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Abstract: In the Biotechnology 4.0 paradigm, process analytical technology (PAT) tools are
being increasingly deployed in biomanufacturing to gain improved process insights through
extensive use of advanced and automated sensing techniques. Critical parameters, such as pH,
dissolved oxygen (DO), temperature, and metabolite concentrations, are routinely measured
and controlled in a cell culture process. While these extensive networks of sensors generate
critical process information and insights, they are also prone to failures and malfunctions. In
this paper, we propose a condition-based maintenance (CbM) framework for real-time sensor-
health management, with a focus on fault detection, diagnosis, and prognostics. To this effect, a
slow-feature analysis (SFA)-based platform is proposed for the detection and diagnosis of sensor-
health. For health prognostics, a Gaussian process (GP) model is proposed for forecasting the
remaining useful life (RUL) of the sensor along with the probability of failure. The efficacy of the
proposed sensor-heath management strategy is demonstrated in a biomanufacturing process.
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1. INTRODUCTION

Stable production of biotherapeutic protein requires real-
time monitoring and control of cell culture processes. A
commercial bioreactor is regularly fitted with a multitude
of critical sensors that work in tandem to ensure con-
sistent product quality and overall process safety. While
these sensors generate critical process information and
insights, they are also prone to failures and malfunctions.
In biomanufacturing, engineers, process plant owners and
operators are faced with the challenge of keeping their
sensors calibrated and working efficiently, while reducing
the overall maintenance cost.

A majority of sensors used in biomanufacturing follow a
time-based maintenance (TbM) strategy; wherein, main-
tenance decisions (e.g., calibration times, sensor change-
outs) are determined based on historical failure time anal-
yses (Yam et al., 2001). For example, most of the sensors
have a predetermined usage cycle, after which these sen-
sors are replaced, irrespective of their remaining useful life
(RUL). Although TbM reduces the probability of sensor
failures and the frequency of unplanned maintenance, it
cannot eliminate the occurrences of random failures. Fur-
thermore, in TbM, most decisions are made by experienced
planners according to suggestions from sensor manufactur-
ers, historic breakdowns or failure data, operating experi-
ence, and judgment of maintenance staff and technicians
(Peng et al., 2010). In recent years, growing maintenance
costs and increased downtime caused by unexpected sensor
failures have motivated biopharmaceutical companies to
explore alternative preventive maintenance (PM) strate-
gies for sensor-health management.

In the last decade, emerging technologies like big data
analytics, the Internet of Things, and cloud data storage

have enabled many industries to adopt condition-based
maintenance (CbM) strategies in manufacturing (Shin and
Jun, 2015). CbM is a PM program that makes main-
tenance decisions in real-time based on the information
collected about the underlying system, allowing main-
tenance activities to be performed only when necessary
(Prajapati et al., 2012; Jardine et al., 2006). CbM is a
part of a broader maintenance framework, referred to as
prognostics health management (PHM). PHM provides a
robust framework for real-time measuring, recording, and
monitoring the extent of deviation and degradation from
normal operation conditions (Tsui et al., 2015). A typical
work-flow in a PHM system includes three critical steps:
(a) fault detection and diagnostics, (b) prognostics, and
(c) condition-based maintenance. The first task is that of
fault detection and diagnosis; wherein, a fault detection
routine determines if a system is experiencing problems,
which is then identified by a fault diagnostics routine. In
the second task, fault prognostics provide the predictions
of the future reliability of a system by assessing the extent
of degradation of the system from its expected normal op-
erations. Finally, the CbM program takes decisions based
on the information collected from the prognostics model.
All of these three tasks need to be executed in real-time.

Fault diagnosis and prognostics are the two critical compo-
nents of PHM. Fault detection and diagnosis methods can
be classified as model-based and data-based. In the model-
based category, some forms of first principles models link-
ing failure modes and observations are proposed. These
techniques require the estimation of complete mechanistic
knowledge, which might not be the most practical solu-
tion for most industrial applications. Several data-based
methods based on hypothesis testing, cluster analysis, and
statistical process control (SPC), support vector machines
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(SVM) and neural networks have also been proposed. For
example, Ma and Li (1995) proposed a composite hypothe-
sis test for detection of localized defects in rolling element
bearings and Fugate et al. (2001) proposed a vibration-
based damage detection using SPC.

There are two main aspects of fault prognostics: (a) pre-
dicting RUL of a system before a failure occurs; (b) pre-
dicting the probability that a system operates without
a fault until the next inspection. Most of the literature
on prognostics deal with the former problem. Similar to
diagnostics, prognostics methods can also be classified
into model-based and data-based methods. Model-based
RUL estimation methods have been proposed for several
mechanical systems, including bearings (Li et al., 1999),
gas turbines (Kacprzynski et al., 2001) and rotor shafts
(Oppenheimer and Loparo, 2002). Several statistical meth-
ods have also been proposed for fault prognostics. For
example, Yan et al. (2004) employed a logistic regression
model to calculate the probability of failure for given con-
dition variables and an ARMA time series model to trend
the condition variables. Pecht (2010) proposed a Kalman
filter to track failure probability vectors. Other prognostics
methods include exponential smoothing (Ji et al., 2018)
and autoregressive (Wang et al., 2017) models.

In this paper, we propose a PHM framework for sensor-
health management in biomanufacturing, with a focus on
fault detection, diagnosis, and prognostics. To this effect,
a slow-feature analysis (SFA)-based monitoring framework
is proposed for real-time fault detection and diagnosis of
sensor-health. SFA is an unsupervised dimension reduction
technique (Wiskott and Sejnowski, 2002). We project
the sensor data onto a latent space based on the signal
slowness, referred to as slow-feature space. A majority of
sensor faults, such as calibration errors and malfunction
have distinct fault dynamics that are monitored using
their projections in the feature space. We use SFA-derived
control charts for both real-time detection and diagnoses
of various fault dynamics propagating through a sensor.
SFA has been previously proposed for real-time monitoring
of process systems and controller performance (Shang
et al., 2015). In this paper, we extend the application
of SFA to sensor-health monitoring. For sensor-health
prognostics, we propose the use of Gaussian processes
(GPs). As a Bayesian non-parametric method, GPs not
only provide a forecast of the RUL of a sensor but
also provides the confidence estimates for the RUL. This
information can, in turn, be used by the CbM program
to make any maintenance-related decisions. The efficacy
of the proposed sensor-heath management strategy is
demonstrated in the sterilization steps of industrial cell
culture process.

2. PRELIMINARIES: SFA AND GP

SFA: We briefly introduce SFA in this section; however,
for a detailed exposition, the reader is referred to Wiskott
and Sejnowski (2002); Shang et al. (2015). The SFA is an
unsupervised learning algorithm for dimension reduction
in temporally correlated datasets. SFA is based on the
slowness principle. Before introducing SFA, we first define
the slowness of a stochastic signal, x(t) as follows:

∆(x) := 〈ẋ(t)2〉t, (1)

where ẋ(t) ≈ x(t)−x(t−1) is the first-order time difference
approximation of ẋ(t), and 〈x〉t denotes the time-averaging
of x(t). Given N data samples, {x(1), . . . , x(N)}, the time
averaging of x(t) can be approximated as follows

〈x〉t ≈
1

N

N∑
t=1

x(t). (2)

Physically, ∆(x) in (1) provides a natural measure of how
fast the signal x(t) evolves in time.

Now, for a given m-dimensional input signal, x(t) ∈ Rm,
SFA aims to map the input signal to an m-dimensional
slow feature (SF) space, denoted as s(t) ∈ Rm, such that

si(t) = gi(x(t)), (3)

for all i = 1, . . . ,m. SFA computes the function gi in (3) by
solving the following constrained optimization problem:

g?i = arg min
gi(·)

〈ṡ(t)2〉t, i = 1, . . . ,m (4)

such that:

〈si〉t = 0; (zero mean) (5a)

〈s2
i 〉t = 1; (unit variance) (5b)

〈sisj〉t = 0 ∀i 6= j. (decorrelation and order) (5c)

The optimization problem in (4) computes the functions
gi (1 ≤ i ≤ m) by projecting the input signal onto the
feature space, where each feature, si has as slow variation
as possible. The constraints (5a) and (5b) eliminate the
trivial solution si(t) = const., while (5c) ensures that all
SFs are independent of each other. For additional details,
the reader is referred to Shang et al. (2015).

The optimization problem in (4) is in general difficult to
solve, except in some constrained cases. For example, for a
linear case, si is a linear combination of inputs, such that
si (1 ≤ i ≤ m) can be written as follows:

si(t) = wT
i x(t), (6)

where wi ∈ Rm is the coefficient associated with the SF,
si. In compact notation, we can rewrite (6) as follows:

s(t) = Wx(t), (7)

where s(t) = [s1(t), . . . , sm(t)]T and W ≡ [w1, . . . ,wm]T

is the coefficient matrix. Solving (4) with (7) entails
estimating the coefficient matrix W in (7). Fortunately,
solving the constrained optimization problem in (7) can be
avoided for the linear case through problem reformulation.
Now, if each dimension of x(t) is scaled to zero mean
then given (7), the optimization in (4) can be recast as
the generalized eigenvalue decomposition (GED) problem,
such that W satisfies the following (Shang et al., 2015):

RẋẋW = RxxWΩ, (8)

where Rẋẋ = 〈ẋẋT〉t and Rxx = 〈xxT〉t denote the
covariance matrices for ẋ(t) and x(t), respectively; W
is the matrix of m generalized eigenvectors, which are
also the coefficients in (7); and Ω = diag{ω1, . . . , ωm}
contains generalized eigenvalues along its diagonal, which
satisfy ωi = 〈ṡ2

i 〉t and are arranged in an ascending order.
Note that Ω introduces an ordering in the SFs based on
their slowness, such that s1 denotes the slowest feature, s2

denotes the second slowest feature and so on.

The procedure for solving the GED problem is standard;
for the sake of brevity, it is not discussed here, but can be
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found detailed in Shang et al. (2015). In the remainder of
this paper, it is assumed that for an m-dimensional input
signal, x(t), the m-dimensional SFs, s(t) are available.

GPs: GP is a non-parametric, probabilistic approach to
model the relationship between inputs y ∈ Ry and outputs
z ∈ Rz. The use of GPs is sophisticated and reader is
recommended to review Rasmussen (2003). The training
set in GPs contains N samples of outputs and inputs
D ≡ {z,Y}, which are related as follows:

zi = f(yi) + εi, (9)

where f is the underlying process model and εi ∼ N (0, σ2)
is a zero-mean Gaussian noise with variance σ2. A GP is
defined by a mean and a covariance function, such that

f(Y) ∼ GP(µ(Y),Σ(Y,Y)). (10)

The mean and covariance matrices are defined as µθ(Y)
and Σθ(Y,Y), where θ ∈ Rnθ represents hyperparame-
ters. A common choice for Σ is the Gaussian-RBF kernel:

Σθ(y
i,yj) = β exp(−||y

i − yj ||22
2α2

). (11)

The Gaussian-RBF kernel assigns a higher correlation if
the inputs in the set {yi,yj} are “close” in the sense of
Euclidean distance. In (11), the hyperparameters θ include
β (length scale) and α (signal variance), and together they
affect the “smoothness” of the function f . Given D, the
modelling objective is to learn both hyperparameters and
any other unknown model parameters, denoted by the
set Γ. The learning is accomplished by maximizing the
following likelihood function:

p(z|Y) = N (0N ,Σθ(Y,Y) + σ2IN ). (12)

The unknown parameters γ ≡ {θ, σ2} ∈ Γ can now be
estimated by solving the following optimization problem:

γ∗ ∈ arg max
γ∈Γ

log p(z|Y), (13)

where γ∗ ∈ Γ is an optimal estimate, and

log p(z|Y) = −1

2
zTΣ−1

γ z− 1

2
log |Σγ | −

N

2
log 2π, (14)

where Σγ ≡ Σθ+σ2IN . This is a non-convex function with
multiple local optima; therefore, gradient descent can be
used, but the initializations must be chosen with care.

Once a GP is trained, ẑ is predicted by first constructing a
joint density of all the training output set z, and the test
GP output f(Ŷ) conditioned on both training input set

Y and test input Ŷ. This joint density is given by

p(z, f(Ŷ)|Y, Ŷ) = N
(

0,

[
Σγ(Y,Y) Σθ(Y, Ŷ)

Σθ(Ŷ,Y) Σθ(Ŷ, Ŷ)

])
,

(15)

where Σγ ≡ Σθ(Y,Y) + σ2IN . Then a posterior distribu-

tion over f(Ŷ) can be computed as:

p(f(Ŷ)|D, Ŷ) = N (µ̂θ, Σ̂θ), (16)

and the mean and covariance matrices are computed as:

µ̂θ = Σθ(Ŷ,Y)[Σγ(Y,Y)]−1Y, (17)

Σ̂θ = Σθ(Ŷ, Ŷ)−Σθ(Ŷ,Y)[Σγ(Y,Y)]−1Σθ(Y, Ŷ).
(18)

Finally, the posterior for ẑ can be predicted as follows:
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Fig. 1. Discrete and continuous sensor fault classification

p(ẑ|D, Ŷ) = N (µ̂θ, Σ̂θ + σ2). (19)

For a single test input ŷ, the GP prediction gives a
distribution of outputs. However, for process control and
monitoring, the point-estimate value ẑ = µ̂ is preferred.

3. SENSOR FAULT CLASSIFICATION

A typical process sensor in biomanufacturing is prone to
several types of faults. If a sensor reading is represented as
xt + εt, where xt is the actual sensor reading and εt ∈ R is
the fault then we classify a sensor fault as follows:

(1) Continuous: After a certain time, the sensor returns
constantly inaccurate readings, and it is possible to
observe a pattern in sensor error in the form:

εt = fα(t), (20)

where fα : T → R is a continuous error-function
parameterized by α ∈ Rnα . Based on fα, a continuous
fault can be further classified into:
(a) Bias: The error-function is a constant, such that

fα(t) = β, (21)

where β ∈ R is an arbitrary constant. β can be a
positive or a negative offset.

(b) Drifts: The error-function follows a slow-change,
such as a polynomial change

fα(t) = α1εt−1 + α2εt−2 + · · ·+ αnεt−n, (22)

where α1, . . . , αn ∈ R are some constants.
(2) Discrete: Fault occurs at discrete time points, such

that εt 6= 0 for some t ∈ T . Discrete faults can be
further classified as follows:
(a) Dropouts: Sensor fails to record measurements

at random time points, such that

εt =

{
at for some t ∈ T
0 otherwise

, (23)

where −xt ≤ at < 0. For at = −xt, sensor
readings are not available.

(b) Fluctuations: Sensor exhibits random fluctua-
tions around the expected sensor reading. Ran-
dom fluctuations can be represented using proba-
bility densities. For example, εt ∼ N (µ, σ), where
εt follows a Gaussian distribution with mean and
variance µ ∈ R and σ ∈ R+, respectively.

Figure 1 illustrates common discrete and continuous faults
for a temperature sensor. Calibration errors are probably
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a key source of many continuous sensor faults since they
generally manifest themselves as a bias or drift throughout
the lifetime of the sensor node (Baljak et al., 2012). In
practice, continuous sensor faults can be mitigated by re-
calibrating the sensor. For example, in Figure 1, the sensor
bias subdues after a one-point calibration at t = 600.

In contrast, sensor malfunction is often the primary source
of many of the discrete sensor faults. Note that fluctuations
in sensor readings may also emanate as a result of process
upsets or loss of controller performance; however, in this
study, it is assumed that the process is well-controlled and
any fault observed in the system – discrete or continuous
– is a sensor-related fault. Further, εt or fα are assumed to
be unknown or unmeasured; however, it is assumed that
the faults can be observed in readings through the effect
they produce in the data. Given sensor data, the objective
is to perform diagnostics and prognostics of sensor-health.

4. SENSOR MONITORING AND DIAGNOSIS

Unlike in process monitoring, where a fault in one vari-
able affects other variables, in sensor-health monitoring,
faults emanating in multiple sensors are often isolated
and uncorrelated. For example, adjusting the bioreactor
pressure might have an influence on the bioreactor tem-
perature; however, it is unlikely that a calibration error in
the pressure sensor would result in a calibration error in
the temperature sensor. From a sensor-health monitoring
perspective, this implies that the health of each sensor can
be independently monitored. In this paper, we focus on
univariate sensor-heath monitoring; however, in situations,
where the health of a sensor is known to be correlated with
other sensors in the network, the proposed approach can
be extended to multivariate sensor-health monitoring.

In this paper, an SFA-based framework is proposed for
real-time monitoring and diagnosis of the health of a mul-
titude of sensors deployed in a biomanufacturing network.
As discussed earlier, the choice of an SFA-based platform
is motivated by the fact that sensor faults exhibit different
dynamics for different fault-types. For example, continuous
faults, such as bias and drifts, are slow-varying faults that
cause gradual degradation of the sensor performance. In
contrast, discrete faults, such as dropouts and fluctuations,
exhibit faster dynamics and have an immediate effect on
sensor performance. Informally, in the proposed frame-
work, SFA is first applied to an incoming sensor signal pro-
jecting the raw signal onto multiple slow features, which
are then trended on SFA-derived control charts for real-
time monitoring and diagnosis of sensor-health.

For a given univariate sensor, x(t) ∈ R, SFs can be readily
computed (see Section 2); however, note that the SFs in
(6) are calculated independent of past sensor recordings.
In practice, underlying features should be related to sensor
readings collected over a period of time due to the inherent
sensor dynamics. To embed the dynamics in the feature
space, SFA is extended to a dynamic SFA by appending
k-lagged measurements, such that (Shang et al., 2015):

x(t) := [x(t), x(t− 1), . . . , x(t− k)]
T ∈ Rk. (24)

In (24), including k-lagged measurements converts a uni-
variate sensor signal, x(t) into a k-dimensional signal.
Performing SFA on (24) yields k slow features that are

not only independent but also depend on the past sensor
readings.

Based on the slowness value of each si, as indicated by ωi,
the first mc (mc < k) SFs are defined as dominant features
for continuous faults and the last md (mc + md ≤ k) SFs
are the dominant features for discrete faults. Mathemati-
cally, if s(t) = [s1(t), . . . , sk(t)]T ∈ Rk denotes k features
computed by SFA then sc(t) = [s1(t), . . . , smc(t)]

T ∈ Rmc
and sd(t) = [sk−md−1(t), . . . , sk(t)]T ∈ Rmd denote dom-
inant features for continuous and discrete faults, respec-
tively. Physically, sc models the slow-varying continuous
faults or other incipient faults in x(t), while sd captures
fast-moving discrete faults and other random sensor noise.

Based on the SFA-based sensor model, monitoring indices
can be established for sensor-health monitoring. Note that
the dominant features, sc and sd form a partial orthogonal
decomposition of a signal x. To track the changes in
continuous and discrete faults in the sensor, we apply the
Hotelling’s T 2 statistic to both sc and sd, such that

T 2
c (t) = sT

c (t)sc(t), (25a)

T 2
d (t) = sT

d (t)sd(t), (25b)

where T 2
c and T 2

d are the Hotelling’s statistics for sc
and sd, respectively. Assuming that s is (7) is a vector
of independently Gaussian distributed random variables,
then T 2

c and T 2
d both follow a χ2 distribution with mc and

md degrees of freedom, such that (Shang et al., 2015)

T 2
c (t) = sT

c (t)sc(t) ∼ χ2
mc , (26a)

T 2
d (t) = sT

d (t)sd(t) ∼ χ2
md
. (26b)

The T 2
c and T 2

d statistics in (26a) and (26b) measure the
variations inside the subspace spanned by the dominant
SFs for continuous and discrete faults, respectively. To
use (26a) and (26b) for sensor-health monitoring, control
limits are estimated using routine data from a healthy
sensor. With (1−α) confidence level, the monitoring policy
can be summarized as follows: (a) if T 2

c > χ2
mc,α then

potential continuous faults are detected; and (b) if T 2
d >

χ2
md,α

then potential discrete faults are detected. Note that
these conditions not only provide a framework for real-time
monitoring of sensor-health, but also a framework for fault
diagnosis. This is possible because T 2

c and T 2
d individually

capture continuous and discrete fault-types.

5. SENSOR HEALTH PROGNOSTICS

As discussed earlier, a prognostics algorithm predicts the
future reliability of a sensor considering current and past
sensor-health information. As a second step in PHM, a
prognostic model relies on a condition-monitoring signal
from the fault detection program that relates to the
RUL. In this paper, we consider T 2

c (t) and T 2
d (t) in

(25a) and (25b) as the condition-monitoring signals for
continuous and discrete faults. Given signals T 2

c (1 : t) =
{T 2

c (1), . . . , T 2
c (t)} and T 2

d (1 : t) = {T 2
d (1), . . . , T 2

d (t)},
the goal is to find tf , such that T 2

c (t + tf ) > χ2
mc,α and

T 2
d (t+ tf ) > χ2

md,α
.

We propose a GP-based prognostics model to forecast
the RUL of a sensor. Since both continuous and discrete
faults affect the RUL, we use GP models to forecast the
future values of T 2

c (t) and T 2
d (t) based on the current
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and past sensor-heath information. Mathematically, it is
done as follows: Let zc,t+pc = T 2

c (t + pc) and yc,t =
[T 2
c (t), . . . , T 2

c (t− qc)], where pc, qc ∈ N are the prediction
horizon and the Markov order, respectively, then we have

zc,t+pc = fc(yc,t) + εc,t, (27)

where fc is a GP, given in (10). Note that (27) provides
a pc-step ahead prediction of T 2

c based on its past qc
values. Similarly, for zd,t+pd = T 2

d (t + pd) and yd,t =
[T 2
d (t), . . . , T 2

d (t− qd)], where pd, qd ∈ N are the prediction
horizon and the Markov order, respectively, then we have

zd,t+pd = fd(yd,t) + εd,t, (28)

where fd is a GP, given in (10). The prognostics models in
(27) and (28) can be trained as discussed in Section 2.

6. INDUSTRIAL CASE STUDY

Steam-in-place (SIP) is a critical part of biomanufacturing.
SIP is carried out before processing or between two batches
to ensure process sanitization and prevent carryover of
product or unwanted impurities. Failure to appropriately
sanitize the cell culture equipment could lead to contam-
ination resulting in the loss of the batch. SIP involves
adding steam to elevate the temperature of the equipment,
then maintaining a minimum temperature for a specified
time, followed by equipment cool-down (Roy et al., 2014).

While temperature sensors play a critical role in maintain-
ing the equipment at the prescribed temperature, they are
also prone to fluctuations and malfunction due to high
temperature and pressure environment inside the bioreac-
tor. The current maintenance strategy for the temperature
sensor in SIP is TbM, wherein the sensor is routinely
calibrated or changed out after some predetermined usage
cycles. In addition, a maintenance work order may also be
submitted if there are any unusual treads visible in the
sensor readings. Figure 2(a) shows the temperature data
collected over 20 SIP cycles. Each SIP cycle is approx-
imately 100 samples in length that include elevating the
temperature of the equipment to 125◦ C, maintaining it for
around 80 samples, and then cooling down the equipment.
Visually, the sensor exhibits fluctuations in several SIP
cycles during the heating phase.

We demonstrate the efficacy of the proposed framework in
real-time health monitoring, diagnostics, and prognostics
of a temperature sensor. Using data from a healthy sensor,
first a linear SFA model is trained for k = 100 (based
on trial-and-error). Next, using the model, the Hotelling’s
T 2 statistics are computed for Figure 2(a). Figures 2(c)
and (d) show the T 2

c,α and T 2
d,α statistics, respectively,

computed for mc = md = 2 dominant SFs. This selec-
tion is based on the history for the sensor, where slow
drifts and random high-frequency fluctuations have been
a common issue. As discussed earlier, Figure 2(b) monitors
continuous faults, and Figure 2(c) monitors discrete faults.

From Figure 2(c) and (d) it is clear that the sensor exhibits
no critical faults (discrete or continuous) in the first 10 SIP
cycles. For SIP cycles 11− 13, we have T 2

d,α > χ2
md,α

. This
indicates a potential discrete fault in the sensor. Note that
this coincides with the fluctuations observed in SIP cycles
12 − 13 shown in Figure 2(a). In addition, there is also
a potential continuous fault during SIP cycles 12 − 13,
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Fig. 2. SFA-based health monitoring of temperature sensor

as indicated by T 2
c,α > χ2

mc,α in Figure 2(b). Similarly,
for SIP cycles 18 − 21, the sensor exhibits both discrete
and continuous faults. Compared to SIP cycles 12 − 13,
the magnitude of fault in cycles 18 − 21 is much more
pronounced. Further, the growing T 2

d,α values in SIP cycles
18 − 21 indicate that the discrete fault is increasing in
magnitude. In summary, Figure 2 provides a practical
approach for monitoring and diagnoses of sensor-health.

Next, we train GP-based prognostics models to forecast
the condition-monitoring signals for continuous and dis-
crete faults. As discussed earlier, we forecast the future
values of T 2

d,α and T 2
c,α based on the past health informa-

tion available for the sensor. The GP prognostics model
for continuous faults is trained for qc = 10 and pd = 10
samples. Similarly, the GP model for discrete faults is
also trained for qd = 10 and pd = 10 samples. In other
words, both the GP models use past 10 samples of T 2

d,α and

T 2
c,α to provide a 10 sample ahead predictions of T 2

d,α and

T 2
c,α, respectively. Figures 3 and 4 provide a 10 step ahead

forecast of T 2
c,α and T 2

d,α, respectively. For reference, the
actual values, represented by the black line, are also shown
in Figures 3 and 4. Overall, the forecast from both the
prognostics models are accurate. 95% confidence intervals
(CIs) around the forecast are also shown in Figures 3 and 4
which further validates the accuracy of the prediction. The
10-step ahead root-mean square error (RMSE) for the con-
tinuous fault prognostics model in Figure 4 is 1.12, while
the RMSE for discrete fault prognostics model is 29.20. A
higher RMSE value for the continuous fault is expected,
since the dominant SFs for discrete faults include faster
signal dynamics, including the sensor noise. Nevertheless,
the prognostics models provide a reliable 10 step ahead
forecast for the RUL and also provide the probability of
failure, in terms of CIs. Finally, note that these results can
directly feed into the CbM program to take maintenance
related decisions.

7. CONCLUSIONS

A commercial bioreactor is regularly fitted with a multi-
tude of critical sensors that work in tandem to ensure con-
sistent product quality and overall process safety. While
these sensors generate critical process information and
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Fig. 3. Prognostics model for T 2
c,α for pc = 10 and qc = 10.

Fig. 4. Prognostics model for T 2
d,α for pd = 10 and qd = 10.

insights, they are also prone to frequent failures and mal-
functions. In this paper, we proposed a novel framework
for sensor-health management. The framework provides
real-time health monitoring, diagnosis, and prognosis of
critical sensors used in biomanufacturing. The proposed
method is based on SFA, which separates continuous and
discrete faults in a sensor. A robust GP-based prognostics
model is also proposed to forecast the future reliability
of the sensor. The efficacy of the proposed method was
demonstrated in an industrial temperature sensor.
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