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Abstract: Consider a linear difference equation with constant coefficients in the ring of integers
modulo m. If the leading coefficient and the constant term are both units, then all trajectories
are (purely) periodic. Moreover, the finite state set can be decomposed into disjoint cycles of
various lengths. The following problems will be addressed: computing the cycle partition and
determining the period w.r.t. a specific initial state. The latter question can often be reduced
to calculating the order of an invertible matrix. If the prime factorization of m is known, then
it suffices to consider prime powers, by the Chinese remainder theorem. For primes, an efficient
algorithm due to Leedham-Green may be used, which is available in group-theoretic computer
algebra systems such as Magma or GAP. This approach will be extended to prime powers.
Finally, we will discuss how to relax the assumptions guaranteeing periodicity.
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1. INTRODUCTION

The Fibonacci equation

y(t+ 2) = y(t+ 1) + y(t),

where t is a nonnegative integer, is usually considered in
characteristic zero. Choosing y(0) = 0 and y(1) = 1 as
initial values, one obtains the famous sequence

y = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .).

In positive characteristic however, the sequence becomes
(purely) periodic, that is, it returns to its initial values and
thus runs into a loop.

Example: In characteristic 2, we obtain

y = (0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, . . .)

and the length of the period is 3. In characteristic 3,

y = (0, 1, 1, 2, 0, 2, 2, 1, 0, 1, . . .)

and the length of the period is 8. In characteristic 4,

y = (0, 1, 1, 2, 3, 1, 0, 1, . . .)

and the length of the period is 6.

The sequence of period lengths is known as the Pisano
sequence

π = (1, 3, 8, 6, 20, 24, 16, 12, 24, 60, . . .).

Its properties have been studied by several authors, see e.g.
Wall (1960), and it is popular in recreational mathematics.
However, it is also related to “serious” mathematical
problems. A Wall-Sun-Sun prime is a prime p such that
π(p) = π(p2). It has been checked experimentally that
such a prime (if it exists) must be greater than 1014. On
the other hand, we have π(n) = π(n2) for n ∈ {6, 12}. A
proof of the nonexistence of Wall-Sun-Sun primes would
yield an alternative proof of the first case of Fermat’s last
theorem, see Sun and Sun (1992).

? This work was supported by DFG-SFB/TRR 195.

In the present paper, we will study general monic differ-
ence equations of order n, that is,

y(t+ n) + an−1y(t+ n− 1) + . . .+ a1y(t+ 1) + a0y(t) = 0

with ai ∈ Z. The case where all solutions modulo m are
(purely) periodic will be characterized by the condition
gcd(a0,m) = 1. We will then turn to computing the
period of the solution evolving from specific initial values
y(0), . . . , y(n − 1). Next, we study when this period coin-
cides with the (group-theoretic) order of the companion

matrix A of the polynomial sn+
∑n−1
i=0 ais

i, if A is consid-
ered as an element of Zn×nm , where Zm := Z/mZ. Note that
A ∈ Zn×nm is invertible if and only if gcd(det(A),m) = 1.
Due to the companion matrix structure, det(A) ∈ {±a0}.
The state set X := Znm can be decomposed into disjoint
cycles and we will show how to compute this partition.
Finally, the assumption of monicity (an = 1) will be
relaxed.

2. MONIC EQUATIONS

Let Z denote the ring of integers, and let N denote the set
of nonnegative integers. Let n be a positive integer, and let
a0, . . . , an−1 ∈ Z be given. Consider the linear difference
equation

y(t+n)+an−1y(t+n−1)+. . .+a1y(t+1)+a0y(t) = 0, (1)

where t ∈ N. Let y0, . . . , yn−1 ∈ Z be given. Together with
the initial condition

y(0) = y0, . . . , y(n− 1) = yn−1 (2)

the initial value problem (1), (2) has a unique solution
(y(t))t∈N ∈ ZN. For each integer m > 1, one obtains an
induced sequence (y(t))t∈N ∈ ZN

m, where Zm = Z/mZ
denotes the ring of integers modulo m. In the following,
we will make no notational distinction between an integer
and its residue class modulo m, or between a polynomial
in Z[s] and its residue class in Zm[s].
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Theorem 1. For each m > 0, there exist integers k ≥ 0
and p > 0 such that

y(t+ p) = y(t) for all t ≥ k.
If gcd(a0,m) = 1, then k can be taken to be zero.

Proof: Define

x(t) := [y(t), . . . , y(t+ n− 1)]T .

Then x(t+ 1) = Ax(t), where

A =


0 1
...

. . .
0 1
−a0 −a1 . . . −an−1


is the companion matrix of the polynomial χA = sn +∑n−1
i=0 ais

i. Since the ring Zm is finite, the sequence y, and
hence also x, can only take finitely many values. Thus there
exists k ≥ 0 and p > 0 such that x(k + p) = x(k). This
implies that x(t+ p) = x(t) for all t ≥ k.

If gcd(a0,m) = 1, then a0 is a unit in Zm. This implies
that the polynomial indeterminate s is a unit in the finite
ring R := Zm[s]/〈χA〉. Hence it has finite order, that is,
there exists p > 0 such that sp = 1 holds in R. This means
that the polynomial sp − 1 is a multiple of χA in Zm[s]
and thus y(t+ p) = y(t) holds for all t ∈ N. 2

Given m with gcd(a0,m) = 1, we will address the compu-
tation of the smallest number p > 0 such that

(1) x(p) = x(0). Since this implies that x(t+p) = x(t) for
all t ∈ N, this number will be called the period of x
with respect to the initial value x0 := [y0, . . . , yn−1]T .
It is the smallest p > 0 with Apx0 = x0 and will be
denoted by πm(x0).

(2) Ap = I. This p is the order of the invertible matrix
A ∈ Zn×nm , denoted by ordm(A).

We observe that πm(x0) must be a divisor of ordm(A).
Moreover,

ordm(A) = lcm{πm(x0) | x0 ∈ Znm}.
By the Chinese remainder theorem, it suffices to consider
the case where m is a prime power.

Example: Consider

y(t+3) = y(t+2)+y(t+1)+y(t), y(0) = y(1) = y(2) = 1.

• Modulo 2, we obtain the constant sequence 1, and
hence π2([1, 1, 1]T ) = 1, but ord2(A) = 4. Indeed, we
have

xT0 π2(x0)
[0, 0, 0] 1
[0, 0, 1] 4
[0, 1, 0] 2
[0, 1, 1] 4
[1, 0, 0] 4
[1, 0, 1] 2
[1, 1, 0] 4
[1, 1, 1] 1.

Adopting the notation used by Deng (2015), the cycle
structure is X = Z3

2 = 2C1 ∪ C2 ∪ C4. This means
that there are two fixed points (i.e., cycles of length
one), one cycle of length two, and one cycle of length
four, corresponding to a partition of the state set into
cycles according to 8=1+1+2+4.

• Modulo 3, we obtain a sequence of period 13, that is,
π3([1, 1, 1]T ) = 13, and we also have ord3(A) = 13.
Indeed, all x0 6= 0 yield π3(x0) = 13.

• Modulo 4, we obtain a sequence of period 4, that is,
π4([1, 1, 1]T ) = 4, but ord4(A) = 8.

Theorem 2. Given x0 = [y0, . . . , yn−1]T ∈ Zn, compute
yn, . . . , y2n−2 ∈ Z according to (1) and define the Hankel
matrix

H =


y0 y1 . . . yn−1
y1 yn
... . .

. ...
yn−1 yn . . . y2n−2

 ∈ Zn×n.

If gcd(det(H),m) = 1, then πm(x0) = ordm(A). Since
x0 = en = [0, . . . , 0, 1]T yields a matrix H with det(H) ∈
{±1}, we conclude that there always exists x0 with
πm(x0) = ordm(A).

Proof: Suppose that Apx0 = x0. Let H−i denote the i-th
column of H. Noting that x0 = H−1 and AH

i
= H−(i+1),

we may conclude that ApH = H. By assumption, H is
invertible as a matrix over Zm, and hence Ap = I holds
over Zm. 2

The prime divisors of det(H) are called bad primes of the
initial value problem (1),(2).

Example: For y(t + 3) = y(t + 2) + y(t + 1) + y(t) and
x0 = [1, 1, 1]T , the only bad prime is 2. For odd m, we
have πm(x0) = ordm(A).

3. COMPUTING THE ORDER

We will now discuss how to compute ordm(A) for a matrix
A ∈ Zn×n that is invertible when considered as an element
of Zn×nm . Note that we do not restrict to companion
matrices. If the prime factorization of m is known, the
problem can be reduced to the case where m is prime
power, by the Chinese remainder theorem. For primes p,
an efficient algorithm by Celler and Leedham-Green (1997)
can be used to compute ordp(A).

Theorem 3. Let A ∈ Zn×n and a prime p with p - det(A)
be given. Then A is invertible over Zpk for all k ≥ 1. We
have

ordpk(A) | ordp(A)pk−1.

Proof: Since Ar = I implies that the order of A divides r,
it suffices to show that

Aordp(A)pk−1

≡ I (mod pk).

Set B := Aordp(A). Then we have

B ≡ I (mod p).

We need to prove that

Bp
k−1

≡ I (mod pk)

for all k ≥ 1. This will be done by induction on k. The
statement is clearly true for k = 1. Let’s assume that it
holds for k. This means that

Bp
k−1

= I + pkC

for some matrix C ∈ Zn×n. By the binomial theorem,
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Bp
k

= (Bp
k−1

)p

= (I + pkC)p

= I +

(
p

1

)
pkC +

p∑
i=2

(
p

i

)
pkiCi.

Considering the right hand side modulo pk+1, all terms
vanish except for the identity matrix: In the second sum-
mand, this is due to the binomial coefficient, and for the
sum over i, we use ki ≥ k + 1 (since i ≥ 2). Thus

Bp
k

≡ I (mod pk+1),

which completes the inductive step. 2

Corollary 4. In the situation of the previous theorem, we
have

ordp(A) | ordp2(A) | ordp3(A) . . .

and

ordpk(A) = ordp(A)pi for some 0 ≤ i ≤ k − 1. (3)

Proof: Since Ar ≡ I (mod pl+1) implies Ar ≡ I (mod pl),
we have

ordpl(A) | ordpl+1(A)

for all l ≥ 1. In particular, ordp(A) is a divisor of ordpk(A)
for all k ≥ 1. Combining this with the statement of the
theorem, we obtain (3). 2

Theorem 5. Let t ≥ 1 be such that ordpt(A) 6= ordpt+1(A).
If t = 1, assume additionally that p is odd. Then we have

ordpk(A) = ordpt(A)pk−t

for all k ≥ t.

Proof: Set B := Aordpt (A). By assumption, we have

B ≡ I (mod pt) and B 6≡ I (mod pt+1).

Claim: For all k ≥ t, we have

Bp
k−t
≡ I (mod pk) and Bp

k−t
6≡ I (mod pk+1).

We will prove this by induction on k. The claim is true for

k = t. Let’s assume that it is true for k. Then Bp
k−t

= I+
pkC with p - C, that is, there exists i, j such that p - Cij .
By the binomial theorem, this implies

Bp
k−t+1

= (I + pkC)p

= I +

(
p

1

)
pkC +

(
p

2

)
p2kC2 +

p∑
i=3

(
p

i

)
pkiCi.

Considering the right hand side modulo pk+1 shows that

Bp
k−t+1 ≡ I (mod pk+1). Considering the right hand side

modulo pk+2, all terms vanish in the sum over i, because
ki ≥ k+ 2 (since i ≥ 3). The term containing C2 vanishes
if p is odd (because then p |

(
p
2

)
) or if t ≥ 2, because

then k ≥ 2 and thus 2k ≥ k + 2. Due to p - C, the
term containing C does not vanish. Therefore, we have

Bp
k−t+1 6≡ I (mod pk+2), which completes the inductive

step.

Now let k > t. According to the claim, we have

Bp
k−t
≡ I (mod pk) and Bp

k−t−1

6≡ I (mod pk).

This implies that ordpk(A) = ordpt(A)pk−t. For k = t, this
statement is trivially true. 2

The following example shows that the theorem does not
hold if t = 1 and p = 2.

Example: Consider

A =

[
0 3 0
0 0 3
3 0 0

]
∈ Z3×3.

The order of A modulo m = 2k is given by

k ord2k(A)
1 3
2 6
3 6
4 12.

By the theorem, we may conclude that ord2k(A) = 6 ·2k−3
for k ≥ 3.

A crucial ingredient for calculating ordp(A) is the a priori
computation of a number N with AN = I. Then ordp(A)
must be a divisor of N . The following result can be found
in Celler and Leedham-Green (1997), where it is shown
using the Jordan form of A over the algebraic closure of
the field Zp. Below, we provide an alternative proof.

Theorem 6. (Celler and Leedham-Green (1997)). Let A ∈
Zn×n be given and let p be a prime with p - det(A). Let
fA ∈ Zp[s] be the minimal polynomial of A and let

fA =

l∏
i=1

fµii

be its prime factorization in Zp[s], that is, the polynomials
fi are prime and pairwise coprime, and the µi are positive
integers. Let di := deg(fi) and let µ = max{µ1, . . . , µl}.
Then the order of A as an element of Zn×np divides

N := lcm(pd1 − 1, . . . , pdl − 1) · pν ,
where ν is the smallest integer such that pν ≥ µ, that is,
ν = dlogp(µ)e.

Proof: Consider the evaluation homomorphism

ΦA : Zp[s]→ Zn×np , h 7→ h(A).

We have ker(ΦA) = 〈fA〉 and im(ΦA) = Zp[A]. We obtain
an isomorphism

R := Zp[s]/〈fA〉 ↔ Zp[A], s↔ A.

Thus the order of A coincides with the order of s in R. By
the Chinese remainder theorem, we have

R ∼=
l⊕
i=1

Zp[s]/〈fµii 〉.

Thus, it suffices to determine Ni such that sNi = 1 holds
in Ri := Zp[s]/〈fµii 〉. We claim that

Ni := (pdi − 1) · pνi

is an appropriate choice, where νi = dlogp(µi)e. Setting
ν := max{ν1, . . . , νl}, we have Ni | N for all i and this
proves the theorem.

To prove the claim, let r denote the order of s in Fi :=
Zp[s]/〈fi〉. Since fi is irreducible, Fi is a field with |Fi| =
pdi . Its unit group has pdi−1 elements and hence we must
have r | pdi − 1. Since sr = 1 + figi holds in Zp[s], we
conclude that

srp
ν

= (1 + figi)
pν = 1 + fp

ν

i gp
ν

i ,

using that (a+b)p = ap+bp holds in characteristic p. Thus
srp

ν

= 1 holds in Ri provided that pν ≥ µi.
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Let νi = dlogp(µi)e. Then the order of s in Ri is a divisor

of rpνi and thus of (pdi − 1)pνi . 2

Example: Let p = 157 and

A =

[
0 1 0
0 0 1
1 1 1

]
∈ Z3×3.

Its minimal polynomial fA = x3−x2−x− 1 is irreducible
over Zp and hence we obtain N = p3−1 = 22 ·32 ·13 ·8269,
which has 36 divisors, i.e., candidates for ordp(A).

Using the computer algebra system Magma, see Bosma
et al. (1997), we compute the order of A modulo m = pk

for k = 1, . . . , 4. The timings (in seconds) were taken on
an Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz:

k time
1 0.00
2 0.42
3 59.60
4 ∗

The star indicates that the process terminated with an
error message after about 8 hours. This test was performed
using Magma V2.24-10. The support team has been
informed and they fixed this issue in V2.25. The computer
algebra system GAP, see GAP (2019), currently seems
to perform even worse than Magma V2.24-10. Using
Corollary 4, we only need to compute ordp(A) = 8269 and

to test whether A8269·pi is equal to the identity matrix for
i = 0, . . . , k − 1.

4. COMPUTING THE CYCLE STRUCTURE

Let A ∈ Zn×n be given and let m > 1 be such that
gcd(det(A),m) = 1. Let r := ordm(A) denote the order
of A when considered as an element of Zn×nm . For each
divisor d of r, define

ad := |{x ∈ Znm | Adx = x}|,
and let bd be defined recursively by

bd := ad −
∑

e|d,e6=d

be

Then there are exactly bd states in X = Znm that belong
to a cycle of length d. Hence cd := bd

d is the number of
cycles of length d. The cycle structure of x(t+ 1) = Ax(t)
is therefore given by X =

⋃
d|r cdCd, see also Deng (2015),

Wei et al. (2016). Note that a is the summatory function
of b, that is, ad =

∑
e|d be. Hence b can be computed from

a via the Möbius inversion formula

bd =
∑
e|d

aeµ(
d

e
),

where µ denotes the Möbius function.

Lemma 7. The numbers ad can be read off the Smith form
Sd = diag(s1, . . . , sn) of I −Ad over Zn×n. We have

ad =

n∏
i=1

|annm(si)|,

where annm(si) = {l ∈ Zm | sil = 0}. We have

|annm(si)| = gcd(m, si).

In particular, if m = p is prime, then each ad is a power
of p. (This can also be seen from the fact that ad is the
cardinality of a vector space over Zp.)

Example: Considering y(t+ 3) = y(t+ 2) + y(t+ 1) + y(t)
again, the cycle structure

• modulo 3 is a partition of 27 into 1’s and 13’s, where
both summands must appear and the number of 1’s has
to be a power of 3. Thus we must have 27 = 1 + 13 + 13
corresponding to X = C1 ∪ 2C13.
• modulo 4 equals X = 2C1 ∪ C2 ∪ 3C4 ∪ 6C8, because

S1 = diag(1, 1, 2), S2 = diag(1, 2, 2),
S4 = diag(2, 2, 4), S8 = diag(4, 4, 8).

Hence
d ad bd cd
1 2 2 2
2 4 2 1
4 16 12 3
8 64 48 6.

5. NONMONIC CASE

In the previous sections, the difference equation (1) was
supposed to be monic, that is, an = 1. Now let 0 6= an ∈ Z
be arbitrary. Consider

any(t+n)+an−1y(t+n−1)+ . . .+a1y(t+1)+a0y(t) = 0

modulo a prime power m = pk. First, assume that p | ai
from all 0 ≤ i ≤ n. Then we cannot expect a periodic
behavior. For example, 2y(t + 1) = 2y(t) with m = 4 ad-
mits solutions such as (0, 2, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 2, . . .).
Thus, let’s assume that p - ai for some 0 ≤ i ≤ n. We will
show that this case can be reduced to the monic situation.

Recall that elements of Zpk are either units or nilpotent.

Thus a polynomial f =
∑n
i=0 ais

i ∈ Zpk [s] is (Atiyah and
Macdonald, 1969, Ch. 1, Ex. 2)

• a unit if and only if a0 is a unit and a1, . . . , an are
nilpotent,

• a zerodivisor if and only if it is nilpotent,
• nilpotent if and only if a0, . . . , an are nilpotent.

In any commutative ring, the sum of a unit and a nilpotent
element is a unit. Two ring elements r1, r2 are called
associated if there exists a unit u with r1 = ur2.

Theorem 8. Let m = pk be a prime power, and let f =∑n
i=0 ais

i ∈ Z[s] be a nonzerodivisor when considered
as an element of Zpk [s]. This means that there exists
0 ≤ i ≤ n such that p - ai. Let t be maximal with p - at.
Then f is associated (in Zm[s]) to a monic polynomial
f ′ of degree t, where the constant terms of f and f ′ are
associated (in Zm).

Proof: Without loss of generality, let at = 1. We will
show by induction on l that there exist monic polynomials
fl ∈ Z[s] of degree t and polynomials gl ∈ pZ[s] such that

f ≡ (1 + gl)fl (mod pl).

Then f = (1 + gk)fk holds in Zpk [s], where fk is monic of
degree t and gk is nilpotent in Zpk [s], that is, 1 + gk is a
unit. Moreover, f(0) = (1 + gk(0))fk(0) shows that f(0)
and fk(0) are associated. Thus we may put f ′ := fk.

We set f1 :=
∑t
i=0 ais

i and g1 := 0. Assume that
f1, . . . , fl and g1, . . . , gl with the desired properties have
been constructed. Set h := f − (1 + gl)fl. Since fl is
monic, we may perform a division with remainder to
obtain h = qfl + r, where r = 0 or deg(r) < t.
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Set fl+1 := fl + r and gl+1 := gl + q. Then fl+1 is monic
of degree t. Since h ≡ 0 (mod pl) and fl is monic, we have
q ≡ 0 (mod pl) and hence r = h − qfl ≡ 0 (mod pl). In
particular, gl+1 belongs to pZ[s]. Finally,

f = (1 + gl)fl + h

= (1 + gl)fl + qfl + r

= fl+1 + gl+1fl

= fl+1 + gl+1(fl+1 − r)
= (1 + gl+1)fl+1 − gl+1r

≡ (1 + gl+1)fl+1 (mod pl+1).

This completes the inductive step. 2

Example: Let m = 16 and f = 2s4 + s3 + 4s2 + 3s+ 8. We
set

f1 := s3 + 4s2 + 3s+ 8 and g1 := 0.

Thus h = 2s4 and the division with remainder yields
q = 2s+ 8 and r = 10s2 + 8s. (All intermediate results are
reduced modulo m.) We set

f2 := s3 + 14s2 + 11s+ 8 and g2 := 2s+ 8.

Thus h = 12s3 and the division with remainder yields
q = 12 and r = 8s2 + 12s. We set

f3 := s3 + 6s2 + 7s+ 8 and g3 := 2s+ 4.

Thus h = 8s2, r = 8s2, q = 0 and we set

f4 := s3 + 14s2 + 7s+ 8 and g4 := 2s+ 4.

We put f ′ = f4, g′ = g4 and obtain f = (1 + g′)f ′.

6. LAURENT POLYNOMIALS

Next, we will consider

any(t+n)+an−1y(t+n−1)+ . . .+a1y(t+1)+a0y(t) = 0

as an equation defined for all t ∈ Z. Correspondingly, we
will treat f :=

∑n
i=0 ais

i as a Laurent polynomial, that
is, as an element of Z[s, s−1] or Zm[s, s−1] with a prime
power m = pk.

A polynomial f =
∑n
i=0 ais

i ∈ Zpk [s, s−1] is

• a unit if and only if there exists t such that at is a
unit and all ai with i 6= t are nilpotent,

• a zerodivisor if and only if it is nilpotent,
• nilpotent if and only if a0, . . . , an are nilpotent.

The proof of the second and the third statement is analo-
gous to the case of ordinary polynomials. The “if” part of
the first statement is clear, since f = ats

t + (f − atst) is
the sum of a unit and a nilpotent polynomial.

Lemma 9. Let f =
∑n
i=0 ais

i be a unit in Zpk [s, s−1].
Then there exists t such that at is a unit and all ai with
i 6= t are nilpotent.

Proof: If all ai were nilpotent, then f would be nilpotent,
and hence not a unit. Thus there exists i such that ai
is a unit. Let t be the maximal index such that at is a
unit. Then all ai with i > t are nilpotent and hence also
h := ans

n+. . .+at+1s
t+1. Thus f1 := f−h =

∑t
i=0 ais

i is
a unit. We need to show that all ai with i < t are nilpotent.
If t = 0, we’re finished. Assume that t > 0.

Let g ∈ Zpk [s, s−1] be the inverse of f1. There exists l ∈ Z
such that g1 := slg =

∑m
j=0 bjs

j ∈ Zpk [s] with bm 6= 0 and

b0 6= 0. We have f1g1 = sl.

Since at is a unit and bm 6= 0, we have atbm 6= 0. Thus we
must have atbm = 1 and l = t + m > 0. Then a0b0 = 0,
which implies (since b0 6= 0) that a0 is not a unit, hence
nilpotent. If t = 1, we’re finished. Assume that t > 1. Then
s−1(f1−a0) =

∑t−1
i=0 ai+1s

i is a unit and we may conclude
that a1 is nilpotent. Inductively, we obtain that all ai with
i < t are nilpotent. 2

Lemma 10. Let R be an arbitrary commutative ring. Let
f =

∑n
i=0 ais

i ∈ R[s] be such that an 6= 0. Then the
reciprocal polynomial of f is defined by

f∗ =

n∑
i=0

ais
n−i.

Let g =
∑m
j=0 bjs

j ∈ R[s] be such that bm 6= 0 and

g∗ =
∑m
j=0 bjs

m−j . Then there exists l ≥ 0 such that

f∗g∗ = sl(fg)∗.

In particular, f∗g∗ and (fg)∗ are associated when consid-
ered as elements of R[s, s−1].

Proof: Let N := deg(fg). We have

f∗g∗ =

n+m∑
k=0

(
∑
i+j=k

aibj)s
n+m−k =

N∑
k=0

(
∑
i+j=k

aibj)s
n+m−k

and

(fg)∗ =

N∑
k=0

(
∑
i+j=k

aibj)s
N−k.

Thus f∗g∗ = sn+m−N (fg)∗ and we’re finished by putting
l := n+m−N . 2

Theorem 11. Let f ∈ Zpk [s, s−1] be given. Without loss of

generality, write f =
∑n
i=0 ais

i with an 6= 0 and a0 6= 0.
Assume that f is a nonzerodivisor, that is, there exists
i such that ai is a unit in Zpk . Then f is associated to
a polynomial whose leading coefficient and constant term
are both units.

Proof: From Theorem 8, we know that f = ug, where
g is monic and u is a unit in Zpk [s] and thus, a unit in

Zpk [s, s−1]. We also know that f(0) is associated to g(0)
and hence g(0) 6= 0. Consider g∗, which is a polynomial
with constant term 1. Again by Theorem 8, we obtain
g∗ = vh, where h is monic, and v is a unit in Zpk [s].
Moreover, 1 = g∗(0) is associated to h(0), that is, h(0)
is a unit. Since g(0) 6= 0, we have (g∗)∗ = g. Thus
g = (g∗)∗ = (vh)∗ = s−lv∗h∗ for some l. But v∗ is a
unit in Zpk [s, s−1]. Thus f is associated (over Zpk [s, s−1])
to h∗, which is a polynomial whose leading coefficient and
constant term are both units. 2

Example: Let m = 16 and f = 2s4 + s3 + 4s2 + 3s + 8.
We have already computed f = ug with u = 2s + 5 and
g = s3 + 14s2 + 7s+ 8. Now we consider g∗ = 8s3 + 7s2 +
14s+1 and obtain 7g∗ = 8s3+s2+2s+7 = vh with v = 1+
8s and h = s2 +10s+7. Thus g = (g∗)∗ = 7(vh)∗ = 7v∗h∗

and f = 7uv∗h∗ with 7uv∗ = 8+3s+14s2 and h∗ = 7s2 +
10s+ 1. Thus f is associated to h∗.
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7. CONCLUSION

The results of the previous two sections can also be tackled
using Gröbner bases over coefficient rings, see Adams and
Loustaunau (1994), Kuijper and Pinto (2017). A principal
ideal 〈f〉 in Zpk [s], where f is a nonzerodivisor, possesses
a Gröbner basis of the form {g}, where g is a monic
polynomial associated to f . The Laurent polynomial case
can be treated using the ideal 〈f, st− 1〉 in Zpk [s, t].

Using the theory developed in Zerz (2015), we plan to
extend the results of this paper from scalar equations to
systems of equations R(σ)w = 0. Here, σ denotes the shift
operator, and R is a g×q matrix with entries in D = Zm[s]
with m > 1. If ann(M) contains a monic polynomial,
where M := D1×q/D1×gR, then M is finitely generated
as a module over Zm, the system has an equivalent first
order representation, and all trajectories are (eventually)
periodic. If ann(M) contains even a polynomial whose
constant term is a unit, then all trajectories are (purely)
periodic, see Zerz (2010), Zerz and Wagner (2012).

The authors would like to thank D. Ulmer for inspiration.
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to Gröbner Bases. American Mathematical Society.

Atiyah, M.F. and Macdonald, I.G. (1969). Introduction
to Commutative Algebra. Addison-Wesley Publishing
Company.

Bosma, W., Cannon, J., and Playoust, C. (1997). The
Magma algebra system. I. The user language. Journal
of Symbolic Computation, 24, 235–265.

Celler, F. and Leedham-Green, C.R. (1997). Calculating
the order of an invertible matrix. DIMACS Series in
Discrete Mathematics and Theoretical Computer Sci-
ence, 28, 55–60.

Deng, G. (2015). Cycles of linear dynamical systems over
finite local rings. Journal of Algebra, 433, 243–261.

Kuijper, M. and Pinto, R. (2017). An iterative algorithm
for parametrization of shortest length linear shift regis-
ters over finite chain rings. Designs, Codes and Cryptog-
raphy, 83, 283–305.

McDonald, B.R. (1974). Finite Rings with Identity. Marcel
Dekker, Inc.

Sun, Z.-H., and Sun, Z.-W. (1992). Fibonacci numbers and
Fermat’s last theorem. Acta Arithmetica, 60, 371–388.

The GAP Group (2019). GAP – Groups, Al-
gorithms, and Programming, Version 4.10.2.
(https://www.gap-system.org).

Wall, D.D. (1960). Fibonacci series modulo m. The Amer-
ican Mathematical Monthly, 67, 525–532.

Wei, Y., Xu, G., and Zou, Y.M. (2016). Dynamics of linear
systems over finite commutative rings. Applicable Alge-
bra in Engineering, Communication and Computing, 27,
469–479.

Zerz, E. (2010). On periodic solutions of linear difference
equations. Proc. 19th Int. Symposium on Mathematical
Theory of Networks and Systems (MTNS), 1567–1570.

Zerz, E. and Wagner, L. (2012). Finite multidimensional
behaviors. Multidimensional Systems and Signal Pro-
cessing, 23, 5–15.

Zerz, E. (2015). State representations of finitely generated
nD behaviors over rings. Proc. IEEE 9th Int. Workshop
on Multidimensional (nD) Systems (nDS), 4 pages.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4387


