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Abstract: This paper studies predictor-based adaptive consensus control of network-connected
systems with unknown delays under undirected graphs. The approach is based on the rep-
resentation of the delay state as a transport partial differential equation (PDE) and the
utilization of a nonadaptive estimation delay state. Using the relative information of neighboring
nodes, we propose a fully distributed adaptive consensus protocol, which is proven to achieve
global consensus provided that the delay mismatch is within a small region. Simulation results
performed on a group of neutrally stable systems are presented to illustrate the effectiveness of
the proposed scheme.
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1. INTRODUCTION

Consensus control has been an active area of research
during the past two decades. A limited list of applications
covers distributed optimization Li et al. (2018), distributed
microgrids Zhao and Ding (2018), cooperative surveillance
Ren et al. (2007), etc. Fruitful achievements have been
made on consensus control particularly in the absence of
time-delays in the control community; see Olfati-Saber and
Murray (2004); Hong et al. (2008); Li et al. (2013); Ding
(2014, 2015a,b), and the reference therein.

Time-delays are among the most common dynamic phe-
nomena that arise in engineering practice Richard (2003).
To prevent loss of stability, research effort has been de-
voted to consensus control problems in the presence of
time-delays. The early results concentrate on consensus
issues of single or high-order integrators subject to sen-
sor delays, and can be viewed as passive design method
since there is no delay compensation, see e.g., Olfati-
Saber and Murray (2004); Sun and Wang (2009); Wang
et al. (2013); Tian and Zhang (2012). Basically, the passive
design method can be viewed as seeking the maximal
allowable delay with a prescribed graph and protocol.
However, the control design without delay compensation
can only tolerate relatively short delays by frequency do-
main analysis theory. Owing to the successful application
to stabilization of a single dynamic system with input
delays, the predictor feedback design technique has been
employed in consensus control design Wang et al. (2015);
Zhou and Lin (2014); Wang et al. (2017), and the refer-
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ences therein. For instance, based on the reduction method
Kwon and Pearson (1980), Artstein (1982), a consensus
protocol was proposed for networked Lipschitz nonlinear
systems with actuator delay in Wang et al. (2015), where
sufficient convergence condition was derived in terms of
LMIs. In Zhou and Lin (2014), a truncated predictor feed-
back (TPF) approach, originated from the finite spectrum
assignment Manitius and Olbrot (1979), was proposed to
solve the consensus problem for linear multi-agent systems
with arbitrarily bounded delays. More recently, consensus
of networked Lipschitz nonlinear systems based on TPF
has also been studied in Wang et al. (2017). In spite of
the progress, it should be noted that the aforementioned
delay compensation results basically require the delay to
be exactly known and suffer from being very sensitive to
delay mismatch, which limits their application to engineer-
ing practice. Therefore, extra effort is needed to explore
delay compensation for consensus control systems subject
to large actuator and sensor delays of uncertain length.

In this paper, motivated by Krstic (2008a) and Bresch-
Pietri and Krstic (2010) we study the predictor feedback
consensus control of networked-connected systems with
unknown time-delays via adaptive protocols. The control
objective is to achieve consensus despite actuator and sen-
sor delays of uncertain bounded length. Some features of
the control scheme developed in this paper are highlighted
as follows. The first feature is that the proposed protocol
can be implemented in a fully distributed fashion, and the
interaction of control input among nodes is avoided. The
second feature is that one can seek an explicit bound on
the delay mismatch that ensures asymptotic convergence
in an appropriate norm.

The remainder of the paper is organized as follows. The
problem is formulated in Section 2. Section 3 gives some
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preliminary results. In Section 4, we give the predictor
feedback adaptive consensus protocol design and conver-
gence analysis. Simulation results are presented in Section
5 to validate the effectiveness of the proposed scheme,
followed by the conclusion in Section 6.

Notations: | · | denotes the Euclidean norm, ⊗ denotes
the Kronecker product, N refers to the set {1, . . . , N},
1N stands for a column vector filled with ones, IN de-
notes the identity matrix of size N , λmin(·) and λmax(·)
denote the minimum and maximum eigenvalues of a square
matrix respectively. For a smooth vector function u(x, t),

‖u(t)‖ = (
∫ 1

0
|u(x, t)|2dx)1/2 denotes the L2[0, 1] norm,

and ‖u(t)‖H1
=
√
‖u(t)‖2 + ‖ux(t)‖2 denotes the H1[0, 1]

Sobolev norm, and ux(x, t), ut(x, t) respectively denote the
partial differentiation with respect to x and t. For a series
of vectors Xi(t), i ∈ N, X(t) denotes the stacked vector
[XT

1 (t), . . . , XT
N (t)]T .

2. PROBLEM FORMULATION

Let the connection topology among the N nodes be
specified by an undirected graph G(V, E ,A), where A =
[δij ] ∈ RN×N is the adjacency matrix with elements δij
denoting the connections such that δij = δji = 1 if there is
a path between nodes i and j, and δij = 0 otherwise.
Associated with A, the Laplacian matrix L = [lij ] ∈
RN×N is defined in the normal way as lii =

∑N
j=1 δij and

lij = −δij when i 6= j.

The dynamics of node i, i ∈ N is described by

Ẋi(t) =AXi(t) +BUi(t−D1), (1)

Zi(t) =

N∑
j=1

lijXj(t−D2), (2)

where Xi(t) ∈ Rn is the state, Ui(t) ∈ Rm is the control
input, A and B are system matrices with compatible
dimensions, D1 and D2 are unknown actuator and sensor
delays, respectively, and Zi(t) is the information measured
by node i. Let D = D1 + D2 denote the total unknown
constant delay.

Assumption 1. The Laplician matrix L of the connection
graph has a single eigenvalue at 0.

Assumption 2. The pair (A,B) is stabilizable.

Assumption 3. There exists a positive constant D̄ such
that D ∈ (0, D̄]

For node i, the available information only includes Zi(t),
the input information Ui(t) of itself, and a virtual filter
signal transmitted by its neighbours. The objective is to
design a fully distributed protocol Ui(Zi(t)), i ∈ N with
an estimate of D to achieve leaderless consensus without
any global information, i.e.,

lim
t→+∞

Xi(t)−Xj(t) = 0,∀i, j ∈ N. (3)

3. PRELIMINARY RESULTS

Motivated by Krstic (2008b) and Krstic and Smyshlyaev
(2008), we use a transport PDE to model the delay state

Ẋi(t) =AXi(t) +Bui(x0, t), (4)

Duit(x, t) = uix(x, t), x ∈ (0, 1) (5)

ui(1, t) =Ui(t) (6)

with x0 = D2

D . Let ûi(x, t), i ∈ N be the estimate of delay

state ui(x, t), which obeys the following transport PDE{
D̂ûit(x, t) = ûix(x, t), x ∈ (0, 1)

ûi(1, t) = Ui(t),
(7)

where D̂ is an estimate of the total delay D. Given an
estimate D̂, denote the delay mismatch by D̃ = D − D̂,
and define the delay state error ũi(x, t) by

ũi(x, t) =ui(x, t)− ûi(x, t). (8)

Remark 4. The idea of modelling the delay state by
a transport PDE was first proposed in Krstic and
Smyshlyaev (2008). The substantial advantage is that with
such a respresentation, the backstepping method for PDEs
developed in Krstic and Smyshlyaev (2008) can be used to
construct a Lyapunov function for stability analysis. The
corresponding results for a single dynamic system were
summarized in the work Krstic (2009).

Lemma 5. (Cauchy-Schwartz inequality) For any two com-
patible vector functions u(x, t), w(x, t) ∈ L2[0, 1], it holds

(

∫ x

0

uT (y, t)w(y, t)dy)2 ≤
∫ x

0

|u(y, t)|2dy
∫ x

0

|w(y, t)|2dy

for any x ∈ [0, 1].

In what follows, we give a lemma that establishes the
stability result concerning a first-order hyperbolic PDE
with vanishing perturbation.

Lemma 6. Let M(x) ∈ Rm×n be twice differentiable with
|M(x)| bounded ∀x ∈ [0, 1], and ζ(t) ∈ Rn be first-
order differentiable and bounded. Consider the first-order
hyperbolic PDE{

Dwt(x, t) =wx(x, t) +M(x)ζ(t), x ∈ (0, 1)

w(1, t) =Y ζ(t),
(9)

with D a positive constant and Y ∈ Rm×n a con-
stant matrix. If limt→+∞ ζ(t) = 0, then it holds that
limt→+∞ ‖w(t)‖ = 0 and limt→+∞ w(x, t) = 0 for any
x ∈ [0, 1).

Proof. Consider a Lyapunov candidate function as

V (t) = D

∫ 1

0

(1 + x)|w(x, t)|2dx,

whose derivative is given

V̇ (t) =− |w(0, t)|2 − ‖w(t)‖2 + 2|Y ζ(t)|2

+ 2

∫ 1

0

(1 + x)wT (x, t)M(x)ζ(t)dx.

Let g(x) = (
∫ 1

0
|(1 + x)M(x)|2dx)

1
2 . Using Lemma 5 and

D‖w(t)‖2 ≤ V (t) ≤ 2D‖w(t)‖2, we have

V̇ (t) ≤ − 1

2D
V (t) +

2√
D
|ζ(t)|g(x)

√
V (t) + 2|Y ζ(t)|2

Note that limt→+∞ |ζ(t)| = 0 and g(x) is bounded for any
x ∈ [0, 1]. According to Lemma 4.7 in Khalil (2002), the
following system

˙̄V (t) = − 1

2D
V̄ (t) +

2√
D
|ζ(t)|g(x)

√
V̄ (t) + 2|Y ζ(t)|2
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with initial condition V̄ (0) > 0 is globally uniformly
asymptotically stable. It thus follows from the comparison
principle that limt→+∞ V (t) = 0 and limt→+∞ ‖w(t)‖ = 0.
Since w(x, t) is differentiable with respect to x, x ∈ (0, 1),
we have limt→+∞ w(x, t) = 0, ∀x ∈ [0, 1). This completes
the proof.

4. ADAPTIVE CONSENSUS CONTROL WITH
NONADAPTIVE PREDICTORS

In this section, we propose an adaptive consensus control
design on the basis of predictor feedback.

4.1 Adaptive consensus protocol design

Introduce a virtual filter for node i as

ξ̇i(t) = Aξi(t) + hi(t)Fχ̌i(t) +Bûi(0, t), (10)

where χ̌i(t) =
∑N
j=1 lijχj(t) =

∑N
j=1 lijξj(t)− Zi(t) with

χj(t) = ξj(t)−Xj(t−D2), j ∈ N
the filter gain F is a negative definite matrix satisfying

ATF−1 + F−1A+ In > 0, (11)

and the adaptive gain hi(t) is updated by

ḣi(t) =

{
di|χ̌i(t)|2, if hi(t) < h̄,
0, else

(12)

with di a positive scalar and initial condition hi(0) < h̄.
Define an auxiliary variable Gi(x, t), x ∈ [0, 1], i ∈ N by

Gi(x, t) =

∫ x

0

eAD̂(x−y)Bûi(y, t)dy. (13)

Based on the virtual filter, for an estimate D̂ we propose
the following node-based adaptive consensus protocol

Ui(t) = KeAD̂ξi(t) + D̂KGi(1, t), i ∈ N (14)

whereK is chosen to make AK = A+BK Hurwitz,Gi(1, t)
is defined in (13), and ξi(t) is the filter signal. In view
of (10) and (13), we introduce the following distributed
spatially causal state transformation

ŵi(x, t) = ûi(x, t)−KeAD̂xξi(t)− D̂KGi(x, t). (15)

Let
ρi(t) = [XT

i (t−D2) χTi (t)]T ,
then we have 1

ρ̇i = Asρi + hi(t)Fsρ̌i +Bsŵ
i(0, t) +Bs1 ũ

i(0, t). (16)

where ρ̌i(t) =
∑N
j=1 lijρj(t), Bs = [BT 0m×n]T , and

As =

[
AK BK
0n A

]
, Fs =

[
0n 0n
0n F

]
, Bs1 =

[
B
−B

]
,

Remark 7. For a network of N nodes, let S denote the set
of nonzero eigenvalues of the Laplician matrices associated
with all connected undirected graphs. Set h̄ such that
2h̄% > 1 with % given by

% = min{λ|λ ∈ S}. (17)

It is observed that % only depends on the number of nodes
in the network N , and N can be derived by each node
via discrete-time average consensus protocol proposed
in Olfati-Saber and Murray (2004). Particularly, we can
directly set h̄ sufficiently large. Therefore, the adaptive law
(12) is implementable without using global information.

1 In what follows, the time variable t will be occasionally suppressed
to save space.

By noting 1N is the left eigenvalue of L corresponding to
the eigenvalue at 0, we consider a state transformation

ϕ(t) = (M ⊗ I2n)ρ(t), (18)

where M = IN − 1
N 1N1T , and ϕ(t) = [ϕT1 (t), . . . , ϕTN (t)]T

with ϕi(t) = ρi(t) − 1
N

∑N
j=1 ρj(t). Note that the rank of

M is N − 1 with one eigenvalue at 0 and others at 1. The
eigenvector corresponding to eigenvalue at 0 is 1N , which
implies that ρ1(t) = · · · = ρN (t) if and only if ϕ(t) = 0.
Hence, the leaderless consensus is achieved by showing that
limt→+∞ ϕ(t) = 0.

We also consider the following transformations

ξ̄ =(M ⊗ In)ξ, w̄(x) = (M ⊗ Im)ŵ(x),

ū(x) =(M ⊗ Im)û(x), ¯̃u(x) = (M ⊗ Im)ũ(x). (19)

Based on the above transformations and (7), (10) and (15),
we obtain that for x ∈ (0, 1),{

D̂w̄t(x) = w̄x(x)−MH(t)⊗ (D̂KeAD̂xF )χ̌,

w̄(1, t) = 0,
(20)

where H(t) = diag{h1(t), . . . , hN (t)}. Using w̄(1, t) = 0
for any t, we further have{

D̂w̄tx(x) = w̄(x)−MH(t)⊗ (D̂2KAeAD̂xF )χ̌,

w̄x(1, t) = D̂(MH(t)⊗KeAD̂F )χ̌.
(21)

It follows from (5), (7) and (8) that{
D̂D ¯̃ut(x) = D̂ ¯̃ux(x)− D̃ūx(x, t), x ∈ (0, 1),

¯̃u(1, t) = 0.
(22)

Note ρ̌i(t) =
∑N
j=1 lijϕj(t) and let ϕ̌i(t) =

∑N
j=1 lijϕj(t).

In view of (4), (15)-(19), the dynamics of ϕi(t) is given by

ϕ̇i =Asϕi + hi(t)Fsϕ̌i +Bsw̄
i(0, t)

− 1

N

N∑
j=1

hj(t)Fsϕ̌j +Bs1 ¯̃ui(0, t),

which can be written in the following compact form

ϕ̇(t) =
(
IN ⊗As + (MH(t)L)⊗ Fs

)
ϕ(t)

+ IN ⊗Bsw̄(0, t) + IN ⊗Bs1 ¯̃u(0, t). (23)

Besides, it enables us to write the dynamics of hi(t) as

ḣi(t) =

{
diϕ̌

T
i (t)Γsϕ̌i(t), if hi(t) < h̄,

0, else
(24)

where

Γs =

[
0n 0n
0n IN

]
. (25)

4.2 Convergence Analysis

This subsection presents the convergence analysis of the
proposed adaptive consensus protocol. For x ∈ [0, 1], define

g1(x) = IN ⊗KeAKD̂x, g2(x) = IN ⊗KeAKD̂xB,

g3(x) = IN ⊗KAKeAKD̂x, g4(x) = IN ⊗KAKeAKD̂xB,

and then we have

ū(x) =w̄(x) + g1(x)ξ̄ + D̂

∫ x

0

g2(x− y)w̄(y)dy, (26)

ūx(x) =w̄x(x) + D̂
[
(IN ⊗KB)w̄(x)

+ g3(x)ξ̄ + D̂

∫ x

0

g4(x− y)w̄(y)dy
]
. (27)
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Lemma 8. Let Λ̄ = IN ⊗ [In In]. For the state transfor-
mations (26) and (27), there exist positive scalars c1,. . .,c4
such that the following holds

‖ū(t)‖2 ≤ c1‖w̄(t)‖2 + c2|Λ̄ϕ(t)|2, (28)

‖ūx(t)‖2 ≤ 4‖w̄x(t)‖2 + c3‖w̄(t)‖2 + c4|Λ̄ϕ(t)|2. (29)

Proof. Using (26), the definition of L2[0, 1] norm, the
Young’s inequality and Lemma 5, we obtain

‖ū(t)‖2 ≤3‖w̄(t)‖2 + 3

∫ 1

0

|g1(x)|2dx|ξ̄(t)|2

+ 3D̂2

∫ 1

0

∫ x

0

|g2(x− y)|2dydx‖w̄(t)‖2.

By noting ξ̄(t) = Λ̄ϕ(t), the inequality (28) is derived with

the choice of c1 = 3(1 + D̂2
∫ 1

0

∫ x
0
|g2(x − y)|2dydx) and

c2 = 3
∫ 1

0
|g1(x)|2dx. The proof of the other inequality can

be carried out in a similar fashion, and thus is omitted.

Theorem 9. For the network-connected system with node
dynamics (1), the filter (10), and the adaptive gain law
(12) under Assumptions 1-3, there exists a ε∗ such that

for any |D̃| < ε∗ the adaptive protocol (14) solves the
consensus problem, the variables |ξi(t)|, |Ui(t)|, ‖ûi(t)‖,
‖ũi(t)‖, ‖ŵi(t)‖H1 , i ∈ N, converge to zero, and the
adaptive gain hi(t) converges to some finite value.

Proof. Since AK is Hurwitz, there exist positive definite
matrices P and Q ∈ Rn×n such that ATKP + PAK = −Q.
Consider a Lyapunov functional candidate as

V (t) = V1(t) + V2(t), (30)

with

V1 =ϕT (t)(L⊗Π)ϕ(t) + ε1

N∑
i=1

(
hi(t)− α

)2
di

, (31)

V2 =ε2D̂

∫ 1

0

(1 + x)
(
|w̄(x, t)|2 + |w̄x(x, t)|2

)
dx,

+ε3D

∫ 1

0

(1 + x)|¯̃u(x, t)|2dx (32)

where Π = diag{ε0P,−ε1F−1} with F determined by (11),
α, ε0, ε1 ε2 and ε3 are positive constants to be designed
later. Let N1 be defined as N1 = {i|hi(t) < h̄} and
N2 = N \ N1. The derivative of V1(t) along the solution
to (23) and (24) is obtained as

V̇1 =ϕT (t)
[(
LH(t)L

)
⊗
(
ΠFs + FTs Π

)
+ L⊗ΠAs

+ L⊗ATs Π
]
ϕ(t) + 2ϕT (t)

(
L⊗ΠBs

)
w̄(0, t)

+ 2ϕT (t)
(
L⊗ΠBs1

)
¯̃u(0, t)

+ 2ε1
∑
i∈N1

(
hi(t)− α

)
ϕ̌Ti (t)Γsϕ̌

T
i (t). (33)

Let Li be the ith column of L, thus L can be written as
L = [L1, . . . LN ]. By using ΠFs + FTs Π = −2ε1Γs, (Li ⊗
I2n)Γs(L

T
i ⊗ I2n) = (LiL

T
i )⊗ Γs, ϕ̌i(t) = (LTi ⊗ I2n)ϕ(t),

and the Young’s inequality, we obtain

V̇1 ≤ϕT
[ 2

ε2
L2 ⊗Ψ +

2

ε2
I2Nn − 2ε1h̄

∑
i∈N2

(
LiL

T
i ⊗ Γs

)
− 2αε1

∑
i∈N1

(
LiL

T
i ⊗ Γs

)
+ L⊗

(
ΠAs +ATs Π

)]
ϕ

+
ε2
2
|w̄(0, t)|2 +

ε2
2
|L⊗ΠBs1 |2|¯̃u(0, t)|2. (34)

with Ψ = ΠBsB
T
s Π. Using (25), integration by parts and

(M ⊗ In)χ̌(t) = L⊗ [0n In]ϕ(t), we have∫ 1

0

(1 + x)
(
w̄T (x, t)w̄x(x, t) + w̄Tx (x, t)w̄xx(x, t)

)
dx

− D̂
∫ 1

0

(1 + x)w̄T (x, t)(MH(t)⊗KeAD̂xF )χ̌dx

− D̂2

∫ 1

0

(1 + x)w̄Tx (x, t)(MH(t)⊗KAeAD̂xF )χ̌dx

≤− |w̄(0, t)|2 + |w̄x(0, t)|2

2
−
‖w̄‖2H1

(t)

4
+ h̄2γϕT (t)(L2 ⊗ Γs)ϕ(t), (35)

where γ is given by

γ = γ1 + D̂2

∫ 1

0

(1 +x)2(|KeAD̂xF |2 + D̂2|KAeAD̂xF |2)dx

Let Φ = [In In]T [In In]. In view of (35), Lemma 5 and
(29) in Lemma 8, we have that the derivative of V2(t)
along the solution to (20) and (21) satisfies

V̇2 ≤2ε2γh̄
2ϕT (L2 ⊗ Γs)ϕ+

2ε3c4|D̃|
D̂

ϕT (IN ⊗ Φ)ϕ

− ε2|w̄(0, t)|2 − ε2
‖w̄‖2H1

2
− ε2|w̄x(0, t)|2

− ε3
(
|¯̃u(0, t)|2 + (1− 2|D̃|

D̂
)‖¯̃u(t)‖2

− 2|D̃|
D̂

(
4‖w̄x(t)‖2 + c3‖w̄(t)‖2)

)
. (36)

Let Ξ = [ 1N√
N

Ξ̄T ] with Ξ̄ ∈ R(N−1)×N be such an unitary

matrix that ΞTLΞ = J = diag{0, λ2, . . . , λN}, where
λ2 ≤ · · · ≤ λN are the nonzero eigenvalues of L. We also
consider the following state transformation

η(t) = (ΞT ⊗ I2n)ϕ(t), (37)

where η(t) = [ηT1 (t), . . . , ηTN (t)]T . Note that the first row

of ΞT is
1T
N√
N

, and thus we have η1(t) ≡ 0. Since 2h̄λ2 > 1,

it enables us to choose

α =
ε2γh̄

2

ε1
+

1

2λ2
, i ∈ N, (38)

ε1 =
2h̄2λ2γ

2h̄λ2 − 1
ε2. (39)

Summing up (34) and (36), combining the similar terms,
and using (37)-(39) and λ2 ≤ λi, we obtain

V̇ ≤
N∑
i=2

λiη
T
i

[
Υ +

2ε3c4|D̃|
D̂λ2

Φ +
2λN
ε2

Ψ +
2

λ2ε2
I2n

]
ηi

− (
ε2
2
− 8ε3|D̃|

D̂
)‖w̄x(t)‖2 − ε3(1− 2|D̃|

D̂
)‖¯̃u(t)‖2

− ε2|w̄x(0, t)|2 − (
ε2
2
− 2c3ε3|D̃|

D̂
)‖w̄(t)‖2)

− (ε3 −
ε2
2
|L⊗ΠBs1 |2)|¯̃u(0, t)|2 − ε2

2
|w̄(0, t)|2. (40)

where

Υ =

[
−ε0Q ε0PBK

ε0(PBK)T ε1
(
−ATF−1 − F−1A− In

) ] , (41)
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Let −Ω̄ = Υ + 2λN

ε2
Ψ + 2

λ2ε2
I2n, and choose

ε2 =
1

λ2ε20
. (42)

By substituting (39) and (42) into Ω̄, we have by Schur
compliment lemma that Ω̄ > 0 if and only if

2h̄2γ

(2h̄λ2 − 1)ε20
Ω− 2ε20In > 0, (43)

ε0(Q− 2λ2λN ε
3
0PBB

TP − 2ε0In)

− ε40PBK
( 2h̄2γ

2h̄λ2 − 1
Ω− 2ε40In

)−1
(PBK)T > 0, (44)

where Ω = ATF−1 +F−1A+ In > 0 by (11). There exists
a small ε0 > 0 such that (43) and (44) hold simultaneously
due to Q > 0 and Ω > 0, and thus Ω̄1 > 0. Choose

ε3 >
ε2
2
|L⊗ΠBs1 |2,

ε∗ = min
{ λ2λmin(Ω̄)D

λ2λmin(Ω̄) + 2ε3c4λmax(Φ)
,
D

3
,

ε2D

ε2 + 4c3ε3
,

ε2D

ε2 + 16ε3

}
µ = min

{
λmin(Ω̄)− 2ε3c4λmax(Φ)

D̂λ2
|D̃|, ε2

2
− 8ε3

D̂
|D̃|,

ε2
2
− 2c3ε3

D̂
|D̃|, ε3(1− 2|D̃|

D̂
)
}
.

With the above choice of α, ε0, ε1, ε2, ε3, ε∗, and µ, if
|D̃| < ε∗, it holds that µ > 0 and

V̇ ≤ −µ
[ N∑
i=2

λi|ηi(t)|2 + ‖¯̃u(t)‖2 + ‖w̄(t)‖2H1

]
, (45)

which leads to the stability result, i.e., V (t) ≤ V (0),
∀t ≥ 0. By noting η1(t) ≡ 0, integrating (45) from 0
to +∞, one can obtain that |η(t)|, ‖¯̃u(t)‖, and ‖w̄(t)‖H1

are square integrable. The boundedness of ‖¯̃u(t)‖, and
‖w̄(t)‖H1 implies that |¯̃u(x, t)|, |w̄(x, t)|, and |w̄x(x, t)| are
uniformly bounded for any (x, t) ∈ [0, 1] × [0,+∞). By
Barbalat’s Lemma, we arrive at |η(t)|, ‖w̄(t)‖H1 , ‖¯̃u(t)‖
asymptotically converge to zero as t goes to +∞. By noting
(37), we have limt→+∞ ϕ(t) = 0, which indicates that the
consensus is achieved.

Using (10) and (15), we have that for x ∈ (0, 1),{
D̂ŵit(x, t) = ŵix(x, t)− hi(t)D̂KeAD̂xFχ̌i(t),
ŵi(1, t) = 0.

(46)

By noting limt→+∞ χ̌i(t) = 0 and hi(t) is bounded, system
(46) can be seen as a special case of system (9), and
thus it follows from Lemma 6 that limt→+∞ ‖ŵi(t)‖ = 0
and limt→+∞ ŵi(x, t) = 0, ∀x ∈ [0, 1]. Moreover, we can

rephrase (10) as ξ̇i(t) = AKξi(t) +Bŵi(0, t) +hi(t)Fχ̌i(t),
thus it holds limt→+∞ ξi(t) = 0. From (46) we obtain{

D̂ŵitx(x, t) = ŵixx(x, t)− hi(t)D̂2KAeAD̂xFχ̌i(t)

ŵix(1, t) = hi(t)D̂Ke
AD̂Fχ̌i(t).

(47)

Using Lemma 6 again we have limt→+∞ ‖ŵix(t)‖ = 0 and
limt→+∞ ŵix(x, t) = 0, ∀x ∈ [0, 1]. Similar as the discussion
in Lemma 8, there exist positive scalars b1 and b2 such
that ‖ûi(t)‖2 ≤ b1‖ŵi(t)‖2 + b2|ξi(t)|2, and thus ‖ûi(t)‖
converges to zero. By noting Ui(t) = ûi(1, t) = ûi(1, t),

we finally obtain that the variables |Ui(t)|, ‖ũi(t)‖, i ∈ N,
converge to zero. This completes the proof.

Remark 10. It is observed that (43) and (44) are only
related to the parameter ε0, which implies the choice of
the parameters is compatible. Namely, once ε0 is solved
by (43) and (44), the parameters ε2, ε1, α, ε3, ε∗ will be
successively determined.

5. SIMULATION STUDY

In this section, simulation examples are presented to illus-
trate the effectiveness of the theoretical result. Consider a
network of 4 nodes described by (1) and (2) with

A =

[
0 1
−1 0

]
, B =

[
0
1

]
,

D1 = 4s, D2 = 2s, and the Laplacian matrix

L =

 2 −1 0 −1
−1 2 −1 0
0 −1 2 −1
−1 0 −1 2

 .
Choose K = −[1 3] such that AK is Hurwitz. Solving (11)
via LMI toolbox gives the filter gain matrix F in (10) as
F = −0.5011I2. Set h̄ = 1000 and di = 0.01, i = 1, . . . , 4,
and one can check that 2h̄% > 1. The initial conditions
are set to be zero except hi(0) = 0.1, i = 1, . . . , 4,
and X(0) = [0.5 − 0.5 0.75 0.75 1 2.5 5 − 1]T . With the
above settings, simulation results in two scenarios are
presented to illustrate the effectiveness of the proposed
control schemes. The first one is with the total delay D
underestimated, i.e., D̂ = 5.4s, while the other is with
the total delay overestimated D̂ = 6.6s. The trajectories
of consensus errors, adaptive gains and control input for
both scenarios are shown in Fig. 1, which indicates the
consensus is achieved.

6. CONCLUSION

In this paper, we have presented an adaptive consensus
control design for network-connected systems with un-
known delays under undirected graphs. By introducing a
transformation of the estimate delay state and its inverse,
an explicit Lyapunov function has been constructed to
analyze system stability. One interesting feature of the
result is that the proposed adaptive protocols can be im-
plemented by each node in a fully distributed fashion, and
the interaction of control input among nodes is avoided.
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