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Abstract: Hydraulic fracturing has drawn significant attention over the past decade, as it
can recover crude oil and natural gas from shale deposits previously considered inaccessible,
which brings considerable economic benefits. However, hazardous operating conditions of
extremely high pressure and environmental concerns require us to control this process carefully.
Unfortunately, nonhomogeneous rock properties make this process difficult to control. Therefore,
an accurate dynamic model and a well-designed controller are needed. In this work, we use
the well-known Perkins-Kern-Nordgren (PKN) model with reformulation to solve the moving
boundary problem. Next, the process is controlled by a standard Nonlinear Model Predictive
Controller (NMPC) and multistage NMPC. We find that the process performance deteriorates
under the influence of uncertainty with standard NMPC. When we control the process with
standard NMPC, the pressure violation happens in one of the parameter mismatch cases.
Nonetheless, when we apply multistage NMPC and consider the uncertainty evolution with a
scenario tree, no constraint violations occur for all cases for both time-invariant and time-varying
uncertainties. We also discuss the computational performance of different robust horizons for
multistage NMPC. Our results demonstrate that the multistage NMPC is a promising approach
to handle uncertainty caused by nonhomogeneous rock properties in the hydraulic fracturing
process.

Keywords: Model Predictive and Optimization-based Control, Hydraulic Fracturing, Dynamic
Optimization, Optimal Control, Robust Nonlinear Model Predictive Control.

1. INTRODUCTION

The goal of hydraulic fracturing is to enhance the produc-
tion of a stimulated well. The process starts with perfo-
ration to create initial fracture paths along a well. Then,
high-pressure fracturing fluid, consisting of water, chemi-
cal additives, and proppant, is pumped down a wellbore
for further fracture propagation. After the end of pumping,
the proppant will be trapped by the closing fracture walls,
creating a fracture volume. The created fracture volume
stimulates the extra flow of hydrocarbons that geologists
once believed were inaccessible. This highly increasing pro-
duction can yield great economic benefits. However, there
are some issues in this process. First, the fracking fluid con-
tains toxic chemicals that could contaminate groundwater
if fractures connect to aquifer systems. More importantly,
if the pressure becomes too high during pumping, the
pumps may be destroyed and severe damage would occur
in the rock formation. These problems demand that the
process be controlled carefully and accurately. However,
rock properties may be nonhomogeneous, which makes it
hard to control the growth of the fracture.

A traditional control strategy of hydraulic fracturing (Gu
and Hoo, 2015) is primarily an open-loop process that
starts with a shorter and smaller scale test (called a
mini-frac) and then applies the obtained information to
execute the offline optimization to determine flow rates

and concentrations of materials for the entire procedure,
before the main fracturing process. However, this strategy
is suboptimal since it does not use feedback with real
time measurements from the process. Gu and Hoo (2015)
consider a closed-loop process that uses the measured data
to update the inputs when the main fracturing process
proceeds. The feedback control is achieved by applying a
Quadratic Dynamic Matrix Control (QDMC) controller,
which performs better than the traditional open-loop
controller. Siddhamshetty et al. (2018) implement Model
Predictive Control (MPC) for the design of the feedback
control to achieve the required proppant concentration
across the fracture at the end of pumping. Nonetheless,
these two haven’t considered the uncertain parameters
such as rock properties in the process. Singh Sidhu et al.
(2018) propose an approximate dynamic programming
(ADP) based approach for the closed-loop control to deal
with the uncertainties. Yet the drawback of this approach
is that a pre-solved suboptimal control policy is needed
beforehand, which makes it hard to implement in the real
world. Also, the pressure constraint, which is one of the
most important safety concerns in the managed pressure
drilling process (Bellout et al., 2012), is not considered in
these references.

In order to have good control performance of the hy-
draulic fracturing process with appropriate constraints,
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Model Predictive Control (MPC) is applied to this pro-
cess. MPC is widely applied due to its effectiveness in
handling constraints and multiple-input-multiple-output
(MIMO) systems (Qin and Badgwell, 2003). Its nonlin-
ear version, Nonlinear Model Predictive Control (NMPC)
solves a Nonlinear Programming (NLP) problem to mini-
mize the objective function within a finite horizon subject
to constraints. However, standard NMPC is sensitive to
plant-controller mismatch. Some uncertainties in the pro-
cess are likely to deteriorate the performance of standard
NMPC, causing safety hazards or machine damage. A
few references use the ensemble Kalman filter (EnKF)
to infer these uncertainties from measurements, assuming
known mean and covariance (Jafarpour and McLaughlin,
2009) (Narasingam et al., 2018). Without requiring this
assumption, a robust NMPC called multistage NMPC
(Lucia et al., 2013) is implemented to cope with these
uncertainties. Multistage NMPC has already been applied
to some practical problems such as CSTR and semi-batch
reactor (Yu and Biegler, 2019) (Holtorf et al., 2019). The
main idea of multistage NMPC is to represent the possible
uncertainty evolution by building a scenario tree structure.
Therefore, as new information is available at the next time
step, the next control input can be adjusted based on
this new information to counteract the influence of the
uncertainties.

The paper is organized as follows. In Section 2 we in-
troduce the Perkins-Kern-Nordgren (PKN) model that
we use to model the fracturing process; in Section 3 we
present the overview of standard NMPC and formulate
the framework of multistage NMPC; Section 4 presents the
result of applying standard NMPC and multistage NMPC
to hydraulic fracturing process. Finally, Section 5 provides
conclusions and future perspectives.

2. HYDRAULIC FRACTURING MODEL

In this work, a well-known fracturing model called Perkins-
Kern-Nordgren (PKN) model (Nordgren, 1972)(Perkins
and Kern, 1961) is built for fracture propagation. This
model has been mainly used in shale formations especially
for the Sneddon-type rock (Daemen and Schultz, 1995).
We consider the following assumptions:

(1) The stresses above and below the pay zone are suf-
ficiently large that the fracture is restricted within a
horizontal rock layer. Namely, the fracture propagates
at a fixed height as depicted in Fig. 1.

(2) The fracture propagates unidirectionally in the rock
layer.

(3) The fracture length is much greater than the fracture
width.

(4) The cross section of the fracture is elliptical and the
maximum width of fracture is proportional to the net
pressure.

(5) The fracturing fluid is Newtonian fluid and perfectly
mixed.

The governing equations of PKN model can be formulated
by adopting the fundamental principles of local fluid mass
balance equation (1) and the global fluid mass balance
equation (2):

Fig. 1. PKN hydraulic fracture

∂q

∂x
+ u+

∂A

∂t
= 0 (1)

qleakoff + qstorage = qtotal (2)

where q is the flowrate in the fracture, u is the flowrate
of leakoff per unit length, and A is the cross-sectional
area of the fracture. The three terms in equation (1)
denote the net flow change, the amount of leakoff, and
the fracture volume change of a small element in the
fracture. The three terms in equation (2) indicate the
total amount of leakoff, the total liquid stored in the
fracture, and the total fluid pumped into the fracture.
For simplicity, leakoff terms are ignored here. After some
derivation shown in Detournay et al. (1990), Kovalyshen
and Detournay (2010), and Nordgren (1972) and adding
the pressure relation in equation (5) and (6), the hydraulic
fracturing model can be written as follows with two initial
conditions and two boundary conditions:

− E

2µHπ3(1− ν2)

∂2w̄4

∂x2
+
∂w̄

∂t
= 0 (3)∫ L

0

w̄ dx =
1

H

∫ t

0

qf dt (4)

Phead =
E

2H(1− ν2)
w + σ − ρgHwell + Pfr (5)

Pfr =
16µqfHwell

πR4
(6)

IC 1 : L(t = 0) = 0, IC 2 : w̄(t = 0, x) = 0 (7)

BC 1 : q(t, x = 0) = qf , BC 2 : w̄(t, x = L) = 0 (8)

where E and ν are Young’s modulus and Poisson’s ratio
respectively, µ is the viscosity of fluid, H is the height of
fracture, σ is the confining stress of the rock formation, ρ
is the density of fluid, g is the gravity constant, Hwell is
the depth of the well, Pfr is the friction loss in the well,
and R is the radius of the well. The control input is the
pump rate qf and the states are average width w̄, length
L of the fracture, and the wellhead pressure Phead.

Before applying NMPC to the process, we notice that
the second boundary condition is related to one of the
variables, L, which means this model is a moving boundary
problem. In order to deal with this problem, a new coor-
dinate θ is introduced and defined as follows (Detournay
et al., 1990) (Kovalyshen and Detournay, 2010):
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θ = x/L(t), θ ∈ [0, 1] (9)

The advantage of this transformation is that a bounded
coordinate can assign the second boundary condition at
a specific position θ = 1 instead of moving throughout
the whole process. Coordinate conversion requires the
following transformation of spatial and time derivatives:

∂

∂x

∣∣∣∣
t

=
1

L

∂

∂θ

∣∣∣∣
t

and
∂

∂t

∣∣∣∣
x

=
∂

∂t

∣∣∣∣
θ

− θ

L

dL

dt

∂

∂θ

∣∣∣∣
t

After the transformation, Equations (3) and (4) become:

− E

2µHπ3(1− ν2)

1

L2

∂2w̄4

∂θ2
+
∂w̄

∂t
− θ

L

dL

dt

∂w̄

∂θ
= 0 (10)

L

∫ 1

0

w̄ dθ =
1

H

∫ t

0

qf dt (11)

With Equations (10), (11), pressure relation (5), (6), initial
conditions (7), and boundary conditions (8), we obtain the
dynamic model of the hydraulic fracturing process.

3. NMPC FORMULATION

3.1 Standard NMPC

We consider a nonlinear dynamic system in the process
with uncertainties:

zi+1 = f (zi, ui, di) , z0 = x(k) (12)

where x(k) ∈ Rnx is the process states serving as the
initial condition of the model, zi ∈ Rnx , ui ∈ Rnu are the
predicted states and controls, and di ∈ Rnd denotes the
uncertainty in the plant. This model can be introduced
into a nonlinear optimization problem as equation (13),
that strives to minimize an objective that quantifies either
deviation from a set-point or an economic goal.

min
ui,zi

F (zN ) +

N−1∑
i=0

ψ (zi, ui)

s.t. zi+1 = f
(
zi, ui, d̄i

)
, i = k, ..., N − 1

zk = x(k)

zi ∈ X, zN ∈ Xf , ui ∈ U

(13)

After solving the optimization problem (13), the optimal
trajectory is obtained but only the first control input is
introduced back into the process as in equation (12). At
the next time step k+ 1 we read the new states to update
the initial condition in the optimization problem. This
procedure is repeated to keep updating the control input.
Note that standard NMPC only takes the nominal value
of di in the controller; it ignores the impact of uncertainty
and doesn’t provide the recourse to counteract it.

3.2 Multistage NMPC

The main idea of multistage NMPC is to model the
uncertainty evolution by a scenario tree as shown in Fig.
2. A node denotes a state vector zk in the scenario tree.
Each path from the root node z0 to one of the leaf nodes

is a scenario. The prediction horizon Np is the number
of stages considered in multistage NMPC. Starting from
the first node corresponding to the current state x(k), the
branches from each node represent the maximum, nominal,
and minimum value of the uncertainty dl respectively with
the corresponding control uk. Therefore, three different
states are predicted for the next step tk+1. Then, for
predicted states at tk+1, the branching propagates with
another three predicted states at tk+2. For example in Fig.
2 there are 27 scenarios and a prediction horizon length of
3. Note that the scenario tree grows exponentially with
the prediction horizon and the number of uncertainties,
leading to an intractable multi-stage problem.

Fig. 2. Fully-branched scenario tree with nonanticipativity
constraints (dotted brackets)

In order to handle this issue, we consider that the branch-
ing of scenario tree stops at a certain stage (called the
robust horizon) and the uncertainty remains constant till
the end of each scenario. For example, the truncated tree
in Fig. 3 has 1 robust horizon and 3 scenarios. This simpli-
fication can be justified that the control inputs and state
variables for the far future don’t need to be calculated as
accurately as the next stage because only the first step of
the control profile is applied to the process, and the far
future stages will be refined later as time moves forward.

Finally, important restrictions called non-anticipativity
constraints (NAC) must also be applied to multistage
NMPC. The NAC is needed because the decision variable
at current stage cannot anticipate the realization of the
uncertainty di in the future. Hence, all control inputs that
branch from the same parent node must be equal to realize
the real-time decision situation (i.e., u1

0 = u2
0 = u3

0 in Fig.
3). Note that this constraint only applies within the robust
horizon. Beyond the robust horizon, the control inputs are
not constrained and they act as recourse variables to allow
the system to recover from uncertainties. This improves
the performance and decreases the conservativeness of the
controller, which is the advantage of multistage NMPC.

The corresponding optimization problem for multistage
NMPC with prediction horizon N can be defined by:
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Fig. 3. Truncated scenario tree: Nr = 1

min
ui,zi

∑
c ∈ C

wc

(
F (zcN ) +

N−1∑
i=0

ψ (zci , u
c
i )

)

s.t. zci+1 = f (zci , u
c
i , d

c
i ) , i = k, ..., N − 1 (14a)

zck = x(k) (14b)

uci = uc̄i if zck = zc̄k , c, c̄ ∈ C (14c)

zci ∈ X, zcN ∈ Xf , uci ∈ U (14d)

where C denotes the set of scenarios and wc represents
the weight of the scenario c, coming from the historic
data or probability distribution. The objective function
of multistage NMPC considers the sum of the weighted
scenario with stage cost ψ(·) and terminal cost F (·).
Note that equation (14c) represents the non-anticipativity
constraint.

4. SIMULATION RESULTS

With the hydraulic fracturing model, the NMPC problem
is formulated to track a desired set-point for the pump
rate qf with an objective function considering the stage
cost ψ(·) in equation (13) and (14) as follows:

min

N−1∑
i=0

(qfi − qSP )2

The prediction horizon Np is chosen to be 30 steps with
sampling time ∆t = 2 min. Therefore, the total simulation
time is 60 minutes. The control input is the pump rate
qf and the states are average width w̄, length L of the
fracture, and the wellhead pressure Phead with two safety
constraints listed in Table 1:

Table 1. State and control constraints

Min. Max. Unit

Phead - 6.34× 107 Pa
dqf
dt

- 0.795 m3/min2

The uncertain parameter considered here is the Young’s
modulus, which is one of the rock properties. We assume
it can vary by ±5% with respect to its nominal value as
shown in Table 2.

Table 2. Value of Young’s modulus E (Pa)

deviation value

-5% 2.28× 1010

Nominal 2.40× 1010

+5% 2.52× 1010

The simultaneous approach solves the NLP problem of
NMPC (13) and (14). Equations (10) and (11) are dis-
cretized in space using finite differences with ∆θ = 0.05,
and in time using an implicit Euler discretization with
∆t = 2 min. This leads to the dynamic model (15):

− E

2µHπ3(1− ν2)

1

L2
i

(
w̄4
i,j+1 − 2w̄4

i,j + w̄4
i,j−1

∆θ2
)+

(
w̄i,j − w̄i−1,j

∆t
)− θj

Li
(
Li − Li−1

∆t
)(
w̄i,j − w̄i,j−1

∆θ
) = 0

(15a)

Li

M−1∑
j=1

w̄i,j + w̄i,j+1

2
∆θ =

1

H

N−1∑
i=1

qfi + qfi+1

2
∆t (15b)

Phead,i =
E

2H(1− ν2)
wi,1 + σ − ρgHwell +

16µqfiHwell

πR4

(15c)

Li=1 = 0, w̄i=1,j = 0, qi,j=1 = qfi, w̄i,j=M = 0 (15d)

i = 1, ..., N, j = 1, ...,M (15e)

The discretized model is built in the optimization modeling
platform Pyomo 5.6.6 (Hart et al., 2011) and solved by
the nonlinear solver IPOPT 3.12 (Waechter and Biegler,
2006). All cases are run on a HPE-180t desktop running on
Ubuntu 18.04.3 with an Intel Core i7-930 CPU, 2.8 GHz,
and 8.8 GB RAM.

4.1 Performance comparison between standard NMPC
and multistage NMPC

We first compare the performance between standard
NMPC and multistage NMPC with time-invariant uncer-
tainty. For standard NMPC cases, the Young’s modulus
E always stays at the nominal value in the controller and
the Young’s modulus in the process model is realized con-
stantly with three different values respectively in each case.
From Fig. 4a, the standard NMPC performs well without
parameter mismatch. The pressure keeps increasing as
more fluid is pumped into the fracture. When the pressure
reaches the bound, the controller responds by decreasing
the flowrate to avoid the pressure exceeding the bound.
Since there is no mismatch between the controller and
the process model, the standard NMPC makes the correct
decisions and no constraint violations occur. However, this
perfect case without parameter mismatch would rarely
happen in the real world.

If the uncertainty parameter used in the control model
differs from that of the process, infeasibilities may occur.
In Fig. 4b, Young’s modulus in the process is 5% less
than that in the controller. The controller assumes that
the pressure would exceed its bound, so it decreases
the flowrate while the pressure remains in bound for
the whole process. This case is still acceptable because
no constraint violation occurs, despite the unexpected
decrease of flowrate. On the other hand, for the case in
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Fig. 4. Different uncertainty realization cases controlled by
standard NMPC

Fig. 4c, Young’s modulus in the process is 5% greater
than that in the controller. The controller doesn’t account
for the pressure violation and cannot take a proper action
accordingly. This result is unacceptable, and it may cause a
costly emergency shutdown. Hence, we resort to multistage
NMPC to solve this problem.

In order to handle the constraint violations, we apply
multistage NMPC to the previous three cases, where the
Young’s modulus is set to be the nominal value, -5%,
and +5% respectively. The robust horizon in multistage
NMPC is considered to be Nr = 1 and thus the truncated
scenario tree has 3 branching scenarios as depicted in
Fig. 3. For the first two cases shown in Fig. 5a and 5b,
the pressure doesn’t reach its bound in the whole process
while multistage NMPC starts decreasing the flowrate at
about t = 46 min. Because the controller doesn’t know
the uncertainty in the next time step, it always selects a
control input that is feasible for all three possible values
of this uncertain parameter. For the third case in Fig. 5c,
where the constraint violation occurs when using standard
NMPC, no constraint violations occur with multistage
NMPC. The controller notices that the pressure reaches its
bound and then starts to decrease the flowrate to maintain
the bound on pressure. Multistage NMPC can satisfy the
constraints for all uncertainties included in the scenario
tree.

4.2 Comparison of computational performance of different
robust horizon

We now consider multistage NMPC with different robust
horizons Nr = 1 and Nr = 2 and compare their tracking
errors and computational time. Starting from this section
and forward, we now have a problem setup where the
uncertain parameter is both time-varying and randomly
selected in a continuous interval (instead of a discretized
finite set). For instance, one uncertain parameter in this
case study is E, which can be realized randomly within
±5% deviation (i.e. E takes any value from [2.28, 2.52]
×1010) instead of remaining constant in all runs.

The tracking error is calculated by averaging the sum of
the difference between the control profile and the setpoint

Fig. 5. Different uncertainty realization cases controlled by
multistage NMPC

in 10 runs. The computational time is calculated also by
averaging the CPU time that the solver takes to solve
multistage NMPC problem in 10 runs.

Table 3. Performance comparison of different
robust horizons and uncertainties

Nr and d Tracking error(m3/min) CPU time(s)

Nr = 1, d = E 17.26 0.24
Nr = 2, d = E 17.31 0.77

Nr = 1, d = [E, ν]T 17.69 0.81

From Table 3, for cases with one uncertainty (E), the
multistage NMPC with Nr = 1 takes less computational
time than with Nr = 2 as expected, because the problem
size for Nr = 1 with only 3 scenarios is smaller than the
problem size for Nr = 2 with 9 scenarios. We also observe
the tracking error results between Nr = 1 and Nr = 2
to be similar. If the uncertain parameter takes only three
values (i.e. max,nominal,min), Nr = 2 might generate
smaller tracking errors because it considers uncertainty
evolution up to two stages and provides more recourse
variables with more scenarios than Nr = 1. Instead, since
our cases sample over a continuous sampling range over the
uncertain parameter, having a longer robust horizon may
not be as beneficial as in the discretized uncertainty case.
Also, with Nr = 2 the degrees of freedom are restricted by
the additional non-anticipativity constraints in the second
prediction horizon. In other words, if we compare the same
scenario in the scenario tree for Nr = 2 and Nr = 1 (e.g.,
maximum value of uncertainty in all stages), the former
case is slightly more restricted than the latter one.

Since using Nr = 1 is sufficient to achieve robust perfor-
mance in our case study, we recommend using Nr = 1
with cheaper computational effort for the rest of our sim-
ulations.

4.3 Multistage NMPC under two uncertainties

Finally, we introduce a second uncertain parameter into
our hydraulic fracturing model, Poisson’s ratio ν, which
is another rock property in the model. Similar to Section
4.2, we also assume Poisson’s ratio can vary within 5%
deviation (i.e. ν takes any value from [0.19, 0.21]).
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Both uncertain parameters, E and ν, are set to be ran-
domly time-variant as depicted in Fig. 6a. This random
realization case is controlled by multistage NMPC with
Nr = 1 and thus 9 scenarios. From Fig. 6b and 6c, We can
see that the controller still performs well even when two
uncertain parameters are included in the process model,
which is the more realistic case. The pressure profile oscil-
lates slightly due to the random realization of uncertainty.
The tracking error of this case is 17.69 m3/min, which is
larger than the other two cases in Table 3, as expected
because two uncertainties are considered now. Also, the
CPU time is 0.81 s in this case, which is similar to the
second case in Table 3 since 9 scenarios are included in
both multistage NMPCs. The case with two randomly real-
ized uncertainties is repeated for 10 runs and no constraint
violation occurs, which makes us more confident to apply
the multistage NMPC to cases in the real world.

Fig. 6. Multistage NMPC with two time-variant uncertain-
ties

5. CONCLUSIONS AND FUTURE WORK

In this work, we build a dynamic model for the hydraulic
fracturing process and control the process by standard
NMPC and multistage NMPC. Our results show that
standard NMPC performs well when rock properties are
perfectly known, but it cannot guarantee performance
when there is parameter mismatch. On the other hand,
multistage NMPC shows good performance with one or
two time-variant or time-invariant uncertainties. We also
compare computational performance for different lengths
of robust horizon for multistage NMPC. Future directions
will consider more control inputs to the fracturing model;
this study considers only one control input (qf ). On the
other hand, in real processes, both the concentration of
proppant, which keeps the fracture open, and the concen-
tration of the friction reducer must be considered. There-
fore, the mass balance should be extended to these com-
ponents to make the model more realistic. Additionally, at
this stage we assume that all the states can be measured
perfectly, while in practice only the wellhead pressure is
measurable. Thus, we also need to consider on-line state
estimation problems to obtain all state variables required
for NMPC.
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