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Abstract: In this paper, a visual-detection (VD)-based fruit fly optimization algorithm (FOA) is 

proposed for solving a robust analysis problem of integrated energy systems (IES) with energy storage 

based on the information gap decision theory (IGDT). In the searching phase, the VD-based decision 

delay and visual feature detection are incorporated within the FOA. VD-FOA changes the search radius 

of fruit fly according to the variance of smell concentration, which can solve the problem that fruit fly 

optimization algorithm is easy to fall into local optimization, where standard test functions are also 

adopted to test the proposed algorithm. The proposed VD-FOA is superior to the basic FOA and is 

applied to solve the IGDT-based robust analysis problem of IES with energy storage. The simulation 

results show the applicability and effectiveness of the proposed algorithm. 

Keywords: smart grids; control of renewable energy resources; power systems stability; intelligent 

control of power systems; optimal operation and control of power systems 

1. INTRODUCTION 

An integrated energy system (IES) is a coupled energy 

system that comprehensively utilizes electricity, gas, heat and 

other forms of energy to effectively promote the local 

consumption of renewable energies and to improve energy 

utilization (Stanislav,P et al,2009). However, the accessibility 

of wind power greatly affects the robustness of the IES. The 

present methods for the robust analysis of energy systems 

mainly include stochastic programming (Vahid-Pakdel, M. J, 

2017.Tabar, V. S, 2017), fuzzy decision theory (Mombeini, 

H, 2018) and robust optimization (Xiong, P, 2016.Alismail, 

F, 2018). Although the above methods provide effective 

references for robust analysis of energy systems, wind power, 

given its serious uncertainty, cannot provide a precise 

probability distribution or membership functions of uncertain 

variables for traditional robust analysis methods, thereby 

imposing challenges to the robust analysis of IES. 

Proposed by Haim in 2006, information gap decision theory 

(IGDT) presents a new approach for dealing with 

uncertainties (Ben-Haim, Y,2006). Compared with stochastic 

programming, fuzzy decision theory and robust optimization, 

IGDT has better applicability and does not require the 

probability density function of uncertain parameters or the 

related membership function. The IGDT has been recently 

applied in uncertainty research, such as (Dolatabadi, A,2019. 

Rabiee, A, 2018.). IGDT was applied to build the uncertainty 

of electrical load (Nojavan, S,2017). To determine the 

bidding strategy of a renewable microgrid, the price 

uncertainty of the upstream power grid was modelled by 

using IGDT (Mehdizadeh, A,2018). Accordingly, a robust 

analysis model of IES was built in this paper by using IGDT. 

An IES with wind power contains many energy conversion 

equipment that can result in the large dimension of an IES 

robust analysis model, thereby making this model difficult to 

solve. Accordingly, scholars have proposed several methods 

to solve this problem, such as the particle swarm optimization 

(PSO) and the genetic algorithm (GA) (Kampouropoulos, 

K,2018). To solve the optimal power flow of an IES with a 

renewable distributed access, (Khaled, U,2017) incorporated 

a modified smart technique that uses PSO. To schedule the 

unit commitment and economic dispatch of microgrid units, 

(Nemati, M, 2018) developed an improved real- coded 

genetic algorithm. However, compared with GA and PSO, 

the application of fruit fly optimization algorithm (FOA) in 

solving the problem of the IES robust analysis is fewer. 

The FOA proposed in (Shudapreyaa, R, 2015) is a simple and 

feasible algorithm that has attracted great interest and got 

extensive application. An innovative prediction model based 

on generalized regression neural network and FOA was 

developed in (Niu, D ,2017). A multi-objective model of 

FOA was proposed in (El-Ela, A. A. A,2018) to effectively 

solve the optimal power flow problem, an improved FOA 

was proposed in (Darvish, A,2018) to solve the synthetic 

antenna array problem and a modified FOA was built in 

(Dongxiao, N,2017) for medium- and long-term load 

forecasting and has been proven effective and feasible. 

However, FOA is rarely used in robust analysis of IES since 

can easily fall into local optimization and cannot easily 

achieve the ideal convergence accuracy. Therefore, this paper 

proposes a visual-detection (VD)-based FOA, which changes 

the search radius of fruit fly algorithm in the process of 

optimization in order to avoid falling into local optimization 

in the process of convergence.  
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In this paper, the IES robust analysis model proposed in this 

work was built by using IGDT and solved by using VD- 

FOA. The influence of the energy storage (ES) unit and its 

maximum state of charge (SOC) on the robustness of the 

system was also examined. The rest of this paper is organized 

as follows. Section 2 presents the IGDT robust analysis 

model of IES. Section 3 presents the VD-FOA and analyzes 

its performance. Section 4 presents some case studies and 

Section 5 concludes the paper. 

2. IGDT ROBUST ANALYSIS MODEL OF IES 

2.1  Integrated Energy Systems Model 

The schematic diagram of an IES is presented in Fig. 1. The 

IES model mainly includes a power grid, natural gas network 

and related equipment. 

 

Fig. 1. Schematic diagram of an integrated energy system 

(IES). 

2.1.1 Power grid model 

The power grid model includes the system power balance 

equation and the limitation of branch transmission power, 

which can be computed as 
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In equation (1), Pg,t and Pw
i,t denote the outputs of energy unit 

and wind farm, respectively, Li,t denotes the electrical load, 

Pc
i,t and Pd

i,t denote the battery charging and discharging 

powers, respectively, and Pij,t represents the transmission 

power. Meanwhile, in equation (2), Vi,t and δi,t denote the 

voltage magnitude and phase angle, respectively, Zij and θij 

denote the impedance magnitude and phase angle, 

respectively. Equation (3) represents the transmission line 

power limit, where max

,ij tP  represents the maximum 

transmission line power. 

2.1.2 Natural gas network model 

The natural gas flow balance equation, pipeline flow 

constraint and node pressure constraint are all present in the 

following natural gas network model: 
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where fj,i,t represents the natural gas flow, Sgi,t is the injected 

natural gas flow, Sdi represents the maximum natural gas 

flow for supply, ζg,t denotes the standard unitary value of 

natural gas flow demand and Sei,t represents the combined 

heat and power (CHP) unit demand for natural gas flow. 

Equations (5) and (6) denote the non-adjustable and 

adjustable pressure node constraints, where Pr represents the 

node pressure and Ci,t represents the pipe coefficient that is 

related to temperature, length, diameter and friction. 

Equations (7) and (8) represent the upper/lower limits of 

natural gas flow and node pressure, respectively. 

2.1.3 Device model 

2.1.3.1 Energy storage unit model 

According to the law of energy conservation, the ES unit 

model can be formulated as 
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In equation (9), ηc and ηd denote the battery charging and 

discharging efficiencies, respectively, and Ei,max denotes the 

maximum capacity of the battery. In equation (10), Ei,t 

denotes the stored energy of the battery, equations (11) and 

(12) are for the upper and lower limits of battery 

charging/discharging power, respectively, and equation (13) 

are for the upper and lower limits of the state of charge 

(SOC) of the battery. 

2.1.3.2 Unit output power model 

The unit output power includes the conventional unit and the 

CHP unit output whereas its model mainly includes the gas-

electricity conversion equation and the unit power output 

limit. This model is formulated as 

, 2 ,= g
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g g

i,t i,t-1 gP P RU                                 (15) 

g g

i,t-1 i,t gP P RD                                 (16) 

g,min g g,max

i i,t iP P P                               (17) 

In the gas-electricity conversion equation (14), Pg
i,t denotes 

the unit power output and ηG2P represents the conversion 

efficiency coefficient of CHP. Meanwhile, equations (15) and 

(16) are for the ramp-up/down limits of unit output power, 

where RU g and RD g represent the upper limits of the ramp-
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up/down of unit power output, respectively. Equation (17) 

represents the unit power output limit. 

2.1.4 Analysis of IES operating cost 

The operating costs of IES mainly include conventional unit 

power generation costs and natural gas costs and can be 

mathematically expressed as 

f EC GC                                        (18) 

where EC is the cost of power generation for conventional 

units and GC indicates the cost of natural gas. Generally, the 

generation cost of a conventional unit can be expressed as a 

quadratic function of output power as follows： 

 2
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( ) )g g t g g t g

g t

EC a P b P c                  (19) 

where ag, bg and cg denote the cost coefficients of 

conventional units and Pg,t indicates the output power of 

conventional units. The natural gas cost can be expressed as 

follows: 

,

,

i i t

i t
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where Ci is the natural gas price coefficient. Nevertheless, 

wind power access brings strong uncertainty to the system, 

thereby preventing the system from satisfying the needs of 

users or the network constraints. Therefore, the robustness of 

IES with wind power must be analyzed. This paper 

establishes a robust model of IES by using IGDT. 

2.2 Robust Model of Information Gap Decision Theory IGDT 

The traditional methods for solving uncertainty have a high 

computational burden and depend on the membership or 

probability density function of uncertain variables. Given that 

uncertainty problems cannot be accurately modelled as 

historical data, therefore this study applied IGDT to build a 

robust analysis model for IES with wind power. 

2.2.1. IGDT 

This section introduces IGDT, which can effectively solve 

the uncertainty of wind power in an IES. In general, the 

optimization model of an IES can be expressed as 

max( ( , ))
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                                   (21) 

where f indicates the objective function, X represents a set of 

decision variables,   represents the vector of input 

parameters and H and G denote the inequality and equality 

constraints of the decision variable X, respectively. Assuming 

that the predicted value of the parameter is   and that   is 

random in practice, the uncertainty set can be mathematically 

expressed as 

( , ) :
 

    


 
    

 
U                   (22) 

where α represents the radius of uncertainty, that is, the 

maximum deviation between the true and predicted values of 

the uncertain parameter. 

When  =  , the optimal solution f0 of model (24) can be 

obtained. However, having an uncertain parameter can 

introduce fluctuations in the predicted value and the decision 

maker sets an acceptable maximum cost based on experience. 

Therefore, the following constraint needs to be added to the 

optimization model: 

0(1 ) 0rf f   ，                                  (23) 

In equation (23), β represents the deviation factor that is 

defined as the percentage increase in the objective function. 

In sum, the robust optimization model built based on IGDT 

can be expressed as 
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In this model, when the objective function value f is lower 

than the highest expected objective fr, the maximum 

fluctuation amplitude α of the uncertain parameters can be 

obtained. 

2.2.2. Robust model of IGDT 

According to equation (22), the fluctuation range of uncertain 

wind farm output can be expressed as 

     , , , ,= 1- 1+w w w w

i t i t i t i tU P P P P   ，               (25) 

where
,

w

i tP  and 
,

w

i tP  denote the predicted and actual values of 

wind farm output and α denotes the corresponding fluctuation 

range. When the actual wind power output is lower than the 

predicted value, other conventional units or CHP provide 

insufficient power to meet the load demand, thereby 

increasing the total power costs. 

 , ,= 1-w w

i t i tP P                            (26) 

where 0 1  . Assuming that the increased cost cannot 

exceed (1+β)f0 and that the range of β is β ≥ 0, the following 

optimization models must be considered. 

0(1+ )f f                                      (27) 

In equation (27), when f= (1+β) f0, the adverse disturbance is 

maximised. Therefore, the optimization model can be 

formulated as 
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The above model indicates that if the wind power output 

fluctuates within the range of   , ,1- w w

i t i tP P 
 ， , then the value of 

objective function should not exceed 0(1 ) f . 

3. SIMULATION ALGORITHMS 

3.1  FOA 

Fig. 2 presents the schematic diagram of FOA, which is 

developed based on the foraging behaviour of fruit flies. Fruit 

flies use their natural strong visual and olfactory abilities to 

search their surrounding space for the best next location until 

the best value is obtained. Based on this behaviour, the 

standard flow of FOA is formulated as shown in Fig. 3.  

Compared with other optimization algorithms, FOA has 

fewer initial parameters, a simpler calculation process, can be 

easily converted into a programming language and can be 

easily understood. However, FOA also has a poor population 

diversity, low convergence accuracy and can easily fall into 

the local optimum. Given these problems, this paper proposes 

VD-FOA that effectively improves the convergence 

accuracy, speed and global search ability of the conventional 

FOA. 

（0,0） X_axis

Y_axis

（X0,Y0）（X1,Y1）

（X2,Y2）

（X3,Y3）
Dist3

Dist1

Dist2

（Xn-1,Yn-1）

Optimization process

Food

（Xn,Yn）

 

Fig. 2. Schematic diagram of FOA. 

 

Fig. 3. Standard fruit fly optimization algorithm flow 

3.2  Visual-detection Based Fruit Fly Optimization Algorithm  

This section presents the VD-FOA, which is illustrated in 

Fig. 4. 

 

Fig. 4. Flow chart of VD-FOA. 

max
( )

max*

gen i

genw e






                           (29) 

where w is search radius, α denote contraction factor and γ = 

2~6. 

In Fig. 4, the judgment condition 1 denotes whether the 

maximum number of iterations has been reached. When this 

condition is satisfied, the optimization process is terminated 

and the optimal smell concentration is outputted; otherwise, 

the decision delay mechanism is executed. Meanwhile, the 

judgment condition 2 indicates whether the variance of the 

smell concentration value within the set number of delay 

iterations is less than the set value of the smell concentration 

variance (σ). If the condition is satisfied, no change is made 

to continue the iteration. If the condition is not satisfied, then 

the search radius is changed according to formula (29) and 

the iteration continues. 

3.3  VD-FOA Performance Analysis 

To test the effectiveness of the proposed algorithm, four 

standard test functions are selected as described in Table 1. 

The sizepop = 100, the maxgen = 1000 and delay iterations = 

15, σ = 0.001, α = 40 and γ = 4. The test results in Table 2 

reveal that the proposed VD-FOA is superior to the 

conventional FOA in terms of optimization accuracy. In 

addition, Fig. 5 shows that VD-FOA can reach the global 

optimum much faster compared with the traditional FOA. In 

sum, VD-FOA outperforms the conventional FOA. 

Table 1.  Four standard test functions  

Serial  

number 

Function  

name 

Each dimension 

 search area 

Optimal  

function value 
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f1 Sphere  [-100,100] 0 

f2 Step  [-100,100] 0 

f3 Griewank  [-600,600] 0 

f4 Rastrigin  [-5.12,5.12] 0 

Table 2.  Comparison of simulation results of two 

algorithms 

Function FOA VD-FOA 

f1 5.21×10-7 3.42×10-11 

f2 5.16×10-7 3.37×10-11 

f3 1.17×10-5 1.03×10-10 

f4 1.03×10-4 9.23×10-9 

 

Fig. 5. The optimization process of FOA and VD-FOA 

algorithms. 

4. CASE STUDIES 

The validity of the proposed model is verified by using the 

IES, which includes the IEEE 24-node power network and 

the 20-node natural gas network as shown in Fig. 6. Four 

CHPs are located at nodes 1, 2, 16 and 22 of the system 

whilst the other units are conventional units. Three wind 

farms with capacities of 200, 150 and 100 MW are also 

connected to 8, 19 and 21 nodes. The two ES units at 19 and 

21 nodes have SOCmax of 200 MW and 100 MW and 

charging/discharging efficiencies of 0.95 and 0.9. The other 

parameters are presented in (Soroudi, A,2017). 

The six cases presented in Table 3 are examined to analyse 

the robustness of the IES and to study the effect of the ES 

unit and its SOCmax on the robustness of an IES with wind 

power. Fig. 7 presents the simulation results in these six 

cases. 

Table 3. Six cases of robust analysis for IES 

Case 

studies 

SOCmax of ES unit 

(Node 19) /MW 

SOCmax of ES unit (Node 

21)/MW 

Case 1 No ES unit No ES unit 

Case 2 

Case 3 

Case 4 

150 

200 

200 

50 

100 

150 

Case 5 

Case 6 

250 

300 

150 

200 

G1 G2 G10

G7

G9
G6

G5

G3 G4 G8

1 2

3
4

5

6

7
8

9 10

11 12
1314

24

15

17

18

19 20

21 22

23

16

Gas network Electric network

1

2
3

4

5
6

7

8

9
10

11

12

13

14

16

18

17
19

15

20

Fig. 6. Integrated energy system with gas-electric coupling. 

In Fig. 7, α increases along with the deviation factor β, that is, 

the capacity of the system to absorb wind power continues to 

improve. When the value of β is kept the same, the ability of 

the IES to absorb wind power in Case 2 is stronger than that 

in Case 1 because the ES unit can rapidly transmit electric 

energy through the charging/discharging function. In this 

case, the ES unit meets the peak cut requirements and 

improves the robustness of the IES. As can be seen from 

Cases 2-6, the α increases with SOCmax and the robustness of 

the system is continuously improved, which can provide a 

basis for the allocation of the SOCmax for the decision maker 

within the range of tolerable operating costs. At the same 

time, it also ensures that the system has an ability to absorb 

uncertain wind power. 

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
0.0

0.2

0.4

0.6

0.8

1.0





 Case 1

 Case 2

 Case 3

 Case 4

 Case 5

 Case 6

 

Fig. 7. Comparison of simulation results of six cases. 

5.  CONCLUSION 

An effective Visual-detection based fruit fly optimization 

algorithm (VD-FOA) is proposed in this work for solving the 

information gap decision theory (IGDT) based robust 

analysis problem of integrated energy systems (IES). The 

VD-based decision delay and visual feature detection are 

integrated within the FOA. By using the decision delay and 

visual feature detection, VD-FOA changes the search radius 
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of fruit fly according to the variance of smell concentration. 

The proposed VD-FOA is tested by using standard test 

functions and the experimental comparison with the 

conventional FOA show the effectiveness of the proposed 

algorithm. The VD-FOA is also applied for the IGDT robust 

analysis of an IES. The IES integrated with ES unit can 

effectively deal with the uncertainty of wind power. The 

increase of the SOCmax can improve the robustness of the 

system accordingly. 

6. REFERENCES 

Alismail, F., Xiong, P., Singh, C. (2018). Optimal wind farm 

allocation in multi-area power systems using 

distributionally robust optimization approach. IEEE 

Trans. Power Systems, 33, (1), pp. 536-544. 

Ben-Haim, Y. (2006). Info-gap Decision Theory: Decisions 

under Severe Uncertainty. Elsevier: Amsterdam. 

Darvish, A., Ebrahimzadeh, A. (2018). Improved fruit-fly 

optimization algorithm and its applications in antenna 

arrays synthesis. IEEE Trans. Antennas and 

Propagation, 66, (4), pp. 1756-1766. 

Dolatabadi, A., Jadidbonab, M., Mohammadi-ivatloo, B. 

(2019). Short-term scheduling strategy for wind-based 

energy hub: a hybrid stochastic/IGDT approach. IEEE 

Trans. Sustainable Energy, 10, (1), pp. 438-448. 

Dongxiao, N., Tiannan, M., Bingyi, L. (2017). Power load 

forecasting by wavelet least squares support vector 

machine with improved fruit fly optimization algorithm. 

Journal of Combinatorial Optimization, 33, (3), pp. 

1122-1143. 

El-Ela, A. A. A., El-Sehiemy, R. A. A., Mouwafi, M. T., 

Salman, D. A. F. (2018). Multiobjective Fruit Fly 

Optimization Algorithm for OPF Solution in Power 

System.//2018 Twentieth. 

Kampouropoulos, K., Andrade, F., Sala, E., Espinosa, A. G., 

& Romeral, L. (2018). Multiobjective optimization of 

multi-carrier energy system using a combination of 

ANFIS and genetic algorithms. IEEE Trans. Smart Grid, 

9, (3), pp. 2276-2283. 

Khaled, U., Eltamaly, A., M.; Beroual, A. (2017). Optimal 

power flow using particle swarm optimization of 

renewable hybrid distributed generation. Energies, 

10,(7), 1013.  

Mehdizadeh, A., Taghizadegan, N., Salehi, J. (2018). Risk-

based energy management of renewable-based microgrid 

using information gap decision theory in the presence of 

peak load management. Appl. Energy, 2018, 211, pp. 

617-630. 

Mombeini, H., Yazdani-Chamzini A., Streimikiene D., & 
Zavadskas, E. K. (2018). New fuzzy logic approach for 

the capability assessment of renewable energy 

technologies: Case of Iran. Energy & Environment, 29, 

(4), pp. 511-532. 

Nemati, M., Braun, M. (2018). Tenbohlen S. Optimization of 

unit commitment and economic dispatch in microgrids 

based on genetic algorithm and mixed integer linear 

programming. Appl. Energy, 210, pp. 944-963. 

Niu, D., Wang, H., Chen, H. & Liang, Y. (2017). The general 

regression neural network based on the fruit fly 

optimization algorithm and the data inconsistency rate 

for transmission line icing prediction. Energies, 10, (12), 

2066. 

Nojavan, S., Majidi, M., Zare, K. (2017). Risk-based optimal 

performance of a PV/fuel cell/battery/grid hybrid energy 

system using information gap decision theory in the 

presence of demand response program. International 

Journal of Hydrogen Energy, 42, (16), pp. 11857-11867 

Rabiee, A., Nikkhah, S., Soroudi, A .(2018). Information gap 

decision theory to deal with long-term wind energy 

planning considering voltage stability. Energy, 147, pp. 

451-463. 

Shudapreyaa, R. S., Anandamurugan, S. (2015). Parameter 

Selection Using Fruit Fly Optimization. i-Manager's 

Journal on Computer Science, 3, (4), 29. 

Soroudi, A. (2017a). Power System Optimization Modeling in 

GAMS. Springer: Switzerland. 

Stanislav, P., Bryan, K., Tihomir, M. (2009). Smart Grids 

better with Reset integrated energy system, Electrical 

Power & Energy Conference (EPEC). IEEE, pp. 1–8. 

Tabar, V. S., Jirdehi, M. A., Hemmati, R. (2017). Energy 

management in microgrid based on the multi objective 

stochastic programming incorporating portable 

renewable energy resource as demand response option. 

Energy, 118, pp. 827-839. 

Vahid-Pakdel, M. J., Nojavan, S., Mohammadi-Ivatloo, B., 

Zare, K. (2017). Stochastic optimization of energy hub 

operation with consideration of thermal energy market 

and demand response. Energy Conversion and 

Management, 145, pp. 117-128. 

Xiong, P., Jirutitijaroen, P., Singh, C. (2016). A 

distributionally robust optimization model for unit 

commitment considering uncertain wind power 

generation. IEEE Trans. Power Systems, 32, (1), pp. 39-

49. 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

13753


