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Abstract: System parameters might have a distinct operating point dependency that is
unknown. Nonlinear state observers or Kalman Filters can be applied to estimate such
parameters in real-time, revealing the unknown parameter value in the vicinity of the current
operating point. Commonly, these methods are prone to forget the revealed dependence
continuously when a different operating point is approached. This paper provides a procedure to
preserve past estimates and reveal the hidden parameter map during operation of the system.
Parameter dependencies are approximated via adjustable interpolants. In particular, ready-
to-use formulae for piecewise linear and cubic Hermite interpolants are provided. An existing
approach as well as a newly derived approach to embed these interpolants within an Unscented
Kalman Filter are presented and discussed. While the first approach utilizes the parameter
map estimation directly within the Kalman Filter scheme, the new approach expands the
Kalman Filter steps by a recursive map adaption scheme and is thereby far less computationally
expensive. Both methods are compared and validated via numerical simulations, where a
superior performance is achieved compared to the standard parameter estimation within the
Kalman Filter approach.

Keywords: Model-based supervision, Parameter estimation, Unscented Kalman Filter,
Interpolation

1. INTRODUCTION

In model-based supervision and adaptive control schemes,
real-time estimation of parameters of a physical model that
describes the objective to be monitored or controlled is
an essential element. If the system comprises a dynamic
behavior, a coupled real-time estimation of parameters and
dynamic model states can be applied in the framework
of observers or Kalman Filters. Commonly, in order to
achieve a smooth parameter estimation over time, the pa-
rameters are assumed to vary much slower than the model
states. Consequently, the estimator may not be capable of
adapting the parameters fast enough during transients if
a hidden operating point dependency of the parameters
exists. For real systems, this is quite often the case, while
it is rather difficult to model the correct operating point
dependency without conducting additional, suitable exper-
iments prior to the actual application. Furthermore, these
dependencies, which are referred to as parameter maps in
what follows, may be affected by system faults or aging
that needs to be monitored.

This paper contributes to real-time estimation of such
parameter maps. Here, the term real-time is stressed to
denote a constant computational complexity and memory
requirement. Therefore, the presented real-time method is
formulated in a recursive manner and operates on fixed-
sized arrays. To provide a unified concept for arbitrarily
shaped parameter maps, interpolants are used to describe
the parameter dependence on the operating point. When
new measurements arise, the interpolants are adjusted in
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real-time using time-variant grid vectors, which are the
actual parameters of the scheme proposed.

Such an approach has been presented by Höckerdal et al.
(2011) already. There, a linear interpolant is embedded
into an Extended Kalman Filter that performs a joint es-
timation of dynamic system states and grid vectors. While
this method is well suited to track time-variant parameter
maps, it is accompanied by a high computational cost
for a large number of grid points (flexible interpolant).
Therefore, in this contribution, an alternative method is
derived that performs the estimation of parameters and
parameter maps in sequence.

The paper is structured as follows: In Section 2, the con-
cept of real-time state and parameter estimation within
the framework of Kalman Filters is summarized to in-
troduce the notation. The idea of preserving parameter
estimates with adjustable interpolants is discussed in Sec-
tion 3. The existing and the new approach to embed these
interpolants into the Kalman Filter scheme for the purpose
of real-time parameter map estimation are presented in
Section 4. Then, a numerical simulation is conducted that
aims to validate and emphasize the superior performance
of the proposed scheme. Results are presented in Section
5.

In the subsequent sections, the (v)j or (M)jl notation is
used to denote the j-th entry of a vector v or the j-th row
and l-th column entry of a matrix M, respectively.
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2. REAL-TIME ESTIMATION OF STATES AND
PARAMETERS APPLYING KALMAN FILTERS

The approaches to map estimation proposed below can be
incorporated in any state observer or filter scheme. How-
ever, for the investigation below, an Unscented Kalman
Filter (UKF) is chosen, which is briefly introduced in the
present section.

The objective of the applied UKF is to provide an estimate
x̂k of the true states xk of a discrete-time, nonlinear
system {

xk = f
(
xk−1, uk−1, θ, r

x
k−1, k

)
,

yk = g (xk, uk, θ, k ) + ryk .
(1)

Here, yk ∈ Rny , xk ∈ Rnx , uk ∈ Rnu , and θ ∈ Rnθ are the
measurable outputs, the states, the inputs, and the param-
eters of the model, respectively. A variable with an index
k denotes a discrete-time quantity; e.g., xk = x(t = tk).
The system noise rxk ∈ Rnx and the additive measurement
noise ryk ∈ Rny are stochastic, zero-mean, uncorrelated,
discrete-time signals with time-variant covariance matrices
Rx
k ∈ Rnx×nx and Ry

k ∈ Rny×ny , respectively. Applying
the expectation operator E{},

E{ rxk rxl
T } = Rx

k δkl , E{ ryk r
y
l
T } = Ry

k δkl ,

E{ rxk r
y
l
T } = 0nx×ny , ∀ k, l ,

(2)

follows, where δkl = 1 for l = k and, otherwise, δkl = 0.
Beside the state estimate x̂, any Kalman Filter provides an
estimate Px

k ∈ Rnx×nx of the estimation error covariance
matrix E{ (xk − x̂k)(xk − x̂k)T }.
As the focus of this contribution is on the description
and embedding of hidden parameter maps, the reader
is referred to (Julier et al. (2000); Van der Merwe and
Wan (2001)) for a comprehensive introduction to the UKF
scheme and its implementation. For the investigation be-
low, a UKF concept proposed by Kol̊as et al. (2009) is ap-
plied which ensures bounded state estimates xl ≤ x̂k ≤ xu
via extensions that are referred to as sigma point clipping
and reformulated correction step. The whole procedure of
a single Kalman Filter recursion using current measure-
ments yk will be abbreviated as follows:

KF: {x̂k−1, Pk−1, yk, Rx
k−1, Ry

k} 7−→ {x̂k, Pk} . (3)

A joint estimation of states and parameters can easily
be achieved by replacing the state vector x and the
update function f with their augmented counterparts

xa =
[
xT θT

]T
and fa =

[
fT fθ

T
]T

, respectively, if the

augmented system is observable. Usually, the real dynamic
parameter evolution over time is unknown, and therefore,

θk = fθ
(
xak−1, uk−1, r

a
k−1, k

)
= θk−1 + rθk−1 (4)

is a common parameter update function, where

ra =
[
rxT rθ

T
]T

is the augmented system noise with

covariance matrix Ra
k =

[
Rx
k 0nx×nθ

0nθ×nx Rθ
k

]
. Rx

k, Rθ
k, Ry

k,

as well as the initial estimate x̂a0 and estimation error
covariance matrix Pa

0 of the augmented system are tuning
parameters of this approach.

u

θ̂

pa(
u)

p c
(u
)

pb(u)

um1 um2

θ̂m1

θ̂m2

Fig. 1. Hidden map approximation

3. PARAMETER PRESERVATION VIA GRID
VECTORS

By definition, a hidden dependency of the operating point
on parameters is unknown. Consider, for instance, a situ-
ation where the system was running at two different oper-
ating points for a long time, adjusted via scalar inputs um1
and um2 , respectively. The superscript m refers to a value
that is connected with a map presentation in what fol-
lows. Two corresponding reliable, but deviating estimates,

θ̂m1 and θ̂m2 , were obtained for some unknown parameter.
For predicting this parameter for an operation with an

input between um1 and um2 , an interpolation between θ̂m1
and θ̂m2 would be the most intuitive approach. A simple
linear interpolation with the interpolant pa(u) in Fig. 1
might serve this purpose. Whether pa(u) is well suited to
approximate the hidden dependency, cannot be evaluated
until new operating points have been approached via a
set of inputs U ( ]um1 ; um2 [ and a new set of parameter

estimates Θ = {θ̂(u)
∣∣u ∈ U} has been determined.

Vice versa, if Θ is given first, one could ask for the values

θ̂m =
[
θ̂m1 θ̂m2

]T
that yield an optimal regression function

pa(U) for the set Θ. In this scenario, θ̂m1 and θ̂m2 act as
adjustable grid values within an adjustable interpolant

pa

(
u, θ̂m

)
=

um2 − u
um2 − um1

θ̂m1 +
u− um1
um2 − um1

θ̂m2 , u ∈ U , (5)

the structure of which retains a linear interpolation be-

tween θ̂m1 and θ̂m2 . The optimal regression function, more

precisely the optimal grid vector θ̂m, accompanied by some
additional measure for the approximation error, preserves
the former operating point dependency U → Θ to some
extent. In a real-time application, where the number of
elements in U and Θ would increase continuously, but
computational resources and memory are limited, it ap-
pears unavoidable to take advantage of such a parameter
preservation and discard previous estimates after some
recursive grid vector adaption has been applied.

Accordingly, the grid vectors become time-variant param-
eters that need to be estimated, but the structure of the
interpolant, i.e., the type of interpolation and the number
of grid points, remains the same for all time steps. If the
parameter map is expected to be far more complex than a
linear line (univariate interpolation) or hyperplane (mul-
tivariate interpolation), then the number of grid points of
a piecewise linear interpolant can be increased, as it is
depicted for pb(u) in Fig. 1. Alternatively, a more flexible
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interpolant, like the (piecewise) cubic interpolant pc(u),
can be chosen. It should be noted that selecting a very flex-
ible interpolant might hold a risk for over-parametrization.
A polynomial interpolant with many grid points, for in-
stance, might be prone to inherent uncertainties in Θ. A
countermeasure to over-parametrization is regularization
which is introduced in Section 4.2.

The proposed concept considers the use of interpolants
that can be transformed into the generic structure

p ( i1, i2, . . . , ini , z
m ) =

cT
(
im1 , i

m
2 , . . . , i

m
ni , i1, i2, . . . , ini

)
· zm ,

(6)

where ij denote independent variables, imj ∈ Rnm are the
corresponding nodes of the map along ij , ni is the number
of independent variables, c ∈ Rnz contains a set of grid
dependent coefficients, and zm ∈ Rnz is the adjustable
grid vector. For the example above, with pa according to

(5), these variables are ni = 1, i1 = u, im1 = [um1 um2 ]
T

,

zm = θ̂m, and cT = [c1 c2]. The independent variable ij
may represent a specific state from x̂ or a single input from
u. Quite clearly, the method’s hassle is the inevitable need
to calculate c. Every further dependency that is considered
increases ni and, consequently, the computational load
and memory requirement. Therefore, it is advisable to
take as few independent variables as possible into account.
Within the scope and space of this paper, only univariate
(ni = 1) parameter maps are considered. In the subsequent
sections, the derivation of c for interpolants applied below
is provided.

3.1 Univariate Linear Interpolation

A univariate linear interpolation with two nodes and two
coefficients has already been presented in Eq. (5). With

nm grid points (im1,j , θ̂
m
j ), j = {1, 2, . . . , nm}, where an

ascending order im1,j < im1,j+1 is satisfied, the j-th entry of

the linear coefficient vector clin ∈ Rnz is 2

(clin)j =



im1,j+1 − i1
im1,j+1 − im1,j

, i1 ∈
[
im1,j ; i

m
1,j+1

[
,

or i1 < im1,1 and j = 1 ,

or i1 ≥ im1,nm
and j = nm − 1

i1 − im1,j−1

im1,j − im1,j−1
, i1 ∈

[
im1,j−1; im1,j

[
,

or i1 < im1,1 and j = 2 ,

or i1 ≥ im1,nm
and j = nm

0 , else .

(7)

The optional clauses for i1 < im1,1 and i1 ≥ im1,nm
provide a

linear extrapolation. For this interpolant, the adjustable

grid vector is constructed via (zmlin)j = θ̂mj , and thus,
nz = nm.

3.2 Univariate Cubic Hermite Interpolation

Again, nm grid points (im1,j , θ̂
m
j ), j = {1, 2, . . . , nm}, with

an ascending order im1,j < im1,j+1 are required. The inter-

polant pcub provided below is cubic Hermite; i.e., the inter-

2 Note that i1 /∈
[
im1,α; i

m
1,β

[
if α < 1 or β > nm.

polation is C1 continuous and piecewise cubic. The deriva-

tive at a node is stored as the j-th entry of d̂m ∈ Rnm ;

i.e. (d̂m)j = ∂ pcub(i1 = im1,j)/∂ i1. The interpolant can be
arranged as

pcub( i1, z
m
cub ) =

[
cθ
T
( im1 , i1 ) cd

T
( im1 , i1 )

]
︸ ︷︷ ︸

ccub
T
( im1 , i1 )

·

[
θ̂m

d̂m

]
︸ ︷︷ ︸
zmcub

, (8)

the structure of which is compliant to (6). Since zmcub
has been declared the adjustable grid vector, the ap-
proach proposed yields a joint estimation of grid val-

ues (θ̂m)j = θ̂mj and derivatives at these points (d̂m)j ,
and thus, nz = 2nm. The j-th entry of coefficient vectors
cθ ∈ Rnm and cd ∈ Rnm are determined as follows:

(cθ)j =



1 , i1 < im1,1 and j = 1 ,

or i1 ≥ im1,nm
and j = nm

cθ0,j( i
m
1 , i1 ) , i1 ∈

[
im1,j ; i

m
1,j+1

[
cθ1,j−1( im1 , i1 ) , i1 ∈

[
im1,j−1; im1,j

[
0 , else .

(9)

(cd)j =



i1 − im1,j , i1 < im1,1 and j = 1 ,

or i1 ≥ im1,nm
and j = nm

cd0,j( i
m
1 , i1 ) , i1 ∈

[
im1,j ; i

m
1,j+1

[
cd1,j−1( im1 , i1 ) , i1 ∈

[
im1,j−1; im1,j

[
0 , else .

(10)

The optional clauses for i1 < im1,1 and i1 ≥ im1,nm
are de-

rived to provide a C1 continuous linear extrapolation. The
basis functions contained are (cf. (Kahaner et al., 1989, p.
106))

cθα,j( i
m
1 , i1 ) =

2− 4α[
im1,j+1 − im1,j

]3 [i1 − im1,j+1−α
]2

·
[
i1 − im1,j+α +

1− 2α

2

[
im1,j+1 − im1,j

]]
,

(11)

cdα,j( i
m
1 , i1 ) =

[
im1,j+1 − im1,j

]−2

·
[
i1 − im1,j

]1+α [
i1 − im1,j+1

]2−α
,

(12)

where α ∈ {0, 1}.

4. REAL-TIME PARAMETER MAP ESTIMATION

In the subsequent sections, two methods are presented
that aim to estimate a hidden parameter map in real-
time. Therefore, the grid vector zm of a preset interpolant
is adjusted in a way that an approximation error is
reduced. Both methods utilize the joint estimation of
states and parameters, as presented in Section 2, in a
different fashion. To avoid excessive use of indexes, we
assume that only one parameter θ of the original model
(1) has to be estimated and this parameter is assumed to
have a hidden operating point dependence. The concept
can easily be extended for additional unknown parameters
and unknown parameter maps.
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4.1 Joint Estimation of States and Grid Vectors

For this method, the parameter is replaced by the pre-
set interpolant θ = p(i1, i2, . . . , ini , z

m) within the original
model (f , g). There, a subset of states and inputs is as-
signed as independent variables ij , whose values determine
the operating point. From Section 3 it is clear that the
adjustable grid vector zm contains the actual parameters
to be estimated. Following this idea and the procedure
from Section 2, the state vector can be augmented as

xa :=
[
xT zmT

]T ∈ Rnx+nz , with the aim to perform a
joint estimation of states and grid vectors within the
Kalman Filter scheme; cf. (3):

KF: {x̂ak−1, Pa
k−1, yk, Ra

k−1, Ry
k} 7−→ {x̂

a
k, Pa

k} ,
(zmk )j = (x̂ak)j+nx , j = {1, 2, . . . , nz} .

(13)

As mentioned above, this approach was proposed already
by Höckerdal et al. (2011). There, a univariate linear
interpolant was used to describe the parameter map and
the joint estimation was applied within the Extended
Kalman Filter (EKF) scheme.

Without appropriate countermeasures, this approach is
prone to continuously forget

(i) very past grid value estimates of the current operating
range and

(ii) even recent estimates of departed operating ranges.

Due to issue (i), the method is capable of tracking time-
variant parameter maps that may arise from system aging
or faults. Issue (ii) is a basically undesired behavior that
results from a lack of observability of parameters in zm

that are not involved into the current interpolation (that is
where the corresponding coefficient vector entry is cj = 0).
For a detailed discussion on both issues and an exhaustive
observability analysis, which is beyond the scope and space
of this paper, the reader is referred to (Höckerdal et al.
(2011)).

Fortunately, Höckerdal et al. (2011) provide a sim-
ple countermeasure that reduces the effect of issue (ii)
and prevent the divergence of the filter, which may
arise otherwise. They propose to restrict the diago-
nal elements of the augmented covariance matrix es-
timate, thus (Pa

k)jj ≤ (Pa
0)jj for the probably unob-

servable “states” j = {nx + 1, nx + 2, . . . , nx + nz}, where
Pa

0 ∈ R(nx+nz)×(nx+nz) is the initial augmented covariance
matrix of the estimation error; cf. Section 2.

Since the computational complexity of the standard
EKF/UKF algorithm is O(n3a), cf. (Van der Merwe and
Wan (2001)), where na is the dimension of the augmented
state vector, the augmentation by nz = nm (linear inter-
polant) or nz = 2nm (cubic Hermite interpolant) addi-
tional states is computationally expensive, compared to a
common joint estimation of states and parameter θ, where
na = nx + 1, but no parameter map is estimated.

4.2 Dual Estimation of Parameters and Grid Vectors

Here, an alternative concept is presented, where the
number of states is still na = nx + 1 for the UKF; i.e.,

xa =
[
xT δ

]T ∈ Rnx+1. In addition, an O(n2z) algorithm
that accomplishes the recursive adaption of the grid vec-
tor zm ∈ Rnz is utilized. Consequently, this approach is

computationally far less expensive than the joint estima-
tion of (states,) parameters and grid vectors from Section
4.1. An analogous lack of observability is eliminated via
regularization, thus, a comparable behavior like issue (ii)
from the previous section is avoided. Without modifica-
tion, however, the concept is rather suited for identifying
time-invariant maps than for tracking time-variant maps
(aging).

For the proposed concept, the parameter is replaced by
the preset interpolant θ = p(i1, i2, . . . , ini , z

m) + δ within
the original model (f , g); i.e. δ presents a map offset.
Applying a Kalman Filter recursion with the augmented

state vector xa :=
[
xT δ

]T
, an estimate of the map offset

δ̂k is achieved; cf. (3):

KF: {x̂ak−1, Pa
k−1, yk, Ra

k−1, Ry
k} 7−→ {x̂

a
k, Pa

k} ,
δ̂k = (x̂ak)na .

(14)

Then, δ̂k is used to adjust the interpolant by a recursively
formulated adaption of the grid vector:

zmk = zmk−1 + Zk ckw1,k δ̂k . (15)

Here, ck is an abbreviation for the coefficient vector
(cf. Section 3) at the current operating point, w1,k is
a time-variant weight, and Zk ∈ Rnz×nz is the inverted
information matrix, which can be calculated recursively,
too:

Zk = Zk−1 −
Zk−1 ck c

T
k ZTk−1

w−1
1,k + cTk Zk−1 ck

. (16)

Eqs. (15)–(16) are known as the Recursive Least Squares
(RLS) algorithm, cf. (Ljung, 1999, pp. 363 ff.), which
is O(n2z) (Jiang and Zhang (2004)). Consequently, any
known issue and modification of the RLS algorithm that
can be found in the literature may apply. The distin-
guishing feature of the proposed Recursive Map Adaption
(RMA) is regularization, which enters the RMA algorithm
exclusively in the initialization step:

zm0 = Z0W2 z
m
∗ , Z0 = [W2 + Lg + Lc]

−1
. (17)

Consider a batch of consecutive parameter estimates

θ̂j = cTj z
m
j−1 + δ̂j for j = {1, 2, . . . , k} with δ̂j obtained

from (14) and variables θ̂k ∈ Rk, Ck ∈ Rk×nz ,
W1,k ∈ Rk×k preserving that batch:

(θ̂k)j = θ̂j , (Ck)jl = (cj)l , (W1,k)jl =

{
w1,j , l = j

0 , else .

(18)

Applying the RMA procedure (17)→(16)	(15), a recursive
solution of the optimization task

arg min
zm
k

[
θ̂k −Ck z

m
k

]T
W1,k

[
θ̂k −Ck z

m
k

]
(19)

+ [zmk − zm∗ ]
T

W2 [zmk − zm∗ ] + zmk
T [Lg + Lc] z

m
k (20)

is obtained. The first term (19) yields a weighted least
squares regression of the adjustable interpolant p = cTzm

with regard to the batch of parameter estimates contained

in θ̂k. The second term with time-invariant weighting
matrix W2 is a type of Tikhonov regularization of the
probably ill-posed problem (19), penalizing deviations
from a nominal grid vector zm∗ , which is a tuning parameter
of the RMA. Regularization terms Lg and Lc penalize
approximate gradients and curvatures, respectively, in
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order to obtain a smooth parameter map, even for a high
number of grid points. For the univariate case, they are
determined as follows:

Lg =
1

nm − 1
[∆1 Γ1]

T
Wg [∆1 Γ1] , (21)

Lc =
4

nm − 2
[∆2 Γ2 ∆1 Γ1]

T
Wc [∆2 Γ2 ∆1 Γ1] , (22)

where matrices ∆α ∈ R(nz−α)×(nz−α) and
Γα ∈ R(nz−α)×(nz−α+1) for α ∈ {1, 2} are defined as fol-
lows:

(∆α)jl =

{[
im1,j+α − im1,j

]−1
, l = j and j ≤ nm − α

0 , else .
(23)

(Γα)jl =


−1 , l = j

1 , l = j + 1

0 , else .

(24)

Any introduced weighting matrix W is symmetric and
of appropriate dimension. In particular, W2 is positive
definite and the remaining weighting matrices are at
least positive semi-definite. Since the adaption of the
interpolant via RMA is applied next to the UKF scheme,
x̂ has to be adjusted in order to keep the actual posteriori

UKF “parameter estimate” θ̂k = cTk z
m
k−1 + δ̂k as a priori

estimate for the next UKF recursion (14) by a proper
declaration:

(x̂ak)na := θ̂k − cTk zmk . (25)

5. NUMERICAL STUDY - COMPARISON AND
RESULTS

Both approaches, the Joint Estimation (JE) from Section
4.1 and the Dual Estimation (DE) from Section 4.2, are
applied to estimate the (voltage) gain θ of a (peristaltic)
pump that supplies water into a throughput vessel. There-
fore, noisy measurements of the vessel’s filling level, which
is the sole dynamic state of the nonlinear system

xk = xk−1 +
1

a1

tk∫
tk−1

(
θ(uk−1)uk−1 − a2

√
2g x(t)

)
dt ,

yk = xk + ryk ,

(26)

are considered; i.e., nx = ny = 1. Here, a1 and a2 denote
specific areas in the vessel system and g is gravity. The true
parameter dependence θ(u) can be seen in Fig. 2. Contrary,
a typical model description for that type of pump would be
a constant gain (θk+1 = θk ∀ k), which has to be identified
from past experiments or estimated in real-time during
operation. The joint estimation of state and parameter
as presented in Section 2 might serve the latter purpose.
Such an approach is referred to as Standard parameter
Estimation (SE) in the following.

The numerical simulation conducted can be seen in Fig. 3.
To enable a parameter adaption ‖θ̂k+1 − θ̂k‖ > 0 within
the Kalman Filter scheme, 3 a positive noise covariance
Rθ
k = qkR

θ
0 is required. Considering Fig. 3a and b, the

effect of qk can be studied. For qk � 10−2 (initial phase)
the estimates are unacceptable noisy. For qk ≈ 10−2, even
the SE is capable of tracking the true time-variant gain,

3 Note that θ̂ represents θ̂, δ̂, or zm for the SE, DE, or JE,
respectively, in this context. Therefore, Rθ is scalar for SE and DE.

3 4 5 6 7 8
8.5

9

9.5

10

10.5

11

u [V]

θ
[l
h
−
1
V

−
1
]

a)

3 4 5 6 7 8
u [V]

b)

DE: p(u) JE: p(u) θ(u)

DE: θ̂mj JE: θ̂mj

Fig. 2. True (dashed) and estimated (solid) pump gain map
at k = 2500 applying the Dual Estimation (DE) and
the Joint Estimation (JE) approach; a) with linear
interpolants (nm = 10) and b) with cubic Hermite
interpolants (nm = 3)

SE
linear (nm = 10) cubic (nm = 3)

DE JE DE JE

1 1.02 10.49 1.06 26.01

Table 1. Normalized duration measured to
perform the Standard Estimation (SE), Dual
Estimation (DE), and Joint Estimation (JE)

but the estimates are still noisy and slightly delayed.
When qk decreases further, the SE gets smoother, but the
parameter dependence on u falls into oblivion, naturally,
since no preservation scheme is applied. If a preservation
scheme is applied, as is the case for the DE, the resulting
quality of estimates can improve if qk decreases after
sufficient information at relevant operating points has been
incorporated.

The final map estimates are depicted in Fig. 2 based on
linear interpolants with 10 grid points (left) and based on
cubic Hermite interpolants with three grid points (right).
The noticeably smoother shape of the map in Fig. 2a
that is achieved by applying the DE is a result of the
regularization. The duration it takes the PC 4 to run the
SE, DE, and JE each, which were implemented in Matlab R©

(R2018a) is listed in Table 1. The value for method X was
determined as follows:

1

2491

2500∑
k=10

time to perform k-th recursion for X

time to perform k-th recursion for SE
.

6. CONCLUSION

Two approaches for real-time estimation of parameter
maps were investigated that aim to preserve the operating
point dependency of parameters, which falls into oblivion
for common “constant-parameter” identification or esti-
mation schemes when operating points change. There-
fore, the unknown parameter map is approximated via
interpolants. The fixed-sized grid vectors of which are
4 IntelR© CoreTM i7-7700K (4.2GHz), 32GB RAM, WindowsR© 10
(64Bit)
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Fig. 3. Standard real-time parameter Estimation (SE) and real-time estimation applying the Dual Estimation (DE) of
parameter and parameter map with a linear interpolant (nm = 10); a) true (dashed) and estimated (marked by
symbols) parameter evolution, b) applied time-variant noise gain, c) applied system inputs

adjusted when measurements arise in order to reduce the
approximation error. The method proposed requires a
linear interpolant structure, which can be achieved easily
even for cubic Hermite interpolants, as shown in Section
3.2. Höckerdal et al. (2011) presented the joint estima-
tion of nx dynamic system states and nm grid points of
a linear interpolant within the Extended Kalman Filter,
and thus, the method’s computational complexity is of
order O((nx + nm)3) if solely one parameter map is to
be estimated.

Here, an alternative approach is introduced that per-
forms the estimation of parameter and parameter map
in sequence. The map adaption is essentially a Recursive
Least Squares algorithm, whereby regularization terms are
incorporated, for which ready-to-use formulae were pre-
sented for univariate parameter maps. This dual estima-
tion scheme is of order O(n3x) if solely one parameter map
is to be estimated, as is the case for the standard state
and parameter estimation within a joint Kalman Filter
approach if a single parameter is to be estimated.

Via numerical simulation it could be shown that both
advanced approaches are capable of outperforming the
standard parameter estimation. Although univariate pa-
rameter maps have been investigated in this paper ex-
clusively, the dual estimation has already been validated
with bilinear interpolants for bivariate dependencies. For
the application concerned, dual estimation was verified
with real data, for which the sole assessment measure is
plausibility.

While the joint estimation approach is well suited to track
time-variant parameter maps, dual estimation is adapted
to (online) identification of time-invariant maps. Counter-
measures may be investigated to keep the map flexible
even in a converged state in order to enable tracking time-
variant maps (system aging). While global (exponential)
forgetting, the common approach for the Recursive Least
Squares scheme, is inappropriate for the given application,

a proper adapted version of local forgetting schemes, see
(Hägglund (1985)) for instance, may serve this purpose.
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