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Abstract: This work deals with the dual-control problem of simultaneous regulation and model
parameter estimation in model predictive control. We propose an adaptive model predictive
control which guarantees a persistently exciting closed loop sequence by only looking forward
in time into the prediction horizon. Earlier works needed to look backwards and preserve prior
regressor data. With the new approach, under the assumption of a known periodic persistently
exciting reference trajectory around the equilibrium, we demonstrate exponential convergence
of nonlinear systems under the influence of the adaptive model predictive control combined with
a recursive least squares identifier with forgetting factor despite bounded noise. The results are,
at this stage, local in state and parameter estimate space.
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1. INTRODUCTION

This paper revolves around a model predictive control
(MPC) framework satisfying conditions for closed loop
identification. If the system is such that the control input
influences both the system state and its uncertainty (e.g.
in the form of the covariance of the parameter or state
estimate error), then the control inherits a dual function,
see Feldbaum (1960-1961). In this case, on the one hand,
the control objective involves the desire for regulation or
trajectory tracking and hence a steady or slowly varying
state. On the other hand, for identification purposes,
to reduce the uncertainty and extract more information
from the measurement the system is to be excited, see
e.g. Bar-Shalom (1981). Anderson (1985), Mareels and
Polderman (1996) and Brüggemann and Bitmead (2019)
show that insufficient excitation may result in bursts of
oscillatory behavior through parameter drift, singularity
in the information matrix and an unobservable state even
in the scalar case. Hence, the associated dual feedback
control acts as an arbitrator between these antagonistic
requirements. An overview of such dual problems can be
found in Filatov and Unbehauen (2000).

Even though MPC is a widely used technique applied in
various industries (e.g. Qin and Badgwell (2003)) the sur-
vey by Mayne (2014) points out that the field of adaptive
MPC which relates to the dual problem has attracted
relatively little interest in the controls community. Yet,
the idea of using an MPC to fulfil the role of an arbitrator
has been proposed in different publications. One common
approach is to impose additional input constraints on the
solution of the corresponding optimization problem. In this
fashion, by including past information and thus looking
backwards in time, the control directly ensures persistence
of excitation of the initial step of the MPC solution. For
instance, in Genceli and Nikolaou (1996), to identify FIR

models and drive the related system to a given set point,
additional periodic input constraints guarantee a periodic
persistently exciting (PE) feedback control. In this way,
past and future inputs are evaluated within the optimiza-
tion. Similarly, Lu et al. (2019) propose a robust tube-
based MPC for linear uncertain systems with an additional
constraint to provide persistence of excitation. Though,
the closed loop is not guaranteed to be PE. Instead of con-
straining the entire minimizng control sequence, Marafioti
et al. (2014) suggest a backward looking memory-based
MPC which only constrains the first control input as it
is the only element of the sequence which is actually
applied. The control strategy is analyzed for FIR and
ARMA models. Feasibility and persistence of excitation
can be guaranteed if, among other conditions, the initial
control sequence is PE. In a backward looking fashion,
the work by Larsson et al. (2015) takes into account the
Fisher information matrix generated by past information
as a further constraint for the optimization problem and
focuses on the actual implementation.

Instead of modifying the constraints to achieve excitation,
a number of authors (Hovd and Bitmead (2004), Heirung
et al. (2015), Heirung et al. (2017)) adapt the cost function
in that it also contains the parameter error covariance
matrix as a proxy for uncertainty. In this way, the control is
looking forward to seek persistence of excitation, although
in the light of the MPC’s receding horizon implementaion
a PE property of the closed loop is not immediate. The
article by Tanaskovic et al. (2014) takes a different path
and splits the dual problem into two. Firstly, a nominal
MPC ensures that the constraints hold for any element
of a set of possible FIR models. Then, the second stage
exhibits an exciting property by solving a optimization
with the objective to reduce the size of the set. The idea of
optimally selecting a model based on measurements is also
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pursued in Heirung et al. (2019) where the cost function
incorporates an additional risk of choosing an incorrect
model.

In this work, under the assumptions of full state feedback,
no constraints and a periodic PE reference trajectory in
the neighborhood of the equilibrium, rather than looking
back using past information as done in Genceli and Niko-
laou (1996) and Marafioti et al. (2014), we reformulate
the requirement for a PE input as a forward looking con-
dition on the reference trajectory and still guarantee the
PE property of the closed loop driven by the MPC. The
main contribution of this work is hence that persistence
of excitation is guaranteed by solely looking forward in
time despite the MPC’s peculiarity of a receding horizon
implementation. Further, the optimization problem solved
online as part of the MPC framework neither complicates
nor alters. Instead, the additional computation is moved
offline. Moreover, exponential convergence of the closed
loop as well as the parameter estimate is ensured for
nonlinear systems of which the full state is available. Note
that the strong assumption of a periodic PE reference tra-
jectory is removed in Brüggemann and Bitmead (2020b)
which is under review as an extension of this work.

The exposition of these results is structured as follows.
After defining the system and posing the problem we recall
the MPC from Köhler et al. (2018) and pick a reachable
periodic reference trajectory in the neighborhood of the
origin which is PE. For the actual parameter being known
we show that given a continuity assumption on the plant
and the cost function, if the initial state lies within a neigh-
borhood of the PE reference trajectory at time zero the
resulting closed loop is still PE. Then, it is demonstrated
that if the initial estimate is close to the actual parameter
the corresponding closed loop still establishes a PE closed
loop sequence. This result is then used for a recursive
least squares algorithm with forgetting factor for which
exponential convergence is established. We concludingly
present a simulation example.

2. PROBLEM FORMULATION

Let the system be
xk+1 = f(xk, uk) + wk, (1)

with xk ∈ Rn being the state, uk ∈ Rm the input and
wk ∈ Rn the disturbance at time k. Suppose the following.
Assumption 1. f : Rn × Rm → Rn is twice continuously
differentiable. 4

Moreover, the state is accessible for measurement and for
some w̄ > 0 the disturbance satisfies

|wk| < w̄. (2)
Assume further that some system parameters θ =

[θ1 θ2 . . . θS ]
> ∈ RS are unknown. By assuming that f

is linear in those θ, one may reformulate

f(xk, uk, ) = f0(xk, uk) +

S∑
i=1

θifi(xk, uk),

where fi : Rn × Rm → Rn are basis functions so that the
state recursion in (1) can be written as

xk+1 = f0(xk, uk) + ϕTk θ + wk, (3)

where the regressor
ϕ>k = [f1(xk, uk) f2(xk, uk) . . . fS(xk, uk)] ∈ Rn×S .

In order to present concisely the main problem to be solved
we first require a definition of a PE sequence.
Definition 2. The sequence {xk, uk} is said to be persis-
tently exciting (PE) if for some constantM and all j there
exist positive constants α and β such that

0 < αI ≤
j+M∑
i=j

ϕiϕ
>
i ≤ βI <∞.

4

The concise formulation of the main problem follows.
Problem 3. Regulate the state xk in (1) while guaranteeing
that the closed loop sequence {xk, uk} is PE. 4

In order to solve this problem we subsequently present
an MPC to track a periodic reference trajectory around
the origin rendering the closed loop sequence PE, while
a recursive least squares identifier with forgetting factor
ensures an accurate parameter estimate of θ.

3. PRELIMINARIES

The preliminary results are arranged as follows. After
introducing assumptions on the existence of a reachable
periodic PE reference trajectory we present the MPC
framework based on the nonlinear MPC in Köhler et al.
(2018) using the notion of incremental stability. Hereby, we
include an assumption on the solution of the corresponding
optimization problem which entails a continuous feedback
law. The section concludes with an assumption on the
system being incrementally stabilizable.

3.1 Reachable periodic PE reference trajectory

Define the following feasible trajectory and consider the
related assumptions for system (1).
Definition 4. A sequence {xr(k), ur(k)} for system (1)
with wk = 0 is said to be reachable period-M if it satisfies

xr(k + 1) = f(xr(k), ur(k)),

xr((k + 1)M) = xr(kM),

ur((k + 1)M) = ur(kM),

for all k. 4

For ease of notation, this period, M, coincides with that
in Definition 2 for persistence of excitation.
Assumption 5. A reachable period-M sequence {xr(k),
ur(k)} exists for system (1) with wk = 0. 4
Assumption 6. The particular reachable period M se-
quence {xr(k), ur(k)} is PE. 4
Remark 7. Note that Assumption 5 is an algebraic condi-
tion on {xr(·), ur(·), θ}, which, subject to the conditions
of the Implicit Function Theorem (Rudin (1986)), yields
{xr(·)} as a continuous function of {ur(·), θ}. This analysis
is under review, see Brüggemann and Bitmead (2020b) in
which we replace both Assumptions 5 and 6. 4

3.2 The model predictive control framework

We apply the trajectory in Assumption 6 to an MPC
problem with related finite-horizon cost function
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JN (xk, u·|k, k) =

N−1∑
i=0

l(xi|k, ui|k, k),

where xi|k represents the state prediction at time instant
k + i given the current state xk. The control input ui|k is
denoted accordingly, so that the control sequence u·|k =

{ui|k}N−1
i=0 . The running cost is defined as

l(xi|k, ui|k, k) = |xi|k − xr(k + i)|2Q + |ui|k − ur(k + i)|2R,
where Q = Q> > 0, R = R> > 0. The MPC framework
solves the optimization problem

VN (xk, k) = min
u·|k

JN (xk, u·|k, k) (4)

s.t. x0|k = xk,

xi+1|k = f(xi|k, ui|k)

at every time instant k and applies the first control input
û?0|k of the minimizing sequence û?·|k to the system in (1).

Remark 8. For clarity in our development, we do not
include state or input constraints in our formulation here.
They can be added within the local stability framework,
c.f. Köhler et al. (2018), but would require tracking their
associated assumptions connected with evolution within
the interior of the feasible set. 4

In order to render the closed loop convergent to the
given reference trajectory and thus induce persistence
of excitation a continuous feedback law as well as a
stabilizability condition on the system are required.

3.3 Continuous feedback law

Similarly to Mayne and Michalska (1990), we therefore
assume the Hessian matrix of the cost function to be
positive definite.
Assumption 9. The minimizing control sequence u?·|k sat-
isfies

∂2JN (xk, u·|k, k)

∂u2
·|k

∣∣∣∣∣
xr(k),u?

·|k,k

> 0. (5)

4
Remark 10. As an explanatory remark on the notation
used in Assumption 9 above, the left hand side of (5) reads
out as the second partial derivative of JN with respect to
the sequence u·|k holding xk and k constant, and evaluated
at xr(k), u?·|k and k. 4

The continuity property of the feedback control generated
by the MPC follows.
Lemma 11. Under Assumption 1 and 9 the feedback con-
trol u?0|k related to the MPC in (4) is continuous in θ and
xk for a neighborhood of (xr(k), θ). 4

Proof. By Assumption 1, JN is twice continuous differen-
tiable. Then, with Assumption 9, continuity follows from
(Johansen, 2011, Theorem 5.1). 2

Lemma 11 ensures that a small change in the parameter
or state results only in a small change in the generated
control sequence. This relation is essential for the local
analysis in the next section.

3.4 Local incremental stabilizability

The next assumption describes a local incremental stabi-
lizability condition, which is similar to local exponential
stabilizability around a given reference trajectory.
Assumption 12. (Köhler et al., 2019, Assumption 1) There
exist a control law κ : Rn×Rn×Rm → Rm, a δ-Lyapunov
function Vδ : Rn × Rn × Rm → R≥0 that is continuous in
the first argument and satisfies Vδ(x′, x′, u′) = 0 ∀ (x′, u′),
and parameters cδ,l, cδ,u, δloc, kmax > 0, ρ ∈ (0, 1), such
that the following properties hold for all (x, x′, u′) with
Vδ(x, x

′, u′) ≤ δloc:
cδ,l|x− x′|2 ≤ Vδ(x, x′, u′) ≤ cδ,u|x− x′|2

|κ(x, x′, u′)− u′| ≤ kmax|x− x′|
Vδ(x

+, x′+, u′+) ≤ ρVδ(x, x′, u′),
where x+ = f(x, κ(x, x′, u′)) and x′+ = f(x′, u′). 4

Note that neither the δ-Lyapunov function Vδ nor the
control law κ is required for the implementation of the
MPC but instead is used for the stability analysis. The
exposition continues with the main results.

4. PERSISTENTLY EXCITING REFERENCE
TRACKING WITH NOISE

The results on persistence of excitation of the closed
loop in this section rely on practical stability of the
tracking error. As a short intermezzo, we thus first adapt
Köhler et al. (2018) related to state regulation to the case
of trajectory tracking. Then, we analyze persistence of
excitation of the closed loop sequence. It is shown that
under the assumption of a given period-M PE reference
trajectory, knowing the true parameter and a sufficiently
small disturbance, the closed loop sequence is PE for
all initial conditions x0 within a neighborhood of the
initial reference trajectory. Then, an equivalent guarantee
is obtained when additionally the uncertain parameter lies
within a neighborhood of the actual parameter.

4.1 Practically stable tracking error

The following lemma shows exponential convergence of the
closed loop to a neighborhood of the reference trajectory,
where the size of the neighborhood depends on the bound
on the disturbance wk.
Lemma 13. Suppose that Assumption 12 is satisfied. For
any cx > 0 there exist w̄ > 0 and a sufficiently large
horizon N , such that for all initial conditions |x0−xr(0)| ≤
cx and all disturbances |wk| ≤ w̄, the perturbed closed
loop converges exponentially to the set ZRPI := {xk −
xr(k) : VN (xk, k) ≤ VRPI(w̄;N, cx)}, where VRPI is a K-
function in w̄ which depends on N, cx. 4

Proof. This lemma is concise version of (Köhler et al.,
2018, Theorem 8) related to state regulation applied to the
case of reference tracking. The proof is analogous consider-
ing the δ-Lyapunov function from Assumption 12. 2

4.2 Persistently exciting perturbed solution

Lemma 13 above establishes practical stability of the
tracking error in the presence of a bounded disturbance. If

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

7154



the neighborhood of the reachable PE reference trajectory
to which the closed loop converges is sufficiently small the
corresponding closed loop is PE in finite time.
Lemma 14. Suppose Assumption 1, 5, 6, 9 and 12 hold and
the parameter θ is known. Then, there exists a reachable
PE reference trajectory and for any cx > 0 there exist
w̄ > 0 and a sufficiently large horizon N , such that for all
|x0−xr(0)| ≤ cx, |wk| ≤ w̄ and horizon N , the closed loop
sequence is PE for all k ≥ kPE for some k ∈ N. If x0 = xk̄,
where k̄ ∈ {k ≥ kPE ∧k mod M = 0}, then this holds for
all k. 4

Proof. The proof is based on continuity arguments and
divided into three steps. Step I shows the existence of
a PE sequence in the neighborhood of the PE reference
trajectory. Step II relates ZRPI to this neighborhood and
step III proves the statement using Lemma 13.

Step I : By Assumption 1 and 9 (via Lemma 11), f and
u?0|k are continuous. Thus, with Assumption 5 and 6 there
exists a PE sequence {xr(k), ur(k)}, for which there exists
a positive εPE such that |xr(k) − xk| ≤ εPE implies
{xk, u?0|k} is PE.

Step II : Note that VN (xk, k) < ε implies that |xk −
xr(k)|2Q < ε for all ε > 0. Hence, by continuity of VRPI , for
any εPE from step I there exist ε1 and w̄1 > 0 such that
minx̄∈ZRPI

|x− x̄|2Q < ε1 implies that |x− xr(k)| < εPE .

Step III : For any cx > 0, let N and w̄2 satisfy Lemma 13
(requiring Assumption 12), and define w̄ = min{w̄1, w̄2}.
The statement to be proven holds for cx, N, w̄ and kPE ,
where kPE is such that minx̄∈ZRPI

|xkPE
− x̄|2 < ε1, by

using step I and II. The related guarantee for all k is a
direct consequence. 2

Lemma 14 establishes that the closed loop sequence can be
chosen as PE given a known parameter θ. As this feature
is only of interest if the parameter θ is unknown and thus
to be estimated we aim to establish similar results for the
case of an estimate θ̂ within the neighborhood of the true
parameter.

4.3 Persistently exciting perturbed uncertain solution

Theorem 15. Suppose Assumption 1, 5, 6, 9 and 12 hold.
Let the control input be derived by the optimization
problem in (4) with θ substituted by some θ̂. Then, for any
reachable PE reference trajectory there exist cx, w̄, cθ > 0
and a sufficiently large horizon N such that for all |x0 −
xr(0)| ≤ cx, |wk| ≤ w̄ and |θ − θ̂| ≤ cθ, the closed
loop sequence is PE for all k ≥ kPE . If x0 = xk̄, where
k̄ ∈ {k ≥ kPE∧k mod M = 0}, then this holds for all k.4

Proof. Let û?0|k be the MPC feedback control for some
θ̂k, and u?0|k that corresponding to θ. Then

xk+1 = f(xk, û
?
0|k) + wk

= f(xk, u
?
0|k) + ŵk,

where
ŵk =

(
f(xk, û

?
0|k)− f(xk, u

?
0|k)
)

+ wk.

By continuity of the MPC feedback via Lemma 11 and
continuity of f through Assumption 1, the disturbance ŵk

can be bounded by having θ̂k sufficiently close to θ for all
k. Thus, the result follows from Lemma 14. 2

Theorem 15 demonstrates that given sufficient assump-
tions the closed loop under the influence of the MPC
delivers a PE closed loop sequence. It is now time to elab-
orate why persistence of excitation is desired and therefore
introduce the estimation algorithm.

5. RECURSIVE LEAST SQUARES WITH
FORGETTING FACTOR

In order to estimate the unknown parameter θ we select
a recursive least squares algorithm with forgetting factor.
Therefore, define

x̃k+1 = xk+1 − f0(xk, uk),

and consider the corresponding recursive algorithm

θ̂k+1 = θ̂k + Pk−1ϕkD
−1
k

(
x̃k+1 − ϕ>k θ̂k

)
, (6)

where Dk = λT + ϕ>k Pk−1ϕk with T = T> > 0 ∈ Rn×n,
and

Pk+1 = λ−1
(
I − Pkϕk+1D

−1
k+1ϕ

>
k+1

)
Pk, (7)

where the forgetting factor λ ∈ (0, 1) is constant and
P−1 ∈ RS×S is symmetric positive definite. The matrix
T is related to the weight associated with the prediction
error of each element of the state, see the following lemma.
Lemma 16. The algorithm in (6) and (7) converges to the
value θ which minimizes

λk|θ̂0 − θ|2P−1
−1

+

k∑
i=1

λk−i|x̃i − ϕ>i−1θ|T−1 .

. 4

Proof. The proof is analogous to that of (Islam and Bern-
stein, 2019, Theorem 2) and hence omitted for brevity.
2

We also wish to obtain convergence of the estimate to (a
neighborhood of) the true parameter, i.e.

θ̃k = θ − θ̂k. (8)
This is achieved by the next lemma whose sufficient
condition underpins our desire for a PE closed loop. The
result is an extension of Johnstone et al. (1982) adapted
to multiple output systems.
Lemma 17. Suppose the sequence {xk, uk} is PE and
wk satisfies (2). Then, for any initial condition θ̃0 the
estimation error θ̃k converges exponentially to a ball
centered on θ with a radius proportional to the bound
on w, i.e. for any θ̃0 there exist γ1, γ2 > 0 such that for all
k ≥M

|θ̃k| ≤ γ1λ
k/2|θ̃0|+ γ2

λk/2 − 1

λ1/2 − 1
w̄.

4

Proof. It is shown in Johnstone et al. (1982) that the
result holds for SISO systems and no disturbance. An
equivalent result for the multiple output case is under
review, see Brüggemann and Bitmead (2020a). Exponen-
tial convergence of the linear error dynamics implies BIBO
stability, which gives the desired result. 2
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We have thus shown that under the assumption of a
bounded disturbance and a PE sequence, the estimate
converges exponentially to the actual parameter without
noise, or in the case of a bounded disturbance, to a
neighborhood whose size depends on the bound of the
disturbance. Exponential convergence is decisive for the
preservation of a PE closed loop sequence, as disclosed
in the next section, where we combine results from this
section and those of previous ones.

6. PERIODIC ADAPTIVE MODEL PREDICTIVE
CONTROL

All the local results above share a common concept. That
is, in a utopian world with suitable initial conditions,
perfect knowledge of the uncertainty and under sufficient
conditions a PE closed loop is guaranteed. Gradually wa-
tering down these conditions by contemplating sufficiently
small neighborhoods has been shown not to affect the
substance of the initial statement about the PE closed loop
sequence; provided we carry along suitable smoothness
and regularity assumptions. Consistent with this strategy,
this section focuses on the the estimation error and its
interplay with the neighborhoods introduced before. In
this fashion, by noting that if the bound on the estimation
error implies a neighborhood for which a PE closed loop
sequence exists, then we achieve a PE closed loop sequence
despite uncertainty.

6.1 Convergence under bounded noise

The following theorem states that under sufficient condi-
tions, if the disturbance is bounded and the initial state
and the initial parameter estimate are within a neigh-
borhood of the periodic PE reference trajectory and the
true parameter, respectively, then the estimation error and
the closed loop tracking error exponentially converge to a
neighborhood around the reference trajectory and the true
parameter, respectively.
Theorem 18. Suppose Assumption 1, 5, 6, 9 and 12 hold.
Let the control input be derived by the optimization
problem in (4) with θ substituted by θ̂0 for k < M and
θ̂k given by the recursion in (6) for k ≥M . Then, for any
reachable PE reference trajectory there exist cw,k, cθ, w̄
and a sufficiently large horizon N such that for all |x0 −
xr(0)| ≤ cw,k, |wk| ≤ w̄, |θ̃0| ≤ cθ

xk − xr(k)→ ZRPI ,

|θ̃k| →
γ2

1− λ1/2
w̄,

as k →∞. 4

Proof. Let cx,1, w̄1, cθ,1 > 0 such that Theorem 15 holds.
Then, with Lemma 17, let w̄2, cθ,2 > 0 such that |θ̃0| ≤ cθ,2
and |wk| < w̄2 imply |θ̃k| ≤ cθ,1 for all k ≥M . By selecting
w̄ = min{w̄1, w̄2} and cθ = min{cθ,1, cθ,2}, the conclusion
follows from Theorem 15 and Lemma 17. 2

The convergence result for the uncertain and perturbed
system is numerically demonstrated in the next section
for a non-infinitesimal neighborhood of initial conditions
about their nominal values. Observe that the aforemen-
tioned theorem relies on a periodic PE reference trajectory,

also depending on the uncertain parameter. By continuity
arguments, an equivalent statement holds for a periodic
PE reference generated with an initial parameter estimate
in a sufficiently small neighborhood of the true parameter.
However, persistence of excitation and feasibility of the
reference trajectory is generally not ensured for all initial
estimates which may deviate substantially from the true
parameter. The same obstacle may occur if the reference
trajectory is updated online using the current estimate.
Furthermore, note that the convergence result is only local
with respect to the uncertain parameter and the initial
state.

7. SIMULATION EXAMPLE

Consider the nonlinear scalar system from Hovd and
Bitmead (2004),

xk+1 = f0(xk, uk) + ϕ>θ + wk,

where
f0(xk, uk) = uk,

θ = [θ1 θ2]
>
, (9)

ϕk = [f1(xk) f2(xk, uk)]
>
,

with
f1(xk) = xk, f2(xk, uk) = xkuk. (10)

The parameters θ1 = 1 and θ2 = 0.1 are unknown and the
noise |wk| ≤ 0.07, uniformly distributed. The main objec-
tive is to regulate the state which presumes an accurate
estimate of the unknown parameter θ. We therefore gen-
erate a reachable periodic PE reference trajectory around
the origin and use the MPC in (4) with an estimate given
by the recursive least squares in (6) - (7) with a forgetting
factor λ = 0.7 and weight T = 1. Assumption 1 clearly
holds. In order to satisfy Assumption 5 and 6, we generate
a reference trajectory by solving

(x̄r, ūr) = arg min
{x0,x1,...,xN−1}
{u0,u1,...,uN−1}

1

N

N−1∑
i=0

|xi|k|2Q + |ui|k|2R

s.t. xk+1 = f(xk, uk),

xN = x0,

αI ≤
N−1∑
i=0

ϕ>i ϕi ≤ βI,

with α = 0.1, β = 0.3 and Q = 6, R = 0.1 for JN , and
defining

xr(k) = x̄r(k mod 2)

ur(k) = ūr(k mod 2).

We chose N = 2 since it results in a low cost relative to
other small integer values. The solution of the minimiza-
tion problem guarantees a PE period-2 reference trajec-
tory. It also ensures that the reference values are in the
neighborhood of the origin to which we want to steer the
system. The optimization problem is solved within seconds
on a regular laptop, by the interior point algorithm in
Matlab. Next, Assumption 12 holds by letting

κ(xk, xr(k), ur(k)) =
1

θ2xk + 1
K(xk − xr(k))

+ ur(k)(θ2xr(k) + 1),

Vδ = |xk − xr(k)|2P ,
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where P and K relate to the discrete-time infinite-horizon
linear quadratic regulator using common notation. Lastly,
Assumption 9 is numerically verified.

The figures below are based on an initial estimate θ̂0 =
[1.5 − 0.4]>. Figure 1 depicts a fast convergence of the
closed loop to the reference trajectory despite noise and
parameter uncertainties. The effect of the noise on the
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u?0|k
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Fig. 1. Closed loop with bounded noise |wk| ≤ 0.07 versus
PE reference trajectory

parameter estimate is more significant, as illustrated in
Figure 2. Although the estimate converges to a ball cen-
tered on the true parameter, the estimates continuously
move around within this ball. A similar pattern can be
observed in Figure 3 in which the norm of the estimation
error is plotted. The estimation error converges exponen-
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Fig. 2. Parameter estimate given |wk| ≤ 0.07.

tially to a neighborhood of the origin and remains there.
As the analysis in the previous sections is of local nature,
the convergence results are not expected to hold for a
more potent noise or large deviations either of the initial
state or initial estimate. Such a scenario is observed for
a noise of |wk| < 0.42, uniformly distributed. Figure 4
displays a closed loop that still follows the reference tra-
jectory albeit the tracking error has increased. Consistent
with the previous simulation, one sees in Figure 5 that
the estimates are more affected and vastly vary without
indicating converging tendencies. As we numerically verify
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Fig. 3. Estimation error given |wk| ≤ 0.07.
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Fig. 4. Closed loop with |wk| ≤ 0.42 and reference trajec-
tory.

that the closed loop is PE, the increased estimation error
is regarded as a result of the noise and not of the tracking
error.
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Fig. 5. Parameter estimate given |wk| ≤ 0.42.
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Fig. 6. Estimation error given |wk| ≤ 0.42.
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8. CONCLUSION

This work achieves a PE closed loop sequence by only
looking forward in time given a known periodic PE ref-
erence trajectory, despite disturbances, uncertainties and
the MPC’s nature of a receding horizon implementation,
without complicating the optimization problem solved on-
line. The theory is supported by two simulation examples
which illustrate the effect of noise on the closed loop per-
formance and parameter estimation and thus go beyond
our local analysis. The extension of our results will include
an analysis of the construction of a periodic PE reference
trajectory and is currently under review, see Brüggemann
and Bitmead (2020b).
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