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Abstract: Extremum seeking control is a well known approach for multivariate real-time
optimization of dynamic systems. In classical extremum seeking control schemes, the estimated
gradient of the process’s steady-state map is continuously integrated towards a local optimum.
Gradient estimation can be done by a combination of low- and high-/bandpass filters. Advanced
approaches have been developed that use extended Kalman filters, which allow for a joined
estimation of the multidimensional gradient. Within this work, a discrete-step real-time
optimization scheme is investigated that is derived from the prevalent quasi-Newton method
of numerical optimization. Gradient estimation is implemented by the identification of a local
linear dynamic model. A significantly faster convergence to the optimum compared to classical
extremum seeking is shown for an academic Hammerstein example and for the optimization of
the power consumption within a multistage compressor simulation.
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1. INTRODUCTION

As a long known real-time optimization approach, the ex-
tremum seeking control (ESC) is suitable for determining
an extremum of the steady-state map within a dynamic
process (Tan et al., 2010). Only a limited knowledge of the
underlying system is required, such as, stability, the exis-
tence of an extremum in the static input-output map, and
an approximate quantification of the relevant timescales.
After the proof of stability by Krstić and Wang (2000) the
research and application of this approach has been revived,
see, for example, the pressure rise maximization in an axial
flow compressor (Wang et al., 2000), the separation control
on a high-lift configuration (Becker et al., 2007), and the
active drag reduction of bluff bodies and car models (Hen-
ning et al., 2008), to name just three examples, all of which
are related to aerodynamic flows. The basic component of
the classical ESC is the estimation of the local gradient
of the static input-output map (static gradient) using,
e.g., a harmonic excitation and high-/low-pass filters. The
gradient descent algorithm approaches a local minimum in
opposite direction of the gradient. Therefore, the integral
of the estimated gradient is continuously fed back.
Gelbert et al. (2012) proposed an advanced algorithm for
gradient estimation in a dual-input single-output (DISO)
ESC using an extended Kalman-filter (EKF). Ghaffari
et al. (2012) investigated the optimization of multiple-
input single-output (MISO) systems with a Newton-based
approach. Additionally to the n-dimensional gradient,
with n representing the number of input variables, the
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n × n-dimensional inverse Hessian matrix is estimated
through the integration of a Riccati differential equation.
It is shown that a continuous feedback of their product
leads to a faster convergence compared to the classical
gradient based ESC. Zhang and Ordóñez (2007) devel-
oped an ESC control scheme combining numerical opti-
mization algorithms that provide search candidates to the
extremum and a state regulator designed to regulate the
state towards the search direction. The discrete optimiza-
tion allows a faster convergence of the extremum seeking
control and abandons the slow continuous time integration
of the gradient.
In this work, a discrete real-time optimization approach is
presented which is based on the well known quasi-Newton
method. The estimation of the gradient takes place only
at certain points in time and can be calculated from
a fitted local linear dynamic model, as Krishnamoorthy
et al. (2019) proposed for the single-input single-output
(SISO) case. With the cyclic estimation of the gradient,
the Hessian matrix is updated iteratively using the Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) algorithm, which
is widespread in the domain of numerical optimization.
Within the context of this article, the term continuous
refers to a continuously evolving controller-output, even
though the implementation of the gradient estimation
and the integration might take place in the time-discrete
domain. In contrast, the developed quasi-Newton ESC
conducts discrete optimization steps at a predefined time-
grid that mainly depends on the system time constants
rather than the sampling time.
The paper is structured as follows: A review of continuous
multivariate extremum seeking control is given in Section
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Fig. 1. Block diagram of a MISO extremum seeking feed-
back scheme for optimization of the output y

2. The classical as well as an advanced algorithm for
the multivariate gradient estimation are briefly presented.
Section 3 gives an outline of the functionality of the quasi-
Newton ESC. After motivating the approach, it is decom-
posed into its basic steps and explained in more detail. For
the purpose of evaluation and comparison of the presented
ESC algorithms two examples are investigated in Section
4. The first example is a simple academic system and the
second one deals with a multistage compressor model.

2. CONTINUOUS MISO ESC

Intending to minimize the system output y(t), the key
element of the continuous gradient-based ESC is the
gradient estimation of the quasi-static map ys = F (us),
see Fig. 1. In order to obtain information about the
gradient g = ( dys/dus)

ᵀ
, g ∈ Rn, the system input u(t)

is superposed with a vector of harmonic perturbations,
e.g.,

up = a[sinω1t, cosω1t, sinω2t, cosω2t, . . . ]
ᵀ . (1)

Note, that there is only one output available for the
estimation of the n-dimensional gradient. This requires the
perturbation-input vector to be separated in phase and/or
frequency. It can easily be shown that only a phase shift
of 90 ◦ ensures an explicit separation. To assure a quasi-
steady-state behavior of the system, the perturbation
frequencies are limited by the largest time constant of the
process Tmax, so that

1/Tmax >> ω1 > ω2 > . . . . (2)

As the convergence speed of the ESC directly depends on
the perturbation frequency, this results in a limit for the
overall rate of convergence.

2.1 Classical ESC

In order to compute the estimated static gradient g̃ within
the classical extremum-seeking control

• the mean of y(t) is removed by using a high-pass or
band-pass,
• a demodulation is performed by multiplication with

the perturbations up,i(t)/a and

• the remaining periodic parts are damped by a low-
pass filter

for each input up,i, i = 1, ..., n. A more detailed presen-
tation and a design guideline for classical ESC was shown
by Xiao et al. (2014).
For the multivariate optimization, the classical ESC ap-
proach can basically be seen as n independent SISO con-
trollers. The main disadvantage of this method is that the
coupling between the inputs is not taken into account.

2.2 EKF based ESC

The use of an extended Kalman-filter allows the joined
estimation of the gradient, which results in a faster overall
convergence of the ESC. Here, we extend and slightly
modify the approach of Gelbert et al. (2012) to the MISO
case and introduce the idea briefly. As states x̃ of the
EKF, the entries of the local gradient vector are chosen.
The EKF estimates the static gradient in conjunction and
therefore takes the input-coupling explicitly into account.
If the integration constant α is chosen to be small, the
estimated static gradient g̃, thus the states of the EKF
x̃, can be approximated as constant. This leads to the
discrete-time state equation

x̃(k + 1) = x̃(k) +wk. (3)

Referring to the first order Taylor series expansion of the
static function ys = F (us) around the mean actual input
vector u0 + ∆u(t), results in the affine expression

ys = y0 + g|u0+∆u(t) · (us − u0 −∆u(t)). (4)

A proper linear measurement equation can be derived, by
simply subtracting two time-points

∆ys(k)︸ ︷︷ ︸
ys(k)−ys(k−k∆)

= ∆uᵀ
s (k)︸ ︷︷ ︸

(us(k)−us(k−k∆))ᵀ

·x̃+ vk. (5)

In order to respect x̃(k) and ∆y(k) being stochastic
processes, Gaussian white noise wk ∈ Rn and vk ∈ R
are assumed.
The parameter k∆ is chosen, such that the time shift
corresponds to 3/4 of the shortest perturbation period

k∆ =
1

Ts

3

4

2π

ω1
, (6)

with Ts being the sampling time (Gelbert et al., 2012).

Nonlinear local observability can be shown for the system
(3), (5).

3. DISCRETE-STEP, QUASI-NEWTON ESC

Inspired by the quasi-Newton method for unconstrained
nonlinear programming the discrete-step, quasi-Newton
ESC (QNESC) is proposed here. Quasi-Newton algorithms
require only the gradient of the objective function to be
supplied at each iterate to produce superlinear conver-
gence. The prevalent quasi-Newton algorithm is the BFGS
method. For a detailed specification of the BFGS method

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1635



real-time
optimization

{
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Fig. 2. Block diagram of discrete-step, quasi-Newton ESC
scheme for optimization of the output y

see for example Nocedal and Wright (2006). To use this
algorithm within the context of real-time optimization,
some adaptations have to be made. The main challenge
thereby is coping with system dynamics.
The control scheme of the QNESC is shown in Fig. 2.
One real-time optimization cycle κ can be decomposed into
three basic steps:

(1) execution of a Newton step,
(2) evaluation of the static gradient,
(3) iterative update of the estimated inverse Hessian.

In the following, these three steps are explained in more
detail and adapted for the purpose of real-time optimiza-
tion.

3.1 Newton step

Based on the current estimation of the inverse Hessian
H̃(κ) and the gradient g̃(κ) of the steady-state map, the
search direction is computed by

p(κ) = −H̃(κ)g̃(κ). (7)

The new iteration becomes

∆u(κ+ 1) = ∆u(κ) + βκp(κ), (8)

where the step length βk is chosen to satisfy the Wolfe
conditions, which ensure a sufficient decrease in the ob-
jective function and rule out unacceptably short steps,
see Nocedal and Wright (2006). The simple and popular
backtracking method has been chosen as the linesearch
strategy, where the step length βκ is stepwisely decreased
from a starting value β0, until the condition

F (∆u(κ) + βκp(κ)) ≤ F (u(κ)) + cβκg̃
ᵀ(k)p(k) (9)

is satisfied. In some cases it might be appropriate to delimit
the step size, to avoid large steps that may result from a
bad estimation of the inverse Hessian, especially in the
beginning of the algorithm.
As we have to cope with a dynamic system, it becomes
clear that we have to wait for the system to settle after
a stepwise input change, before condition (9) can be
evaluated. To appraise an adequate waiting time, the
following consideration might be helpful: If the system
dynamic can be approximated as a first order low pass
with the dominant system time constant of Tdom, then a
waiting time of 5 ·Tdom ensures the system output to reach
99.3 % of its stationary value, waiting 6 ·Tdom even results
in 99.8 %.

3.2 Gradient estimation

To compute the gradient of the objective function in nu-
merical optimization, finite differences are often used. For
real-time optimization of multivariate dynamic systems,
this approach is highly impractical, as one has to wait
for the system to converge after every step (n + 1 times
in case of forward difference or 2n + 1 times for central
differences). Instead a local linear dynamic model around
the current operating point is identified here, by addition-
ally perturbing the system input with a pseudo random
binary sequence (PRBS). After mean-centering the time
series of the input u(t) and the measured output y(t), a
MISO autoregressive model with exogenous input (ARX)
model of the form

A(q)y(t) = B1(q)u1(t) + · · ·+ Bn(q)un(t) + e(t) (10)

can be fitted, with q being the shift operator, and

A(q) = 1 + a1q
−1 + · · ·+ ana

q−na , (11)

Bi(q) = 1 + bi,1q
−1 + · · ·+ bi,nb

q−nb+1. (12)

Note, that the parameters na and nb have to be chosen to
match the systems dynamical behavior.
The gradient of the steady-state map can be seen as the
static gain of the dynamic model, that can be calculated
by

g̃ =

B1(1)/A(1)
...

Bn(1)/A(1)

 . (13)

A detailed introduction to the identification of linear
models is given by Grimble et al. (2008).

3.3 Iterative Hessian update

The search direction (7) within the quasi-Newton algo-
rithm depends on the inverse of the Hessian matrix. In-
stead of estimating the Hessian and calculating the inverse
in every iteration, one can directly estimate the inverse
Hessian by the update formula

H̃(κ+ 1) = [I− ρ(κ)ξ(κ)χᵀ(κ)] H̃(κ)
[I− ρ(κ)χ(κ)ξᵀ(κ)] + ρ(κ)ξ(κ)ξᵀ(κ)

(14)

with

ξ(κ) = ∆u(κ+ 1)−∆u(κ), (15)

χ(κ) = g̃(κ+ 1)− g̃(κ) and (16)

ρ(κ) =
1

χᵀ(κ)ξ(κ)
. (17)

In order to avoid overshooting during the first iterations,
it is suggested to choose a small positive definite matrix
as the initial H̃(0). It can be shown that the estimated

inverse Hessian will be positive definite whenever H̃(0) is
positive definite.
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3.4 Algorithm

Even though the method cannot be explained in every
single detail here, Algorithm 1 gives an idea on how
the three basic steps can be implemented and how they
operate together.

Algorithm 1 Discrete-step, quasi-Newton ESC

. # ∆u is applied to the system

. # y is the measured system output
Input:

initial inverse Hessian H̃0

initial step length β0

Wolfe-condition parameter c1
backtracking parameter c2
wait time for stationarity Tw

1: wait Tw
2: g̃ ← estimateGradient
3: H̃← H̃0

. # loop over optimization cycles
4: loop
5: β ← β0/c2
6: ∆u0 ← ∆u
7: y0 ← y
8: g̃0 ← g̃
. # compute search direction

9: p = −H̃g̃
. # backtracking linesearch

10: repeat
11: β ← c2β
12: ∆u← ∆u0 + βp
13: wait Tw
14: until y ≤ y0 + c1βg̃

ᵀp
15: g̃ ← estimateGradient

. # update inverse Hessian
16: ξ ← ∆u−∆u0

17: χ← g̃ − g̃0
18: ρ← 1/(χᵀξ)

19: H̃← [I− ρξχᵀ] H̃ [I− ρχξᵀ] + ρξξᵀ

20: end loop

1: function estimateGradient
2: superpose PRBS on system input ∆u(t)
3: measure system output y(t)
4: mean-center ∆u(t) and y(t)
5: arx ← identify ARX model
6: return static gain of arx
7: end function

4. EXAMPLES

4.1 Hammerstein model

The first example is a simple Hammerstein model that is
composed of a quadratic function and a low-pass filter, see
Fig. 3.

The quadratic matrix P is positive definite, therefore the
quadratic function f(µ) = µᵀPµ has a global minimum
at µ = 0. The paraboloid is shifted by the offsets u0

and y0 = uᵀ
0Pu0, to have an optimal input u∗ 6= 0

and to match the initial condition of the low-pass filter

(·)ᵀP(·) 1
1 + T0s

+ +
u(t) ys(t) y(t)

u0 −y0
system

Fig. 3. Block diagram of a simple Hammerstein model
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Fig. 4. Simulation results of the three presented ESC
methods for the Hammerstein model

y(0) = ys(0) = 0 at the same time. This makes u∗ = −u0

the minimizer of the system with the optimal output
y∗ = −y0.

A comparison of the three proposed ESC methods for
the chosen Hammerstein model is presented in Fig. 4. All
applied ESC approaches converge to the optimal solution.
The EKF based ESC is approximately two times faster
compared to the classical ESC, also the transition is much
smoother. The classical algorithm is very sensitive to the
integration constant α. The integration constant of the
EKF based approach αEKF = −5 · 10−5 leads to unstable
behavior for the classical approach. That is why the inte-
gration constant of the classical algorithm was chosen five
times smaller (αclassical = −1 · 10−5).
It can be seen that the proposed quasi-Newton ESC ap-
proach has a significantly faster convergence compared
to the continuous methods. The discrete optimization
method takes less than half a time unit to converge to
the optimal solution, whereas the continuous controllers
need approximately one and two units respectively.
The capability of the proposed QNESC could clearly be
demonstrated with this example. Also the discrete opera-
tion scheme of the QNESC, consisting of the superposition
of the PRBS and the discrete optimization steps, can be
seen in Fig. 4. All required system constants and ESC pa-
rameters for this simulation can be found in the Appendix
A.

4.2 Multistage compressor

The second example deals with the regulation and opti-
mization of the power consumption of a multistage radial
compressor, and, therefore, has a technical relevance. A
simulation model of a five stage main air compressor for
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γigv +

γdgv

ṁ

P

Fig. 5. Block diagram of the process-control design for the
multistage compressor with independent adjustable
inlet guide vanes and adjustable diffuser guide vanes
for every stage

an air separation process including intercoolers was analyt-
ically derived from thermodynamical laws. A compressor
stage is characterized by two static compressor-maps that
specify the pressure gain and the efficiency of the com-
pression depending on the mass-flow and the adjustable
inlet guide vanes (igv) and adjustable diffuser guide vanes
(dgv). The dynamic behavior of the system is mainly
determined by the dynamics of the intercoolers. The dy-
namical mass and heat balances of the heat exchangers are
solved within the simulation. The heat-transfer is modeled
by a logarithmic temperature difference approach.
The control-objective is to adjust the overall mass-flow
of the compressor at the operating point of maximum
efficiency, which is equivalent to the point of least power
consumption. The regulation of one stage influences the
neighboring stages, therefore it affects the overall mass-
flow and power consumption.

Fig. 5 shows the schematic process-control design, con-
sisting of a mass-flow regulator and a real-time power
optimization. The mass-flow controller uses the static
compressor-maps to predetermine the optimal combina-
tions of the manipulated variables γigv and γdgv that
guarantee a certain mass-flow with maximum efficiency at
every stage. Deviations of the actual mass-flow from the
reference are compensated for with an integral controller.
Thus, the mass-flow regulator can be seen as a combi-
nation of open-loop control with an integral closed-loop
controller.
With respect to uncertainties of the model and distur-
bances, the compressor control with only the mass-flow
regulator may lead to a non-optimal operation in terms of
efficiency. In order to increase the overall efficiency and,
therefore, reduce the energy costs of the air compression,
a real-time power optimization is applied. The power op-
timization does not use any a priori information, as these
are fully exploited within the mass-flow regulator already.
For the purpose of power optimization, the mentioned
ESC approaches have been implemented on the multistage
compressor model. A dominant time constant of about 20 s
has been identified for the mass-flow regulation. As men-
tioned before, the ESC must be significantly slower than
the underlying closed-loop mass-flow control, hence, the
fastest excitation frequency for the continuous ESC is set
to ω1 = 2π/(300 s) and the bandwidth of the PRBS signal
for the discrete ESC was determined to ωPRBS = 2/(20 s).
For the reason of comparison, the integration constants α
of the continuous approaches have the same value.
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Fig. 6. Simulation results of the discrete-step QNESC for
multistage compressor model

In order to compare the real-time optimization ap-
proaches, a scenario was investigated, where all five applied
diffuser guide vanes have a permanent offset γdgv,off =
−5 ◦ . Fig. 6 shows the first 300 s of the simulation for
the QNESC. The mass-flow is normalized to its reference
value and the power is normalized to the optimal power
for the reference mass-flow. Because of the constant distur-
bance, the mass-flow in the beginning of the simulation is
less than the reference, hence, the dedicated compression
power is low. With the actual mass-flow being regulated to
its reference value, the compression power rises within 30 s.
Due to the dgv-offset, the operation is not optimal in terms
of power consumption. After the waiting time of 100 s the
PRBS is superposed, followed by the first optimization
step at 220 s that reduces the power consumption, once
the mass-flow reaches its reference.

A comparison of the ESC methods is presented in Fig. 7.
All approaches are able to reduce the dedicated compres-
sion power, thus saving energy costs for the compressor
operation. The classical ESC takes about 3 h to converge,
whereas the EKF based ESC is about three times faster
and operates generally smoother. The proposed QNESC
converges in less than 0.5 h, making it highly suitable for
practical applications.

5. CONCLUSIONS

By adapting the well known quasi-Newton optimization
method to multivariate dynamic systems a real-time opti-
mization has been developed that converges significantly
faster than both classical and advanced ESC approaches.
For the purpose of gradient estimation, a local linear
dynamic model is identified, which allows a determination
of the accuracy of the estimated gradient by evaluating
the prediction error of the identified model. The Hessian
matrix is iteratively updated with the established BFGS-
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Fig. 7. Comparison of simulation results of the three
presented ESC methods for multistage compressor
mode

algorithm. The application examples for a simple Ham-
merstein model and the technically relevant compression
model clearly show the benefit of the proposed discrete-
step QNESC compared to the continuous methods.
Additionally, the performance of the continuous ap-
proaches is very sensitive to the integration constant α.
A low α leads to slow convergence whereas a high α may
cause instability. The QNESC has a small set of tuning
parameters, therefore it is more robust and easy to adjust.
In future works, constrained systems can be investigated
by expanding the algorithm with methods of constrained
nonlinear optimization, like sequential quadratic program-
ming.

Appendix A. PARAMETER HAMMERSTEIN
EXAMPLE

System parameters:

P =


7 2 −1 −3 −3
2 7 1 −1 −3
−1 1 4 2 5
−3 −1 2 10 0
−3 −3 5 0 11


u0 = (3 −1 2 −5 3)

ᵀ

T0 = 20 s, Ts = 0.1 s

Continuous ESC parameters:
w1 = 2π/(200 s), w2 = 2π/(267 s), w3 = 2π/(356 s),
a = 0.1

Classical ESC parameters (low-pass and band-pass filter):
GLP = 1/(1 + TLPs), GBP = 2ωBPs/(s+ ωBP)2

TLP,i = 1/(0.1 · ωi), ωBP,i = ωi, α = −1 · 10−5

EKF based ESC parameters:
QEKF = 0.1 · I, REKF = 1, P0,EKF = 0.1 · I, Tw = 100 s,
α = −5 · 10−5

QNESC parameters:
aPRBS = 0.1, ∆tPRBS = 240 s, ωPRBS = 3/(20 s),

na = 1, nb = 1, H̃0 = 0.01 · I, β0 = 1, c1 = 10−4, c2 = 0.8
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