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Abstract: In this paper, we investigate the asymptotic stability of nonlinear agents in a
directed network using a nonlinear protocol. Inspired by the V-uniformly decreasing condition,
we introduce a new condition to characterize the nonlinearity of the agents, and use it to
design the distributed nonlinear control protocol for the agents. Under certain conditions, we
construct proper Lyapunov function to show that the agents can achieve asymptotic stability via
our nonlinear control protocol. Especially, if there exist agents that are asymptotically stable,
then the multiagent network must be asymptotically stable as long as the control strengths of
unstable agents are large enough. Finally, an example is given to illustrate the effectiveness of
our theoretical results.
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1. INTRODUCTION

In recent years, the multiagent network has drawn at-
tention from various disciplines of science and engineer-
ing due to its broad applications: cooperative control of
autonomous robots Ren et al. (2007), flight control of
unmanned air vehicles Pimenta et al. (2013), distributed
constrained optimization Ozdaglar et al. (2010), etc.
For the multiagent network, one key problem is to de-
sign distributed control protocol such that all the agents
achieve desired dynamical behaviors, such as stability Xi-
ang et al. (2007); Zhao et al. (2011), consensus Han et al.
(2014); Huang et al. (2015), and so on. Generally, the
distributed control protocol depends on two parts: the
dynamics of the isolated agents and the communication
graph.
At the early stage, the emphasis of the multiagent network
is on the communication graph rather than on the dynam-
ics of the isolated agents: the agents exchange information
according to a communication graph, it is the exchange of
information only that determines the dynamical behav-
iors of the variables; in the absence of communication,
the agents themselves usually have no dynamics Moreau
(2004); Ren et al. (2008). In this case, in order to achieve
certain dynamical behavior, such as consensus, it only re-
quires a weak form of connectivity for the communication
graph.

⋆ Quanyi Liang is supported by the Tier 1 Singapore Ministry of
Education Grant R-265-000-587-114, Zhikun She is supported by
Beijing National Science Foundation under Grant Z180005.

With the progress of its research, the dynamics of the
isolated agents are more and more considered: from linear
agents Qu et al. (2008); Ren et al. (Tuna); Li et al.
(2010) to nonlinear agents Sarlette et al. (2009); Chung
et al. (2009); Yao et al. (2009); Liang et al. (2020), from
homogeneous agents Seo et al. (2009); Lin et al. (2007);
Scardovi et al. (2009) to heterogeneous agents Seyboth
et al. (2015); Kim et al. (2011); Wieland et al. (2011).
With linear vector field being a well researched area, this
paper focuses on nonlinear agents and attempt to propose
proper control protocol for them.
In the existing literature, the vector field f of the nonlinear
isolated agent is typically required to satisfy the Lipschitz
condition Liang et al. (2017b); Lu et al. (2006); Yu et al.
(2009); Abhijit et al. (2010); Maurizio et al. (2008). Under
this condition, researchers proposed various of the control
protocols and most of them were supposed to be a linear
function of the state of the isolated agent. Moreover,
quadratic Lyapunov functions were constructed to ensure
the stability or consensus for general undirected networks
and directed networks.
However, there exist agents that do not satisfy the Lip-
schitz condition. Thus, it is interesting to generalize the
Lipschitz condition. To the best of our knowledge, there
are very fewer relevant results about this. Some researchers
relaxed it to the V-uniformly decreasing condition Xiang
et al. (2007); Zhao et al. (2011); Wu et al. (2009); Xiang
et al. (2009) and then investigated the stability of complex
dynamical networks. The work of Liang et al. (2017a) gen-
eralized the V-uniformly decreasing condition to a more
general case, and then proposed a linear control protocol
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such that the network achieves consensus. Unfortunately,
the above results hold for undirected networks and are
not applicable for general directed networks. Part of the
reason for this phenomenon is that the control protocols
are linear functions of the states of the isolated agents.
In this paper, the asymptotic stability of nonlinear agents
in a directed network is studied. Firstly, inspired by the
V-uniformly decreasing condition, a new decreasing con-
dition is introduced to characterize the nonlinearity of the
agents. Based on this decreasing condition, we propose
a nonlinear distributed control protocol for the agents
with directed communication graph. Then, under certain
conditions, we use proper Lyapunov function to prove the
asymptotic stability of the multiagent network, composed
of the agents and the distributed control protocol. Espe-
cially, if there exist agents that are asymptotically stable,
then the multiagent network must be asymptotically sta-
ble as long as the control strengths of unstable agents are
large enough. Finally, an example is given to illustrate the
validity of our theoretical results.
The outline of the paper is organized as follows. In Section
2, we present some basic notations and problem formu-
lation. In Section 3, the distributed control protocol of
multiagent network is proposed. In Section 4, an example
is presented with numerical simulations. The paper is
concluded in Section 5.

2. PRELIMINARIES

2.1 Communication Graph

For a group of interconnected agents, communication
graph is always represented by G = {V,E,A}, where V =
{v1, · · · , vN} denotes the set of agents, E = {eij ∈ V ×
V } denotes the set of connection relationships, and A =
[aij ]N×N denotes the adjacency matrix. The adjacency
matrix A of G is defined as follows: aij > 0 if and only if
eij ∈ E; otherwise, aij = 0. In this paper, we only consider
the simple graph, i.e., it does not contain self-loops from
an agent to itself and there is at most one relationship
between agents. Thus, aii = 0 for i = 1, · · · , N . The
communication graph G is said to be undirected if for any
i, j = 1, · · · , N , we have aij = aji; otherwise G is said to
be directed. As the matrix accompanying the adjacency
matrix A, the Laplacian matrix L = [lij ]N×N is defined as
follows:
(1) lij = −aij , ∀i ̸= j;

(2) and lii =
N∑

j=1,j ̸=i

aij ,∀i.

A few related definitions and results for L are given below.
Definition 1. Horn et al. (1985) A matrix L ∈ RN×N is
reducible if there is a permutation matrix P ∈ RN×N such
that

PTLP =

(
B C

0N−r,N D

)
, (1)

where 1 ≤ r ≤ N − 1, B,C and D are some appropriate
matrices. A matrix L ∈ RN×N is irreducible if it is not
reducible.

The following assumption will be used in this paper.

Assumption 1. Suppose that Laplacian matrix L is irre-
ducible.
Lemma 1. Wu. (2007) If L is irreducible, then there
exists ξ = (ξ1, · · · , ξN )

T with ξi > 0 (i = 1, · · · , N) and
N∑
i=1

ξi = 1 such that ξTL = 0 and L̂ := (ΞL + LTΞ)/2

is an irreducible symmetric Laplacian matrix, where Ξ =
diag (ξ1, · · · , ξN ).
Lemma 2. Horn et al. (1985) Suppose that LN×N is ir-
reducible, diagonally dominant, and there exists i such

that lii >
N∑

j=1,j ̸=i

lij . If lii > 0,∀i, then ℜ(λi) > 0 for

all eigenvalues λi of L, where ℜ(λi) denotes the real part
of eigenvalue λi.

2.2 Problem statement

Consider N nonlinear heterogeneous agents as follows:
ẋi = fi(xi) + ui, i = 1, · · · , N, (2)

where xi = (xi1, · · · , xin)
T ∈ Rn is the state of the i-th

agent, fi = (fi1, · · · , fin)T is the vector field of the i-th
isolated agent in Rn, ui is the corresponding controller for
the i-th isolated agent.
Assume that all the isolated agents have a common equi-
librium state x̄ ∈ Rn, satisfying

fi(x̄) = 0, i = 1, · · · , N. (3)

Also, for the isolated agents (2), let us introduce an
assumption to characterize the nonlinearity of the agents.
Assumption 2. For the vector field fi of the isolated agent,
there exist a constant θi, and a continuously differentiable,
radially unbounded positive definite function Vi (·) : Rn →
[0,+∞) with Vi (0) = 0 such that

∂Vi(x− x̄)

∂x
[fi(x)− θi

∂Vi(x− x̄)

∂x
] < 0 (4)

holds for ∀x ∈ Rn and x ̸= x̄.
Remark 1. When studying the stability problem of multi-
agent network, we always assume that there exists 1 ≤
i ≤ N such that θi in Assumption 2 is non-negative,
even positive. If not, all the θi are negative; from (4), all
the isolated agent themselves are asymptotically stable.
For this case, the additional control protocol ui is not
necessary.

In this paper, our main objective is as follows.
Definition 2. Given N heterogeneous agents described by
(2) and a communicaton graph G, find a distributed
control protocol ui such that for any ε > 0, there exist a
T > 0, such that ∥xi(t)− x̄∥ ≤ ε for any initial conditions
and all t > T , i, j = 1, 2, · · · , N .

3. DISTRIBUTED CONTROL PROTOCOL FOR
DIRECTED MULTIAGENT NETWORK

In this section, we aim to propose control protocol ui such
that the solutions xi(t) of the agents (2) converge to x̄ for
any initial conditions.
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For (2), it is obvious that the control protocol should relies
heavily on the dynamics of the isolated agents. Based on
Assumption 2, we propose a control protocol as follows:

ui = −ci

N∑
j=1

lij [
∂Vj(xj − x̄)

∂xj
]T , i = 1, · · · , N, (5)

where ci > 0 represents the control strength.
Substituting protocol (5) into the agents (2), we have the
following multiagent network

ẋi = fi(xi)− ci

N∑
j=1

lij
∂Vj(xj − x̄)

∂xj
, i = 1, · · · , N. (6)

Since Vi is positive definite, then 0 is the minimum
point. Also because Vi is continuously differentiable, then
∂Vj(xj−x̄)

∂xj
|xj=x̄ = 0. Substituting xi = x̄, i = 1, · · · , N, into

(6), we find that (x̄, · · · , x̄) ∈ RnN is a equilibrium state
of multiagent network (6), i.e., ẋi|xi=x̄ = 0, i = 1, · · · , N .
In order to prove that xi converges to x̄, we just need to
prove that (x̄, · · · , x̄) ∈ RnN is an asymptotically stable
equilibrium state of (6).
Now, let us prove asymptotic stability of (x̄, · · · , x̄) ∈ RnN

in (6) via Lyapunov function method, the main result is
summarized as follows.
Theorem 1. Suppose that Assumptions 1 and 2 hold. If

ΞC−1Θ− L̂ < 0, (7)

where Ξ = diag{ξ1, · · · , ξN}, C = diag{c1, · · · , cN},
Θ = diag{θ1, · · · , θN}, then (x̄, · · · , x̄) ∈ RnN is an
asymptotically stable equilibrium state of (6).

Proof.

Let V̄ =
N∑
i=1

αiV (xi − x̄), where αi = ξi
ci
, i = 1, · · · , N .

Now let us prove that V̄ is the desired Lyapunov function.
Clearly, V̄ = 0 ⇔ xi = x̄. Differentiating V̄ along the
trajectory of network (2), we have

˙̄V =

N∑
i=1

αi
∂Vi(xi − x̄)

∂xi
(ẋi − ˙̄x)

=

N∑
i=1

αi
∂Vi(xi − x̄)

∂xi
ẋi

=

N∑
i=1

αi
∂Vi(xi − x̄)

∂xi
f(xi)︸ ︷︷ ︸

(I)

−
N∑
i=1

ciαi
∂Vi(xi − x̄)

∂xi

N∑
j=1

lij [
∂Vj(xj − x̄)

∂xj
]T︸ ︷︷ ︸

(II)

.

(8)

For (I), based on Assumption 2, one has

N∑
i=1

αi
∂Vi(xi − x̄)

∂xi
f(xi)

≤αi
∂Vi(xi − x̄)

∂xi
θi[

∂Vi(xi − x̄)

∂xi
]T

=
∂Vi(xi − x̄)

∂xi

ξi
ci
θi[

∂Vi(xi − x̄)

∂xi
]T

=
∂V

∂x
[(ΞC−1Θ)⊗ In][

∂V

∂x
]T ,

(9)

where ∂V
∂x = (∂V1(x1−x̄)

∂x1
, · · · , ∂VN (xN−x̄)

∂xN
).

For (II), one has
N∑
i=1

ciαi
∂Vi(xi − x̄)

∂xi

N∑
j=1

lij [
∂Vj(xj − x̄)

∂xj
]T

=

N∑
i=1

N∑
j=1

∂Vi(xi − x̄)

∂xi
ξilij [

∂Vj(xj − x̄)

∂xj
]T

=
∂V

∂x
[L̂⊗ In][

∂V

∂x
]T .

(10)

From (I) and (II), one has
˙̄V =

∂V

∂x
[(ΞC−1Θ)⊗ In][

∂V

∂x
]T − ∂V

∂x
[L̂⊗ In][

∂V

∂x
]T

=
∂V

∂x
[(ΞC−1Θ− L̂)⊗ In][

∂V

∂x
]T

≤0.

Based on the above, V̄ is a Lyapunov function, and then
the proof is completed.
Remark 2. It should be pointed out that Theorem 1 can
also be used to check the asymptotic stability of multiagent
systems with non-autonomous agents f(t, x). In fact, if we
modify f(x) in Assumption 2 to f(t, x), Theorem 1 also
holds.
Remark 3. There are two significant differences between
our results and the results in Xiang et al. (2007): on one
hand, the assumptions about the nonlinearity of the agents
are different, the nonlinear agents in Xiang et al. (2007) are
stabilizable via linear feedback but the nonlinear agents in
this paper are stabilizable via nonllinear feedback; on the
other hand, the result in Xiang et al. (2007) is valid only
for undirected network while Theorem 1 is valid for both
undirected network and directed network.

Theorem 1 show that if expression (7) holds, then multi-
agent network (6) is asymptotically stable. Note that ex-
pression (7) is composed of Θ (determined by the isolated
agents), C (determined by the control strengths ci ), Ξ

(determined by communication graph) and L̂ (determined
by communication graph). Thus, the asymptotic stability
multiagent network (6) is influenced by three factors: the
isolated agents, the control strengths and the communica-
tion graph.
For multiagent network (6), a further question is as follows:
given the communication graph, what kind of agents
can be asymptotically stable by choosing proper control
strengths ci, i = 1, · · · , N? The following result offers an
answer for this question.
Corollary 1. Suppose that the conditions in Theorem 1
hold. Additionally, if Θ is not positive semi-definite, then
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for any Laplacian matrix L, there exists matrix C such
that (x̄, · · · , x̄) ∈ RnN is an asymptotically stable equilib-
rium state of (6).

Proof. According to Theorem 1, we just to need to prove
that ΞC−1Θ− L̂ < 0.
Since Θ is not positive semi-definite, then there exists
i such that θ < 0. Without loss of generality, suppose
that θi < 0, i = 1, · · · , k; θi ≥ 0, i = k + 1, · · · , N . Let
Θ1 = diag{θ1, · · · , θk, 0 · · · , 0} be an N × N matrix and
Θ2 = Θ − Θ1, then Θ1 is negative definite, Θ2 is non-
negative definite.
Since L is irreducible, then Ξ is a positive definite diagonal
matrix. Note that Θ1 is a negative semi-definite diagonal
matrix, C−1 is a positive definite diagonal matrix, then
ΞC−1Θ1 is a negative semi-definite diagonal matrix. Since
L is an irreducible Laplacian matrix, then L̂ is an irre-
ducible, diagonally dominant matrix. Moreover, −(Θ1−L̂)
is irreducible, diagonally dominant, and there exists a row
such that this row is strictly diagonally dominant. By
Lemma 2, −(ΞC−1Θ1 − L̂) is positive definite and then
ΞC−1Θ1 − L̂ is negative definite.

Clearly, ΞC−1Θ− L̂ = ΞC−1Θ1 − L̂+ΞC−1Θ2. For given
ci, i = 1, · · · , k, let ci, i = k + 1, · · · , N, be large enough,
then 1

ci
, i = k + 1, · · · , N, are small enough. For this case,

ΞC−1Θ2 also is small enough and then ΞC−1Θ − L̂ is
negative definite.
As a result, for given L, suppose that there exists negative
definite matrix Θ1, if we choose large enough ci(i = k +

1, · · · , N), then ΞC−1Θ− L̂ must be negative definite.
This completes the proof.
Remark 4. In the proof of Corollary 1, we not only prove
the existence of ci (or matrix C), but also provide a way to
find it. Suppose that θi < 0, i = 1, · · · , k; θi ≥ 0, i = k +
1, · · · , N . Under the conditions of Corollary 1, for given
control strengths ci, i = 1, · · · , k, (x̄, · · · , x̄) ∈ RnN is an
asymptotically stable equilibrium state of (6) if the rest of
the control strength ci, i = k+1, · · · , N are large enough.

4. AN EXAMPLE WITH NUMERICAL
SIMULATIONS

In this section, an example with numerical simulations is
presented to illustrate the applicability of our theoretical
results obtained in Section 3.
Example 1. Consider system (2) with 3 agents, where
the agents are described by: f1 (a1, a2) = f2 (a1, a2) = a1 − a32

a1 + (1− a22
3
)a2

, f3 (a1, a2) =

{
−a1 + a2
2a1 − 3a2

, a1, a2 ∈

R, Laplacian matrix L =

(
4 −2 −2
−1 2 −1
−3 0 3

)
. Clearly, x̄ =

(0, 0), L is irreducible and then Assumption 1 holds.
Firstly, let us show that fi, i = 1, 2, 3, satisfy Assumption
2. For f1, f2, let V1(a1, a2) = V2(a1, a2) = 0.5 ∗ a21 + 0.5 ∗
a22 + 0.25 ∗ a42, θ1 = θ2 = 1.5, then it is easy to verify that

Assumption 2 holds. For f3, let V3(a1, a2) =
7
4 ∗ a21 + 5

4 ∗
a1 ∗ a2 + 3

8 ∗ a22, θ3 = − 1
4 , then Assumption 2 also holds.

Next, based on the above discussion, the control protocol

is given as follows: ui = −ci
N∑
j=1

lij [
∂Vj(xj)

∂xj
]T , i = 1, 2, 3,

where ∂V1(x1)
∂x1

|x1=(a1,a2) = ∂V2(x2)
∂x2

|x2=(a1,a2) = (a1, a2 +

a32),
∂V3(x3)

∂x3
|x3=(a1,a2) = ( 72 ∗ a1 + 5

4 ∗ a2, 5
4 ∗ a1 + 3

4 ∗ a2),
and ci, i = 1, 2, 3, are undetermined control strengths.

Finally, let us show that ΞC−1Θ − L̂ < 0. From L, we

have Ξ = 1
3diag{1, 1, 1}, L̂ = 1

2

(
8 −3 −5
−3 4 −1
−5 −1 6

)
. Moreover,

ΞC−1Θ−L̂ = 1
2

 2
3


3

2c1
0 0

0
3

2c2
0

0 0 − 1

4c3

−

(
8 −3 −5
−3 4 −1
−5 −1 6

).

Without loss of generality, let c3 = 1
4 . If c1 = c2 > 9, then

ΞC−1Θ − L̂ < 0, which means that (x̄, · · · , x̄) ∈ RnN is
an asymptotically stable equilibrium state of (6). Figure 1
also show this fact via the numerical simulation.
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x i5
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x i2
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Fig. 1. State evolutions of jth-component of xi(t) in Ex-
ample (1), where i = 1, 2, 3, j = 1, 2, initial condi-
tion: x1(0) = (10, 120),x2(0) = (−300,−40),x3(0) =
(50, 60).

5. CONCLUSION

In this brief, we have investigated the asymptotic stabil-
ity problem of nonlinear agents in a directed networks.
Based on the Lipschitz condition, we introduce an new
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assumption on the nonlinearity of the agents. With the
aid of this assumption, a distributed nonlinear control
protocol is proposed for asymptotic stability. We found
that if there exists agent that is asymptotically stable, then
the multiagent network must be asymptotically stable as
long as the control strengths of unstable agents are large
enough.
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