
Reinforcement Learning Based
Anti-Jamming Schedule in Cyber-Physical

Systems

Ruimeng Gan ∗ Yue Xiao ∗ Jinliang Shao ∗∗ Heng Zhang ∗∗∗

Wei Xing Zheng ∗∗∗∗

∗National Key Laboratory of Science and Technology on
Communications, University of Electronic Science and Technology of
China, Chengdu, Sichuan, 611731, China (e-mail: gruimxq@163.com,

xiaoyue@uestc.edu.cn)
∗∗ School of Automation Engineering, University of Electronic Science
and Technology of China, Chengdu, Sichuan, 611731, China (e-mail:

jinliangshao@126.com)
∗∗∗ School of Science, Jiangsu Ocean University, Lianyungang,

Jiangsu, 222005, China (e-mail: Dr.Zhang.Heng@ieee.org)
∗∗∗∗ School of Computing, Engineering and Mathematics, Western

Sydney University, Sydney, NSW 2751, Australia (e-mail:
w.zheng@westernsydney.edu.au)

Abstract: In this paper, the security issue of cyber-physical systems is investigated, where
the observation data is transmitted from a sensor to an estimator through wireless channels
disturbed by an attacker. The failure of this data transmission occurs, when the sensor accesses
the channel that happens to be attacked by the jammer. Since the system performance measured
by the estimation error depends on whether the data transmission is a success, the problem
of selecting the channel to alleviate the attack effect is studied. Moreover, the state of each
channel is time-variant due to various factors, such as path loss and shadowing. Motivated by
energy conservation, the problem of selecting the channel with the best state is also considered.
With the help of cognitive radio technique, the sensor has the ability of selecting a sequence of
channels dynamically. Based on this, the problem of selecting the channel is resolved by means
of reinforcement learning to jointly avoid the attack and enjoy the channel with the best state.
A corresponding algorithm is presented to obtain the sequence of channels for the sensor, and
its effectiveness is proved analytically. Numerical simulations further verify the derived results.

Keywords: Cyber-physical systems (CPSs), reinforcement learning, cognitive radio, softmax
method.

1. INTRODUCTION

The interest in cyber-physical systems (CPSs) is becoming
prevalent due to its potential applications in smart grid,
unmanned aerial vehicles, environmental monitoring, etc.
A key characteristic of such CPS applications is the inte-
gration of physical processes and wireless communication
technologies with the benefit of low cost and energy saving
Schenato et al. (2007). But this also leads to the CPSs vul-
nerable to cyber attacks, such as false data injection attack
Liu et al. (2007) and Denial-of-Service (DoS) attack Xu
et al. (2019), because of the broadcast nature of wireless
networks. It is well known that the CPS performance can
be degraded as a result of the presence of such kind of at-
tacks. For instance, in 2008 the switch tracks of trams were
attacked, which resulted in four derailments and twelve
resultant injuries Iasiello (2013). Therefore, exploring anti-
interference approaches in CPSs is necessary to ensure the
implementation of reliable data transmission.

The problem of designing strategies to alleviate the attack
influence has attracted considerable attention in recent
years. For example, the work in Pasqualetti et al. (2013)
concentrates on exploring detection methods to counteract
the attack effect in real time. Moreover, assuming that the
jammer has been detected in CPSs, the problem of ensur-
ing the system stability is investigated in Foroush et al.
(2012). Further, taking safety conditions into account, an
optimization policy to maximize the system objective is
proposed in Amin et al. (2009). An alternative scenario
from the viewpoint of the game theory is discussed, where
the problem of maximizing the benefit of the sensor and
the jammer is considered in Li et al. (2017), respectively.
A common hypothesis for the above-mentioned works is
that the data transmission between the transmitter and
the receiver is over a single wireless channel interfered with
an attacker. Besides, although in the setting of multiple
channels some policies are proposed to alleviate the attack
effect Ding et al. (2017), the channel state in itself is
assumed to be independent of time.
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In practice, the channel quality changes with time due
to various factors, such as path loss, shadowing, etc.
Specially, from the perspective of unlicensed users the
channel state varies dynamically with time, since it is
uncertain whether the channel is occupied by licensed
users Che et al. (2011). In this setting, the cognitive radio
(CR) technique is utilized by the sensor to enhance the
CPS performance, where the sensor is endowed with the
ability of sensing the channel quality and then accessing
the corresponding channel Cao et al. (2014). Naturally,
an interesting question arises: how to employ the CR
technology to enhance the anti-jamming ability from the
perspective of the security? Motivated by this, the current
paper studies the problem of selecting which channel to
transmit the data so as to maximize the CPS performance
when the state of each channel varies with time.

Generally, such kind of problem of selecting a sequence of
actions among the available choices is typically addressed
by using an online learning technique Auer et al. (2002).
In this paper, we deal with the problem of selecting the
sequence of channels through establishing a new kind of
online learning model, referred to as the period online
learning (POL) model. Compared with the previous lit-
erature, the contributions of this work are summarized as
follows.

1 We establish a POL model where the sensor has the
ability to sense and access the channel with the help
of the CR technique. The objective of the sensor is to
jointly avoid the attack and maximize the long-term
reward, which is considered in CPSs for the first time
as far as we know.

2 We present a novel method based on the reinforce-
ment learning, referred to as the POL algorithm,
to explore the sequence of channels for the sensor.
Moreover, we prove analytically that the performance
of this algorithm is better than that of the softmax
(SM) method. Besides, the effectiveness of the POL
algorithm is further verified using numerical simula-
tions.

The remainder of the paper is organized as follows. In
Section 2, we provide the mathematical model for the
problem of selecting the channel for remote state esti-
mation in CPSs in the presence of periodic DoS attacks.
The main result about the POL model and algorithm is
then presented in Section 3. Simulation results are given
in Section 4. Finally, Section 5 concludes the paper.

2. PROBLEM SETUP

Jammer

SensorProcess Estimator

Feedback

Fig. 1. The schematic of the CPS in the presence of a
jammer.

The schematic of a generic single-hop structure for the
CPS in the presence of an attacker is depicted in Fig. 1,

where the process of the plant is represented by a linear
time-invariant (LTI) system. The sensor transmits the ob-
servation data to the estimator through wireless channels
that are attacked by a jammer, and the state of each chan-
nel varies with time. With the help of the CR technique,
the sensor can dynamically select the channel available
based on the feedback transmitted from the estimator so
as to enhance the system performance. In the following, we
present the mathematical model of the system illustrated
in Fig. 1.

2.1 Local State Estimation

The physical process is described by the following discrete-
time dynamic LTI system

xt+1 = Axt + ωt, (1)

where xt ∈ Rnx denotes the system state, and ωt ∈ Rnx is
the noise that is assumed to be of Gaussian distribution
N (0,Σω). The sensor observes the system state using the
following dynamic system

yt = Cxt + νt, (2)

where yt ∈ Rny is the measurement output at time t,
and νt ∈ Rny represents the measurement noise following
Gaussian distribution N (0,Σν). Generally, it is assumed

that (A,C) is observable and (A,Σ
1
2
ω ) is stabilizable.

The sensor usually performs the local estimation for xt be-
fore forwarding it to the remote estimator Li et al. (2017).
Denote the minimum mean squared error (MMSE) esti-
mate of xt and its corresponding error covariance, respec-
tively, by x̂st and P st . Then, we have x̂st = E[xt|y1, · · · , yt]
and P st = E[(xt − x̂st )(xt − x̂st )

T |y1, · · · , yt], where XT

denotes the transpose of matrix X.

Based on the Kalman filter described in Gu et al. (2006),
P st converges to the steady state P exponentially, where
P is the unique positive semi-definite solution of g ◦
h(X) = X with h(X)

∆
= AXAT + Σω and g(X)

∆
= X −

XCT (CXCT + Σν)−1CX. Note that for functions f1

and f2 with appropriate domains, f1 ◦ f2(x) denotes the
function composition f1(f2(x)). For simplicity, like Ding
et al. (2017), it is also assumed that the standard Kalman
filter is at the steady state, i.e., P st = P , for each t ≥ 1.

2.2 Wireless Channel in the Presence of Attacker

Assume that the channel quality varies with time, which
makes sense due to the fact that each channel is affected by
various factors in different ways, such as path loss, shad-
owing, etc. For the sake of analysis, as described in Felice
et al. (2010), assume that all these factors can be repre-
sented by one state, e.g., the throughput. Define the set
of M channels available by C = {ck, k = 1, · · · ,M}. And
then the state for channel ck at time t can be expressed
as rtk, where r1k, r2k, · · · are independently and identi-
cally distributed (i.i.d), following an unknown distribution
with unknown expectation µk. Moreover, for throughput
across channels the independence is also satisfied, i.e., for
any k1, k2 ∈ [1,M ] and t1, t2 ≥ 1, rt1k1 and rt2k2 are
mutually independent, where for two integers a1 and a2

with a1 ≤ a2, the notation [a1, a2] represents the set of
{a1, a1 + 1, · · · , a2}.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2536



Similar to Foroush et al. (2012) and Hu et al. (2018), the
action of the jammer with DoS attack is assumed to be
periodic. Specifically, the action period T is composed of
the active period Ta = [(n − 1)T + 1, (n − 1)T + Ta] and
the rest period Tr = [(n − 1)T + Ta + 1, nT ], where T
and Ta denote the length of the action period and the
active period, respectively, and n represents the period
number. Moreover, let βtk be an indication function, where
βtk = 1 denotes that the jammer has the attack on
channel ck at time t, otherwise βtk = 0. Then, the attack
launched at time t is βt = (βt1, · · · , βtM )T in a vector
form. When the attack is launched at the j-th time in
period n, i.e., t = (n − 1)T + j, the corresponding attack
can also be written as βnj = (βnj1, · · · , βnjM )T . For
n1, n2 ≥ 1, based on the characteristic of periodicity, we
have βn1j

= βn2j
,∀j ∈ [1, T ]. Taking the energy constraint

into account, we assume that |βnj | 6= M , where |βnj | =∑M
k=1 βnjk. Furthermore, when the jammer launches DoS

attacks on channel ck at time t, the channel state is busy
and unavailable. This leads to the estimator receiving
no data, when the sensor selects to sense this channel.
Additionally, it is generally assumed that the amount of
time slot is an instant, and the attacker knows the start
and end times of each data transmission Roy et al. (2013).

2.3 Dynamical Selection of Channel

With the aid of the CR technique, the sensor can predict
the quality of each channel before accessing it. The sensor
is assumed to be energy-constrained, and thus can select
one channel to sense at each time t. Define θtk as an
indication function, where θtk = 1 when the sensor selects
channel ck to sense at time t, otherwise θtk = 0. The
corresponding vector form is θt = (θt1, · · · , θtM )T , and
there is only one non-zero element in θt at any time
t. Moreover, since whether the channel is attacked can
be determined based on many metrics, such as packet
send ratio and packet delivery ratio (see Xu et al. (2005)
for more information), the sensor can sense the state of
the channel selected. It is clear that there are only two
possibilities for the sensing result: the channel state is
either busy or idle, resulting from the jammer launching
an attack or no attack, respectively. When θTt βt = 1, the
sensor transmits no data and thus the estimator receives
no data, otherwise, the sensor communicates with the
estimator and the estimator can obtain this data.

After obtaining the data, the estimator transmits rtk as
a feedback reward to the sensor. This feedback reward,
in turn, helps the sensor make a decision in assessing the
quality of the corresponding channel. As a result, at time
t the reward fed to the sensor with respect to channel k is
given by

RTh
t =

{
0, θTt βt = 1,
rtk, θ

T
t βt = 0.

(3)

Note that the estimator sends feedback reward rtk to the
sensor through a secure channel. Moreover, for simplicity,
it is assumed that the sensor has the knowledge of T .

2.4 Remote State Estimation

Define x̂t and Pt as the estimate of x̂st and its corre-
sponding error covariance, respectively. Then, based on
Ren et al. (2013), there holds that

x̂t =

{
x̂st , θTt βt = 0,
Ax̂t−1, θ

T
t βt = 1,

(4)

and

Pt =

{
P , θTt βt = 0,
h(Pt−1), θTt βt = 1.

(5)

2.5 Problem Statement

The objective of the sensor is to avoid the attack and
simultaneously to find the high-quality channel, which can
be achieved by minimizing

JEs =
1

N

N∑
t=1

Pt, (6)

and maximizing

JTh =

N∑
t=1

RTh
t . (7)

Therefore, the focus is placed on the problem of how to
obtain the optimal sequence of channels to minimize JEs

and maximize JTh simultaneously. The key challenge lies
in that the sensor has no ability to know the best channel
and the action of the jammer beforehand. Thus, it is
desired to explore the policy to select the channel at each
time, such that the sensor can minimize JEs and maximize
JTh simultaneously. Even though the SM method can be
used to select the channel at each time Kuleshov et al.
(2014), the sensor will encounter the jammer. To handle
this, we propose the POL algorithm described in next
section.

3. PERIOD ONLINE LEARNING ALGORITHM

In this section, the POL model is first established. Then
we present the POL algorithm, and prove analytically its
effectiveness by comparing with the SM method.

3.1 Period Online Learning Model

The POL model is defined by M = 〈P, C,R, r, p〉, where
P = {pi, i = 1, · · · , T} is the set of players; R is the set of
rewards; r: P × C → R is the reward function of players;
p: P × R → C is the set of probability distributions over
the channel set C. The details of M are presented in the
following.

Player : The length of the attack period is mapped to the
number of players, and each player pi ∈ P only works at
time ni. For each time t corresponding to the i-th time
in period n, selecting which channel to sense and access
depends on the information possessed by player i.

Reward : The reward is concerned with the estimation
error covariance and the feedback reward. Combining the
recursion of Pt in (5) and the characteristic of period of
the jammer, for any t, there holds that Pt ∈ REs, where
REs = {P , h(P ), · · · , hTa(P )}. Moreover, from (3), the set
of feedback rewards can be expressed as RTh = {rtk, t ≥
1, k ∈ [1,M ]}. Therefore, r is a mapping from P × C to
REs×RTh. When θTt βt = 0, for any t and k ∈ [1,M ], there
holds that Pt = P and RTh

t = rtk. But when θTt βk = 1,
for any t and k ∈ [1,M ], it follows that Pt = h(Pt−1)
and RTh

t = 0. The corresponding flow diagram of the POL
model can be seen in Fig. 2.
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Fig. 2. Flow diagram of POL model at the sides of the
sensor and the estimator.

3.2 Period Online Learning Algorithm

For avoiding the attack, there is a need to find the channel
attacked first. Define SJa

ni as the set of channels attacked,
each of which has been detected for player pi in period n.
Once the channel is identified as the one attacked, it will
not be considered as an optimal option for the sensor. As
a result, with ck ∈ SJa

ni , there holds that

ck /∈ S
Ja

ni, (8)

where SJa

ni = C−SJa
ni denotes the set of candidate channels

for player i. It is noted that SJa

ni varies over a duration
of time until all the sets of channels attacked have been
detected, since the sensor just selects one channel to sense
at each time. Moreover, for any time j1 in period n, player

j1 has no knowledge of SJa

nj2 with j1 6= j2. After player i

acquires SJa

ni, the main problem encountered by the sensor

is how to select a channel belonging to SJa

ni to maximize
the feedback reward.

As mentioned above, the feedback reward rtk can be
received by the sensor, when the jammer has no attack
on channel k at time t. In fact, for the j-th time in period
n, the feedback reward rnjk might be informed to player j1
with j1 = j, or to player j2 for each j2 ∈ [1, T ]. To obtain
the optimal channel as early as possible, we focus on the
latter case, i.e., the feedback reward rnjk is announced to
all the players.

Based on the feedback reward for each channel, the dif-
ference between the SM and the POL algorithms is the
probability of selecting the channel. The main characteris-
tics of the SM method are that the possibility of utilizing
each channel is proportional to its average reward and that
the level of exploration and exploitation can be adjusted
by the temperature parameter Iwata (2017). Define the
average of the estimate of the throughput for channel ck
at time t as

Qtk =
Q(t−1)kNtk +RTh

t

Ntk + 1
, (9)

where Ntk denotes the number of channel ck selected up to
time t. Then, at time t the probability of selecting channel
ck can be described as

ptk =
e
Qtk
τt∑M

k=1 e
Qtk
τt

, (10)

where τt = γτt−1 is the temperature parameter.

However, for the POL algorithm, combining (8), function
p̃t assigning the probability over channel set C − SJa

ni can
be expressed as

p̃tk =
ptk∑

k/∈SJa
ni
ptk

. (11)

For the sake of convenience, the POL algorithm is sum-
marized as follows.

1) Input A, C, Σω, and Σν ; M , T , q, and γ.

2) Initialize Q1k = 0, N1k = 0, and SJa

1k = ∅, for any
k ∈ [1,M ]; τ1 and t = 1.

3) Select channel ck with p̃tk based on (11), until n = q
and j = T .

4) For any n and j, when channel ck is attacked,

PEs
t = APt−1A

T + Σω and SJa

nj . If channel ck is

not attacked, there holds that RTh
t = rtk, Pt = P ,

Qtk =
Q(t−1)kNtk+RTh

t

Ntk+1 and Ntk = Ntk + 1.

5) Calculate JTh = JTh + RTh
t , JEs = 1

t (J
Es + REs

t ),
t = t+ 1, and τt = γτt−1.

3.3 Analysis on the POL Algorithm

It is well known that there exist the polylogarithmic regret
bounds for the SM method Kuleshov et al. (2014). Since
in the POL algorithm each player j selects channel ck with
p̃tk, the POL algorithm also has the polylogarithmic regret
bounds. Moreover, the effectiveness of the POL algorithm
can be further verified using the following theorem.

Theorem 1. Assume that Snj has v element, then there
holds that

EPOL[P(n+1)1 ] ≤ ESM[P(n+1)1 ], (12)

and
EPOL[RTh

(n+1)1
] ≥ ESM[RTh

(n+1)1
]. (13)

Proof. Since the difference in both algorithms is the
probability of selecting each channel associated with (11),
for any k ∈ [1,M ], there holds that EPOL[p(n+1)1k] =
ESM[p(n+1)1k]. Without loss of generality, we assign
E[p(n+1)1k] as pk.

For the SM method, the expectation of P(n+1)1 is given by

ESM[P(n+1)1 ] =
|θ1|
M

h(P ) +
M − |β1|

M
P, (14)

where |β1| is the number of channels attacked at the first
time in any period n. Similarly, the expectation of the
reward is

ESM[RTh
(n+1)1

] =
M − |β1|

M

∑
β1k=0

pk∑
β1k=0 pk

µk. (15)

On the other hand, from (11), for any k ∈ SJa

n1, there holds

that p̃k = (1+δ)pk with δ =

∑
k∈Snj

pk∑
k∈Snj

pk
. Then for the POL

algorithm, we can obtain

EPOL[RTh
(n+1)1

] =
M − |β1|
M − v

∑
β1k=0

p̃k∑
β1k=0

p̃k
µk

=
M − |β1|
M − v

∑
β1k=0

(1 + δ)pk∑
β1k=0

(1 + δ)pk
µk

=
M

M − v
ESM[RTh

(n+1)1
]. (16)
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Moreover, the expectation of P(n+1)1 is given by

EPOL[P(n+1)1 ] =
|β1| − v
M − v

h(P ) +
M − |β1|
M − v

P . (17)

From (13), we have

EPOL[P(n+1)1 ]− ESM[P(n+1)1 ]

= − (M − |β1|)v
M(M − v)

(h(P )− P ). (18)

Furthermore, due to h(P ) > P based on Ren et al. (2013),
inequality (12) holds.

According to Theorem 1, when measuring the performance
of both algorithms within one time slot, the performance of
the POL algorithm is better than that of the SM method.

4. NUMERICAL RESULTS

In this section, the performance of the POL algorithm is
evaluated and compared through numerical simulations.
The parameters for (1) and (2) are designed as A = 1.5,
C = 1, Σω = 1, and Σν = 0.5 with P = 0.3954.
The number of channels available is M = 4. For the
POL algorithm, we assign τ1 = 500 and γ = 0.95. For
facilitating analysis, we assume that rtk follows Gaussian
distribution N (k, 1) corresponding channel k.

Time
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o
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T
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o
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1000

1500
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POL-Th

SM-Th

  RP-Th

Fig. 3. The performance of the POL algorithm.

In Fig. 3, the performance of the POL algorithm is
evaluated, where θ1 = (1, 0, 1, 0)T , θ2 = (1, 0, 0, 1)T ,
θ3 = (0, 1, 0, 1)T , θ4 = (1, 0, 1, 1)T , θ5 = (0, 1, 0, 0)T , and
θ6 = θ7 = (0, 0, 0, 0)T with Ta = 5 and T = 7. Note that
the sensor knows T , but has no knowledge of θt and rtk,
∀t ≥ 1 and k ∈ [1, 4]. It is observed from Fig. 3(a) that
the performance of the estimator error under the POL
algorithm with t ≥ 180 is better than the SM algorithm
and the random policy (RP), where the RP algorithm
implies that the sequence of channels is selected randomly
without taking into account the state of each channel
and the existence of the jammer. This indicates that the
sensor avoids the attack using the POL algorithm, but is
caught in the jammer for the other two algorithms. From
Fig. 3(b), with t ≥ 50 it is seen that the throughput under
the POL algorithm is better than the SM and the RP
algorithms, which indicates that the sensor can find the
channel with a better state despite of the presence of the
jammer. Moreover, it is observed from Fig. 3 that during

the beginning time the performance of the POL algorithm
is worse than the other two algorithms. The reason is that
during this time period the channels attacked exist in the
set of the candidate channels, and each channel is selected
with a corresponding probability.

Time

400 410 420 430 440 450 460

C
h
a
n
n
e
l
 N

u
m

b
e
r

1

2

3

4

AttackedPOL SM RP

Fig. 4. The sequence of channels selected within [400, 460].

Furthermore, the channel selected at each time corre-
sponding to each algorithm is portrayed in Fig. 4 with
t ∈ [400, 460]. It can be seen from Fig. 4 that the SM
method has a preference for channel c4, whereas the POL
algorithm prefers channels c2 and c3. Although the SM
method can find the best channel, the sensor is still at-
tacked. This leads to a lower performance compared with
the POL algorithm depicted in Fig. 3. The reason for such
result is that the design of the POL algorithm takes jointly
the existence of the jammer and the state of the channel
into account. For example, when t = 430, channel c4
attacked is selected using the SM method, whereas channel
c3 that is the best channel among the set of channels
uninterrupted is chosen using the POL algorithm. More-
over, it is noted that the denominator in (10) will become
considerably large with time going on in the practical
simulations, which can result in the probability of selecting
the channel close to zero. In order to deal with this, a
threshold value δ is designed in the POL algorithm and
the SM method. Specially, for each k ∈ [1, 4], probability
ptk remains unchanged with t > tδ, where tδ denotes that
at time tδ there holds that ptδk ≤ δ. Besides, Fig. 6 is given
to show the effectiveness of POL algorithm for different
kinds of attack modes that are presented in Fig. 5.
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Fig. 5. Different attack modes.
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Fig. 6. The performance of the POL algorithm as a
function of attack mode.

5. CONCLUSION

In this contribution, we have formulated a novel POL
model to help the sensor select the sequence of channels
dynamically with the time-variant state of channel. The
problem of selecting the sequence of channels to jointly
alleviate the attack effect and explore the channel with the
best quality has been investigated. To handle this problem,
the POL algorithm based on the reinforcement learning
has been developed, and the effectiveness of this algorithm
has been proved analytically. In addition, the theoretical
results have been further verified in numerical simulations,
and the effect of the jammer action on the performance of
the POL algorithm has been studied.

REFERENCES

L. Schenato, B. Sinopoli, M. Franceschetti, K. Poolla, and
S. S. Sastry. Foundations of control and estimation over
lossy networks. Proc. IEEE, volume 95, pages 163–187,
2007.

Y. Liu, P. Ning, and M. K. Reiter. False data injection at-
tacks against state estimation in electric power grids. in
Proc. ACM Conf. Computer Commun. Secur., Chicago,
IL, USA, pages 21–32, 2007.

W. Xu, D. W. C. Ho, J. Zhong, and B. Chen.
Event/Self-triggered control for leader-following
consensus over unreliable network with DoS attacks.
IEEE Trans. Neural Netw. Learn. Syst., DOI:
10.1109/TNNLS.2018.2890119, 2019.

E. Iasiello. Cyber attack: A dull tool to shape foreign pol-
icy. in Proc. Int. Conf. Cyber Confl., Tallinn, Estonia,
pages 1–18, 2013.

F. Pasqualetti, F. Dörfler, and F. Bullo. Attack detection
and identification in cyber-physical systems. IEEE
Trans. Autom. Control, volume 58, pages 2715–2729,
2013.

H. Shisheh Foroush and S. Mart́ınez. On event-triggered
control of linear systems under periodic denial-of-service
jamming attacks. in Proc. IEEE Conf. Decision Control,
Maui, HI, USA, pages. 2551–2556, 2012.

S. Amin, A. A. Cárdenas, and S. S. Sastry. Safe and secure
networked control systems under denial-of-service at-
tacks in Proc. Lect. Notes Comput. Sci., San Francisco,
CA, USA, pages 31–45, 2009.

Y. Li, D. E. Quevedo, S. Dey, and L. Shi. SINR-based DoS
attack on remote state estimation: A game-theoretic
approach. IEEE Trans. Control Netw. Syst., volume 4,
pages 632–642, 2017.

K. Ding, Y. Li, D. E. Quevedo, S. Dey, and L. Shi. A
multi-channel transmission schedule for remote state
estimation under DoS attacks. Automatica, volume 78,
pages. 194–201, 2017.

Y. L. Che, R. Zhang, and Y. Gong. Opportunistic
spectrum access for cognitive radio in the presence
of reactive primary users. in Proc. IEEE Int. Conf.
Commun., Kyoto, Japan, 2011.

X. Cao, P. Cheng, J. Chen, S. Ge, Y. Cheng, and Y.
Sun. Cognitive radio based state estimation in cyber-
physical systems. IEEE J. Sel. Areas Commun., volume
32, pages 489–502, 2014.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time
analysis of the multiarmed bandit problem. Mach.
Learn., volume 47, pages 235–256, 2002.

G. Gu, X. R. Cao, and H. Badr. Generalized LQR control
and Kalman filtering with relations to computations of
inner-outer and spectral factorizations. IEEE Trans.
Autom. Control, volume 51, pages 595–605, 2006.

M. D. Felice, K. R. Chowdhury, C. Wu, L. Bononi, and W.
Meleis. Learning-based spectrum selection in cognitive
radio Ad Hoc networks. Proc. Int. Conf. Wired/Wireless
Internet Commun., Lulea, Sweden, pages 133–145, 2010.

S. Hu, D. Yue, X. Xie, X. Chen, and X. Yin. Resilient
event-triggered controller synthesis of networked control
systems under periodic DoS jamming attacks. IEEE
Trans. Cybern., DOI: 10.1109/TCYB.2017.2787740,
2018.

B. Roy and S. Bag. Two channel hopping schemes for
jamming resistant wireless communication. in Proc.
Int. Conf. Wirel. Mob. Comput. Netw. Commun., Lyon,
France, pages 659–666, 2013.

W. Xu, W. Trappe, Y. Zhang, and T. Wood. The feasibil-
ity of launching and detecting jamming attacks in wire-
less networks. In Proc. Int. Symp. Mobile Ad Hoc Net-
working Comput., Urbana-Champaign, IL, USA, pages
46–57, 2005.

Z. Ren, P. Cheng, J. Chen, L. Shi, and Y. Sun. Optimal pe-
riodic sensor schedule for steady-state estimation under
average transmission energy constraint. IEEE Trans.
Autom. Control, volume 58, pages 3265–3271, 2013.

X. Cao, X. Zhou, L. Liu, and Y. Cheng. Energy-efficient
spectrum sensing for cognitive radio enabled remote
state estimation over wireless channels. IEEE Trans.
Wireless Commun., volume 14, pages 2058–2071, 2015.

L. Lyu, C. Chen, C. Hua, and X. Guan. Cognitive radio
enabled reliable transmission for optimal remote state
estimation in multi-sensor industrial cyber-physical sys-
tems. in Proc. IEEE/CIC Int. Conf. Commun. China,
Shenzhen, China, 2015.

V. Kuleshov and D. Precup. Algorithms for the multi-
armed bandit problem. CoRR, volume abs/1402.6028,
https://arxiv.org/abs/1402.6028, 2014.

K. Iwata. Extending the peak bandwidth of parameters
for softmax selection in reinforcement learning. IEEE
Trans. Neural Netw. Learn. Syst., volume 28, pages
1865–1877, 2017.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2540


