ̈i − kpḣ(p̃i) ˙̃pi − kph(p̃i)¨̃pi

− kdḣ( ˙̃pi)¨̃pi − kdh( ˙̃pi)p̃
(3)
i . (44)

3.4 Distributed Attitude Control

In what follows, we propose a distributed attitude control
law. For this purpose, let

Ω̄i , Ω̃i + k1ϵ̂i, i = 1, . . . , N (45)

where k1 is any positive constant. Then, from (1b)–(1c),
(24), and (25), a direct extension of the result in Luo et al.
(2005) gives

˙̂ϵi =
1

2
(ϵ̄iI3 + ϵ̂×i )(Ω̄i − k1ϵ̂i) (46)

˙̄ϵi = −1

2
ϵ̂Ti (Ω̄i − k1ϵ̂i) (47)

Ji
˙̄Ωi = −Ω×

i JiΩi + Ji(Ω̃
×
i R

T (ϵi)Ωri −RT (ϵi)Ω̇ri)

+
k1
2
Ji(ϵ̄iI3 + ϵ̂×i )Ω̃i + τi, i = 1, . . . , N. (48)

Let
ˆ̇Ωri , Ξ̄(ui, u̇i)u̇i + Ξ(ui)ˆ̈ui, i = 1, . . . , N (49)

where, for i = 1, . . . , N ,
ˆ̈ui , φ̈i − kpḣ(p̃i) ˙̃pi − kph(p̃i)¨̃pi

− kdḣ( ˙̃pi)¨̃pi − kdh( ˙̃pi)(p
(3)
i − φ̇i). (50)

Then our distributed attitude control law for the ith
quadrotor helicopter, i = 1, . . . , N , is proposed as follows:

τi = Ω×
i JiΩi − Ji(Ω̃

×
i R

T (ϵi)Ωri −RT (ϵi)
ˆ̇Ωri)

− k1
2
Ji(ϵ̄iI3 + ϵ̂×i )Ω̃i − k2(Ω̃i + k1ϵ̂i) (51)

where k1 and k2 are any positive constants.

3.5 Solvability of Problem 1

The solvability of Problem 1 can be summarized as follows:

Theorem 3.1. Under Assumptions 2.1 and 2.2, let kp and
kd be such that

kp + kd < g − 1

2
. (52)

Then Problem 1 is solvable by combining the distributed
position control law (18) with ui obtained from (37)–(39)
and the distributed attitude control law (51).

Proof: By definition of φ̄i
z in (35), for all t ≥ 0, |φ̄i

z(t)| ≤
|φi

z(t)|/(1 + |φi
z(t)|2) ≤ 1/2. If kp and kd are such that

(52) holds, then, from (37), we have ∥ui
z∥∞ ≤ ∥φ̄i

z∥∞ +
kp + kd ≤ 1/2+ kp + kd < g, i = 1, . . . , N . By Lemma 3.2,
the reference attitude defined by (20) satisfies (19).

Since, for i = 1, . . . , N , Ti is given by (18) and qri is
such that (19) holds, via the transformation (13), the
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translational dynamics (1a) can be transformed to (14).
Then, substituting (37) into (14) gives

¨̃pi = −kpχ(p̃i)− kdχ( ˙̃pi) + ζi, i = 1, . . . , N (53)

where ζi = φi − ¨̂pri +
Ti

mi
(R(qri)−R(qi))e3.

To apply Lemma 3.1 to (53), we need to show that
limt→∞ ζi(t) = 0. Under Assumptions 2.1 and 2.2, by

Lemmas 3.4 and 3.5, we have limt→∞(φi(t) − ¨̂pri(t)) = 0
exponentially. Since the boundedness of Ti follows from
Remark 3.6, we only need to show limt→∞(R(qri(t)) −
R(qi(t))) = 0. By Remark 3.3, it suffices to show

lim
t→∞

ϵ̂i(t) = 0, i = 1, . . . , N. (54)

By Lemma 3.1 of Chen and Huang (2009), if

lim
t→∞

Ω̄i(t) = 0, i = 1, . . . , N, (55)

then, for any initial condition ϵi(0) satisfying ∥ϵi(0)∥ = 1,
i = 1, . . . , N , the solution of (46)–(47) is bounded and
satisfies limt→∞ ϵ̂i(t) = 0, i = 1, . . . , N . Thus, in what
follows, we show (55). For this purpose, substituting (51)
into (48) gives

Ji
˙̄Ωi + k2Ω̄i = JiRT (ϵi)(

ˆ̇Ωri − Ω̇ri), i = 1, . . . , N. (56)

From (23), (49), (44), and (50), we have

ˆ̇Ωri − Ω̇ri = Ξ(ui)(ˆ̈ui − üi)

= kdΞ(ui)h( ˙̃pi)(φ̇i − p̂
(3)
ri ), i = 1, . . . , N. (57)

First note that, by Remarks 3.1, 3.6, and 3.2, h( ˙̃pi), ui,
and Ξ(ui), i = 1, . . . , N , are bounded, and system (56)
can be viewed as a stable first order linear system subject

to the nonlinear input JiRT (ϵi)(
ˆ̇Ωri − Ω̇ri). Since Remark

3.5 and Lemma 3.5 imply that limt→∞(φ̇i(t)− p̂
(3)
ri (t)) = 0

exponentially, from (57), we have

lim
t→∞

( ˆ̇Ωri(t)− Ω̇ri(t)) = 0, i = 1, . . . , N (58)

exponentially. For i = 1, . . . , N , since Ji is symmetric
and positive definite and RT (ϵi) ∈ SO(3) is bounded,
equations (56) and (58) imply that limt→∞ Ω̄i(t) = 0
exponentially.

By Lemma 3.1, for any initial condition p̃i(0), ˙̃pi(0),

i = 1, . . . , N , the solution p̃i, ˙̃pi of system (53) are

bounded and satisfy limt→∞ p̃i(t) = 0, limt→∞ ˙̃pi(t) = 0,
i = 1, . . . , N .

Since Lemma 3.4 implies that limt→∞(p̂ri(t)− pri(t)) = 0

exponentially and limt→∞( ˙̂pri(t)−ṗri(t)) = 0 exponential-
ly, we have

lim
t→∞

p̄i(t) = lim
t→∞

(p̃i(t) + p̂ri(t)− pri(t))

= 0, i = 1, . . . , N

and

lim
t→∞

˙̄pi(t) = lim
t→∞

( ˙̃pi(t) + ˙̂pri(t)− ṗri(t))

= 0, i = 1, . . . , N.

Since, by Remark 3.6, Ti is bounded, it remains to show
that τi is bounded. By Remark 3.6, φ̇i and φ̈i are bounded.
From (53), ¨̃pi is bounded. Then, the boundedness of u̇i

and Ωri follows from (43) and (22), respectively. Since Ω̃i

is bounded, in view of (25), Ωi and thus Ω×
i are bounded.

Since d
dt∥f(t)∥ = ḟT (t)f(t)

∥f(t)∥ for f(t) ̸= 0, from (18), we

have Ṫi =
−miu̇

T
i (ge3−ui)

∥ge3−ui∥ . Since ui and u̇i are bounded, Ṫi

is bounded. Noting that Ṙ(qri) = R(qri)Ω
×
ri and Ṙ(qi) =

R(qi)Ω
×
i ,

d
dt (

Ti

mi
(R(qri)−R(qi))e3) is bounded. Since (φ̇i−

p̂
(3)
ri ) is bounded, so is ζ̇i. Then, the boundedness of p̃

(3)
i

and üi follows from (53) and (44), respectively. Thus, from

(23), Ω̇ri is bounded, which together with (58) imply that
ˆ̇Ωri is bounded. The boundedness of τi then follows from
(51). 2

Remark 3.8. Since the control law composed of (18),
(51), and (37)–(39) is in the form of (10) with ξi =
col(ηi, η̂i), it is a distributed control law.
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