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Abstract: An iterative, learning based, feed-forward method for compensation of friction in
industrial robots is studied. The method is put into an ILC framework by using a two step
procedure proposed in literature. The friction compensation method is based on a black-box
friction model which is learned from operational data, and this can be seen as the first step in
the method. In the second step the learned model is used for compensation of the friction using
the reference joint velocity as input. The approach is supported by simulation experiments.
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1. INTRODUCTION

Iterative learning control (ILC) is an established method
in the control field, and the origin of the method goes back
to Uchiyama (1978) and Arimoto et al. (1984). Numerous
papers have been published, and excellent surveys of the
topic are given in e.g. Bristow et al. (2006); Ahn et al.
(2007). The method is based on the property that the
system under consideration is carrying out a given task
repeatedly. By using a measure of the performance in one
iteration it is possible to modify the control action for
the next iteration and thereby obtain an improvement of
the performance. ILC has been studied in both continuous
and discrete time settings, for linear as well as non-linear
systems, and in both the time and frequency domain. A
number of applications have been reported from various
fields, with emphasis on industrial robots.

Originally ILC was proposed as an entirely model free
method, but it turns out that this leads to rather re-
strictive conditions for convergence. However, it has also
been found that considerable improvements of the control
system performance can be obtained using fairly simple
models of the system. ILC is very good at reducing the
low frequency components of the control error, while it
is more difficult to handle the high frequency parts. This
can be seen in the convergence criteria and expressions
for the remaining error which will be discussed in Section
2. One situation where, by the nature of the problem,
the error contains high frequency components is systems
with friction, and this phenomenon is difficult to handle
with conventional ILC, and some alternative or additional
method is needed.

The purpose of this paper is to put an iterative feed-
forward friction compensation, presented in Johansson
et al. (2018) and Johansson (2017), into an ILC frame-
work. The friction compensation method in these refer-
ences uses a black-box friction model based on e.g. B-
? This work was sponsored by the VINNOVA Competence Center
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splines or some other function approximation. The friction
compensation method as such lies somewhat outside the
traditional ILC approach, in that it involves learning a
parameterized model of (a part of) the system under
consideration. However, a more general ILC framework
has been proposed in Steinhauser (2019), and using this
framework the learning of the friction model fits in very
well. Section 2.4 of Steinhauser (2019) presents a nonlinear
ILC algorithm consisting of two steps, where the first step
is denoted model correction and the second step is called
model inversion. The two-step approach will be presented
in some more detail below.

The paper is organized as follows. Section 2 gives a brief
ILC background. It is followed by Section 3, which presents
the type of friction compensation that is studied here. In
Section 4 the two step approach to ILC, introduced in
Steinhauser (2019), is presented briefly. Section 5 shows
how the learning based feed-forward friction compensation
can be put in the two-step ILC framework, and the
approach is then illustrated in an example in Section 6.
Finally Section 7 contains some conclusions.

2. ILC BACKGROUND

This section gives a brief introduction to ILC. As men-
tioned before there are several very good survey papers
about ILC, and for details it is referred to them. Consider
linear discrete-time SISO systems described by

yk(t) = Tr(q)r(t) + Tu(q)uk(t) (1)

with reference r(t), ILC input uk(t) and output yk(t) at
iteration k. The shift operator is denoted q. Load and
measurement disturbances are omitted for simplicity. All
signals are defined on a finite time interval t = nTs,
n ∈ [1, Ns] with Ns number of samples and sampling
interval Ts = 1 if nothing else is stated. The system can
have internal feed-back, so Tu(q) and Tr(q) contain the
system to be controlled and the controller in operation.
Alternatively the system can be described using a matrix
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approach (in the literature often denoted lifted approach)
but due to space limitations this is omitted here.

Using the transfer operator framework the ILC algorithms
are often described according to

uk+1(t) = Q(q)
(
uk(t) + L(q)ek(t)

)
(2)

ek(t) = r(t)− yk(t) (3)

where Q(q) and L(q) may be non-causal filters. The con-
dition for convergence when the algorithm (2) is applied
to (1) is given by

| Q(eiω) || 1− L(eiω)Tu(eiω) |< 1 ∀ω (4)

and the resulting error, E∞(eiω), after convergence is given
by

E∞(eiω) =
1−Q(eiω)

1−Q(eiω)(1− L(eiω)Tu(eiω))
R(eiω) (5)

Equation (5) illustrates the well known property that for
the error to tend to zero it is necessary to choose Q(q) =
1. On the other hand, for robustness and disturbance
suppression reasons it is normally necessary to choose
Q(q) 6= 1, and the standard choice is to choose Q(q)
as a zero-phase low pass filter. When the magnitude of
Q tends to zero for high frequencies equation (5) shows
that E∞(eiω) will tend to one, and it will hence not be
possible to eliminate the high frequency components of
the error. A detailed discussion about convergence aspects,
can be found in e.g. Norrlöf and Gunnarsson (2002).
This reference also presents conditions for convergence
and monotone convergence for the matrix formulation via
eigenvalue and singular value conditions. It is important to
remember that the expressions for convergence and final
error, (4) and (5), are based on the assumption that the
system to be controlled and the ILC algorithm are linear.
Since friction is a nonlinear phenomenon the expressions
have to interpreted with care, but they can still give useful
insight into the behavior of ILC applied to systems with
friction.

There are several studies of ILC being applied to systems
with friction. An early reference is Wang and Longman
(1994), which shows convergence of an ILC algorithm
also in presence of Coulomb friction. The results are
however based on rather restrictive conditions since only
Coulomb friction is considered and it is assumed that the
friction coefficient is known. The result also requires that
the reference signal has special properties. In Driessen
and Sadegh (2004) the authors extend the results to
the multivariable case and also consider the influence of
bounded input signals. Some additional early observations
are presented in Norrlöf and Gunnarsson (1997), where it
is illustrated that conventional ILC is unable to reduce
the high frequency components of the error, due to the
friction. Fleischer (1997) studies a combination of ILC and
friction compensation, and it is shown that a substantial
improvement is obtained when the two approaches are
combined. Another contribution is Tsai et al. (2006) where
the effects of friction are compensated via a modification
of the reference signal to the control system.

3. FRICTION MODELING AND COMPENSATION

Friction is a complex phenomenon and it has been studied
in numerous publications. See for example Armstrong-
Hélouvry (1991), Al-Bender and Swevers (2008), Harnoy

et al. (2008), Stotsky (2007), and Bittencourt and Gun-
narsson (2012). In robot manipulator applications where
high precision is required, friction is known to cause prob-
lems, especially for low-velocity motions. Friction can ap-
pear distributed in the system but a major part can be
related to the motors and gearboxes.

One model which has received a lot of attention is the so
called LuGre model, which is presented and discussed in
Åstrom and de Wit (2008). The LuGre model captures
also the dynamic properties of the friction, but there is
also a static version of the model capturing Coulomb and
viscous friction and the Stribeck effect. The static LuGre
model is given by

τF (v) = (fc + (fs − fc)e−(v/vs)
2

)sign(v) + fvv (6)

where τF denotes the friction force and v is the relative
velocity between the surfaces. In the model it has also
been assumed that the viscous friction is linear. The LuGre
model is based on physical insight and the process to
estimate the parameters fc, fs and fv often requires data
collection with specially selected input signals.

An alternative approach is to formulate a friction model of
black-box type and learn the parameters from data. The
approach in this paper is inspired by the work presented in
Johansson et al. (2018) and Johansson (2017) where the
friction is modeled using B-spline networks (BSN). The
structure of a B-spline network can be seen in Figure 1.
The network contains one hidden layer where the so called
B-splines are defined. The input x can be seen mapped
to each individual B-spline within the network, where N
represents the number of B-splines. Together with each
B-spline there is also a weight, and the outputs of the
individual splines are then summed together in order to
generate the output y. When presented with training
data, the weights are adapted via a suitable minimization
method.

Fig. 1. B-spline network structure where x is the input to
the N number of B-splines in the hidden layer. Each
B-spline µi is assigned a weight wi were the output is
a linear combination of B-splines and weights.

The output of the function can be expressed as

y(x) =

N∑
i=1

µi(x) · wi (7)

where the B-splines are given in the form of the func-
tion µi(x) given that x is the input. Using the B-spline
approach involves choosing the number of splines and
the location of the knots. These choices depend on the

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1436



application, and some aspects of the choices in the friction
modeling application are discussed in Johansson et al.
(2018).

The model in (7) is a linear regression and an alternative
way to express the model is

y(x) = ϕT (x)θ (8)

where θ contains the model coefficients (weights)

θ = (w1, . . . , wN )
T

(9)

and the regression vector ϕ consists of the spline functions,
i.e.

ϕ(x) = (µ1(x), . . . , µN (x))
T

(10)

The representation in equation (7) is general and can be
used also with other types of functions. For example, a very
simple model of Coulomb friction with the same friction
coefficient in both directions, i.e.

τF (v) = fcsign(v) (11)

is obtained by putting N = 1, θ = fc and

µ1 = sign(v) (12)

This relatively simple approach for modeling of the friction
will be evaluated in the simulation example in Section 6.
The general case using B-splines to model the friction is
discussed in Johansson et al. (2018).

The overall structure of the feed-forward friction compen-
sation presented in Johansson et al. (2018) and Johansson
(2017) is illustrated in Figure 2, where the variables z and
v represent signals from the robot and the regulator used
in the learning procedure.

Fig. 2. Control system based on feed-forward (FF) and
feed-back (F) control extended with learning-based
feed-forward.

A key challenge when modeling and estimating friction
is that the true friction force τF acting on the robot
cannot be measured. Therefore it has to be replaced by an
estimate. The approach here is to use parts of the control
signal, generated by the robot controller, as estimate of the
friction force. The variable up is defined as up = uc − uI ,
where uc is the controller output, see Figure 2, and uI is
the integral part of the controller output. The argument is
that if the feed-forward is based on a sufficiently accurate
model of the robot, the task of the controller output is
to counteract the friction force and to compensate for
gravitational forces. By subtracting the integral part uI
handling the gravitational forces, the remaining part of
the input, i.e. uP represents an estimate of the friction
force. This approach was applied with good results also in
Längkvist (2009).

4. A TWO-STEP APPROACH TO ILC

A novel and very interesting approach to ILC is pre-
sented in Steinhauser (2019), in which nonlinear ILC is
formulated as a two-step procedure, extending the work
presented in Volckaert (2012). In the approach the ILC
algorithm is divided into a model correction step and a
model inversion step. To illustrate let the model of the
relationship between input and output be described by

yk(t) = T (uk(t), θ̂) (13)

In the first step the model is updated (corrected) by using
the input-output data collected in iteration k to compute
a new estimate of the parameter vector θ. In Steinhauser
(2019) this is done by minimizing a criterion of the type

θ̂k = arg min
θ
‖yk − T (uk, θ)‖2V + ‖θ‖2W1

+ ‖θ − θ̂k−1‖2W2

(14)
where the first term minimizes the output error of the
model, the second is a regularization terms penalizing the
parameter vector itself, and the third term is used to affect
the rate of change of the parameter vector. Various aspects
of the choice of the weighting matrices V,W1 and W2 are
discussed in Steinhauser (2019).

In the second step, denoted model inversion step, the new
input vector is computed via a second minimization, where
the input in iteration k + 1 is computed via

uk+1 = arg min
u
‖yd − T (u, θ̂k)‖2Q + ‖u‖2R1

+ ‖u− uk‖2R2

(15)
As pointed out in Steinhauser (2019) this step is essentially
identical to the so called norm-optimal ILC formulation.
The matrix Q is a weight on control error, and the matrices
R1 and R2 put weights on the magnitude of the ILC
input signal and the rate of change of the input signal
respectively. Choosing R1 = 0 leads to an update of the
input without forgetting, or, in other words Q = 1 in
ILC algorithm. Further aspects of the choice of the design
matrices are discussed in Steinhauser (2019).

5. FRICTION COMPENSATION AS THE TWO-STEP
APPROACH TO ILC

The estimation and update of the chosen friction model
will now be formulated as the first step of the two-step
approach. Consider the model in equation (8), and let x
and y denote the velocity and friction force respectively.
Assume that, at iteration k, there are Ns measurements of
each variable. Let the measured friction values be collected
in the vector Yk, i.e.

Yk = (y(1), . . . , y(Ns))
T

(16)

and the regressors for each measurement be collected in
the matrix Φk, i.e.

Φk =

 ϕT (x1)
...

ϕT (xNs)

 (17)

and from (10),

ϕ(xi) = (µ1(xi), . . . , µN (xi))
T
. (18)

Given that there is an estimate θ̂k−1 of the parameter
vector the task is to compute a new estimate of the
parameter vector by minimizing (from (14))
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θ̂k = arg min
θ
‖Yk − Φkθ‖2V + ‖θ‖2W1

+ ‖θ − θ̂k−1‖2W2
(19)

Straightforward minimization with respect to θ gives

θk = Qk(θk−1 + LkEk) (20)

where

Qk = (ΦTk V Φk +W1 +W2)−1(W2 + ΦTk V Φk) (21)

L = (W2 + ΦTk V Φk)−1ΦTk V (22)

and
Ek = Yk − Φθ̂k−1. (23)

To illustrate the approach consider the case when the
friction is modeled as Coulomb friction with the same
friction coefficient in both directions, as in (12). In this case
θ is the scalar fc and Φk consists of the function sign(v) for
the Ns measurements. This gives that ΦTΦ = Ns. Assume
for simplicity that V = 1 and that W1 = ρ and W2 = λ.
Equations (21) and (22) give

Q =
λ+Ns

ρ+ λ+Ns
(24)

and

Lk =
ΦTk

λ+Ns
. (25)

In (24) one can see that choosing ρ = 0, i.e. no regulariza-
tion, gives Q = 1 which means no forgetting in the update
of the parameter estimate, and vice versa. With ρ = 0 the
update equation becomes,

θ̂k = θ̂k−1 +
ΦTk

λ+Ns
Ek. (26)

Finally, setting λ = 0, i.e. no penalty on the change of the
parameter estimate, the estimation of the friction coeffi-
cient becomes a one-step procedure, where the estimate is
computed as

θ̂k =
1

Ns
ΦTk Yk. (27)

6. SIMULATION EXAMPLE

To illustrate the approach presented above and compare
it with conventional ILC a simulation example will be
presented, based on a simulation model taken from Norrlöf
and Gunnarsson (1997). A one degree-of-freedom robot
arm is described by,

Jẍ(t) = u(t)− fcsign(ẋ(t))− fvẋ(t) ẋ(t) 6= 0 (28)

and
Jẍ(t) = 0 | u(t) |≤ fc ẋ(t) = 0. (29)

The variable x(t) represents the arm angle, which is the
controlled output, while the measured output is

y(t) = x(t) + v(t), (30)

where v(t) is a measurement noise with variance 2.5 ·
10−5. The arm is subjected to both viscous and Coulomb
friction. When the velocity is zero the input torque has to
exceed a certain level in order for the arm to move. In the
model J denotes the moment of inertia, fv and fc denote
the friction coefficients of the viscous and Coulomb friction
respectively. In the simulations the values J = 0.0094,
fc = 0.2, and fv = 0.01 are used. The arm is controlled
using a combination of feed-forward and feed-back control.
The feed-back is a PD-controller with the discrete-time
transfer function

F (z) = KP +
KD

T

(z − 1)

z
(31)

with parameter values KP = 12.7 and KD = 0.4. The
feed-forward controller is given by

Ff (z) =
J∗(z − 1)2

T 2z2
(32)

where J∗ is an estimate of the moment of inertia of
the arm. The measurements of the arm angle contain
measurement noise with variance 2.5 · 10−5.

The simulation is carried out using the reference signal
shown in Figure 3, causing the arm to move back and
forth.

Fig. 3. Reference signal used in the simulation.

Three different tests are carried out to compare the per-
formance of three different approaches:

I Conventional ILC using the ILC algorithm (2) with
Q(q) based on a second order Butterworth low pass
filter with cut-off frequency ωB = 15 rad/s. Forward-
backward filtering is used in order to obtain a zero
phase filtering. The filer L(q) consists of a gain and a
time delay, which means

L(q) = γqδ (33)

In the simulations the values γ = 0.5 and δ = 2 have
been used.

II Parametric ILC, i.e. the first step in the two-step ILC
algorithm as described above. Since the purpose is to
illustrate the approach a very simple model structure
for the feed-forward term is used. The friction is
modeled as

τF = fcsign(ẏ) (34)

and the friction model, i.e. the parameter fc, is esti-
mated according the procedure presented in Section
5.

III A combination of I and II.

Figure 4 shows the norm of the error between the reference
signal and the controlled output, i.e.

‖r − xk‖2
This means that the error is evaluated using the controlled
plant output, i.e. without measurement noise. The mea-
sured output, including the measurement noise, is used in
the feed-back loop and in the different ILC algorithms.
In Figure 5 the error including the measurement noise
is shown in iteration 0 and 5 for the conventional ILC
and the combined ILC using one estimation step and then
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conventional ILC. The error is significantly reduced after 5
iterations with both approaches. Clearly the combination
of 1 iteration estimation and conventional ILC gives a
smaller error compared to conventional ILC only which
can be also be seen in Figure 4.

Two observations can be done from the results in Figure 4.
First, the initial error reduction is significantly improved
by using the parametric ILC and a small improvement
can be seen by using two instead of only one estimation
iterations, due to the measurement noise. Second, the final
error using the conventional ILC is higher compared to
the combined approach, using the parametric ILC and the
conventional ILC in series. With approach II, the error
is not reduced after the parameter estimation is ready
and the feed-forward of the friction model is applied to
the system. Combining parametric ILC and conventional
ILC however, reduced the error faster than only using
conventional ILC and the error also reaches a lower level.
With measurement noise added to the measurements zero
error will not be possible to achieve, even with Q = 1,
and the choice of Q will also impact how the noise is
accumulated in the ILC algorithm. The choice used in the
simulation is a trade-off between noise level accumulation
and reduction of the error.

Fig. 4. Five different simulations are performed using the
three approaches, conventional ILC (I), parametric
ILC using one or two estimation iterations (II), finally
a combined approach where a one and two iterations
parametric ILC is used together with the conventional
ILC algorithm (III). In the upper diagram the first 10
iterations are shown while in the lower the 5th until
the 50th iteration are displayed to show the long term
behavior of the different algorithms.

The results presented here represent initial results when
the parametric approach is combined with conventional
ILC, and future research will be needed to investigate the
full potential of the approach.

7. CONCLUSION

An iterative, learning based, feed-forward method for
compensation of friction in industrial robots has been

Fig. 5. Error ek(t) = r(t) − yk(t) in iteration 0 (top) and
iteration 5 for the conventional ILC (lower left) and
the combined approach using 1 iteration estimation
combined with conventional ILC (lower right). The
error is reduced significantly after 5 iterations, espe-
cially considering the low frequency content.

studied. The method was put into an ILC framework
by using the two step procedure proposed in Steinhauser
(2019). The friction compensation method is based on a
black-box friction model which is learned from operational
data, and this can be seen as the first step in the method
from Steinhauser (2019). In the second step the learned
model is used for compensation of the friction using
the reference joint velocity as input. The approach has
been supported by simulation experiments in which the
parametric approach is compared with and combined with
conventional ILC.
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Harnoy, A., Friedland, B., and Cohn, S. (2008). Modeling
and measuring friction effects. IEEE Control Systems
Magazine, 28(6).

Johansson, V. (2017). Learning Local Models of Multi-axis
Robot for Improved Feed-Forward Control. Technical
report, Master’s Thesis 2017: EX029, Department of
Signals and Systems, Chalmers University of Technol-
ogy, Gothenburg, Sweden.

Johansson, V., Moberg, S., Hedberg, E., Norrlöf, M., and
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ing, Linköping University, Linköping, Sweden.
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