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Abstract: This paper employs a computational optimal control framework which provides
trajectory planning for search applications based on specific vehicle and sensor features. With
its capability to handle high-dimensional, nonlinear optimal control problems with uncertainty,
this framework enables detailed modeling and leveraging of vehicle/sensor features to generate
better performing search plans. This paper utilizes these trajectory planning tools for the inverse
design problem of deciding on the vehicle and sensor characteristics themselves. Using Monte
Carlo sampling, we generate multiple trajectories to examine the performance of different vehicle
and sensor configurations. We use this method to study three examples: sonar mounting angle,
vehicle asset allocation, and lane space planning for time-limited lawnmower search plans.
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1. INTRODUCTION

A broad range of activities falls under search applications:
search and rescue, mine countermeasures (MCM), map-
ping, and reconnaissance, to name just a few. These appli-
cations are rapidly transforming in scope as unmanned ve-
hicle platforms become more capable and reliable. In fact,
autonomous vehicle teams have great potential in a wide
range of scientific, commercial and defense applications,
and they are especially well-suited for remote sensing and
searching in maritime domains.

Along with increases in autonomous vehicle capability,
recent years have brought new developments in computa-
tional optimal control. Direct discretization methods, such
as the pseudospectral method (Gong et al., 2007, 2016),
have enabled the solution of high-dimensional, nonlinear
optimal control problems. Furthermore, optimal search—
which presents an additional challenge of optimizing over
uncertain features—has also spurred the development of
multiple numerical methods (Foraker, 2011; Phelps et al.,
2014; Walton et al., 2016; Phelps et al., 2016). With these
tools, we can now model sensor performance as a dynamic
feature, influenced by factors such as vehicle velocity and
turn rate, while also taking into consideration detailed
sensor models. This allows system designers to leverage
the heterogeneous sensor and vehicle options available for
improved performance in path planning.

The ability to rapidly solve highly detailed optimal search
problems also provides a tool for investigating what could
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be termed “inverse” design problems of finding optimal
vehicle and sensor configurations for search applications.
Originally developed to optimize path plans by taking into
account specified characteristics of vehicles and sensors,
these tools can be turned around to instead address which
sensor configurations and vehicles should be utilized.

Typical direct applications of the optimal search frame-
work referenced above may include computing feasible
trajectories which minimize the risk of not finding a target
with a specific sonar; or determining the time required
for an autonomous vehicle team to achieve a given risk
threshold (Kragelund et al., 2016). Conversely, inverse
design problems provide engineering insights about the
search assets themselves. Such questions include: What is
the most effective sonar mounting angle for a search con-
ducted by different types of autonomous vehicles? Which
sonar design parameters have the biggest impact on search
performance? How do multiple low-cost systems perform
in a given mission, compared against the performance of
a single expensive asset?

This paper describes an approach for solving these kinds
of design problems, one which recognizes the fact that a
sonar’s effectiveness often depends on the motion of its
vehicle platform. Engineering-based sonar models provide
a link between search performance and sonar design pa-
rameters, while computational optimal search enables the
rapid solution of multiple problems required for Monte
Carlo analysis. In this way, sonar designers and opera-
tional planners can numerically determine the sensitivity
of a given optimal search scenario to individual vehicle
and/or sonar design parameters. Furthermore, a beneficial
by-product of this analysis is a set of optimal vehicle
trajectories linked to a given scenario.
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The structure of this paper is as follows. Section 2 briefly
presents the optimal control framework and computational
solution method used to solve an optimal search problem.
Section 3 describes how this framework is used to generate
multiple simulations for subsequent Monte Carlo analysis.
Simulation details include vehicle and sensor characteris-
tics for a notional MCM scenario, as well as implementa-
tion settings for the computational solution method. Sec-
tion 4 presents three design applications for this technique:
calibration of sensor mounting angle, resource allocation in
regard to the number of vehicle assets, and refinement of
a heuristic lawnmower search strategy. Section 5 discusses
some conclusions.

2. OPTIMAL SEARCH

Optimal search addresses the problem of optimally search-
ing a region, given a sensor platform (such as a moving
vehicle), sensor, and a target with a mix of known charac-
teristics (such as location bounds) and unknown features
(such as location or velocity). Target uncertainty can be
characterized in a variety of ways. Here we consider static
targets using a conditionally deterministic model. Target
location is represented by a set of possible parameter
values ω ∈ Ω ⊂ Rn where Ω is the search region, with
prior probability density function φ(ω). As our objective
function, we consider the expected probability of missing
a target, given by:

J = E[P (no detection)] =

∫
Ω

P (no detection|ω)φ(ω)dω. (1)

The conditionally deterministic quantity P (no detection|ω)
is a function of the searcher state x(t) ∈ Rnx , its position
relative to ω, and the sonar performance profile. To model
sonar performance, we use the the “exponential detection
model” derived in Koopman (1956), which models detec-
tion performance as a continuous function determined by
instantaneous detection rate, r(x(t),ω) : Rnx × Rnω → R,
defined such that P (detection in interval [t, t + ∆t]) ≈
r(x(t),ω)∆t. Letting ∆t→ 0 produces the quantity

PND(t|ω) = e
−
∫ t

0
r(x(τ),ω)dτ

, (2)

where PND(t|ω) is the probability of not detecting a target
at ω by time t. Instantaneous detection rate depends not
only on the searcher’s pose relative to the target, but also
on its sensor characteristics. Some of the features that
determine r(x(t),ω) for the sonars studied in this paper
are discussed in Section 3.2.

2.1 Generalized Optimal Control (GenOC) Framework

Optimizing over this cost function creates an optimal con-
trol problem where in addition to time, one integrates over
the (potentially high-dimensional) parameter space Ω.

Optimal Search. Determine (x,u) that minimizes:

J =

∫
Ω

[
e
−
∫ Tf

0
r(x(τ),ω)dτ

]
φ(ω)dω, (3)

subject to vehicle dynamics:

ẋ(t) = f(x(t),u(t), t), x(0) = x0. (4)

Additional constraints are imposed on vehicle states, as
discussed in Section 3.1. Furthermore, we assume that the

target location is unknown with uniform probability, i.e.
φ(ω) is a non-informative prior distribution.

2.2 Computational Method

To solve the optimal search problem numerically, we
employ the method described in Phelps et al. (2014) and
Walton et al. (2016). This method is based on direct
discretization of the parameter space Ω. For a set of nodes
{ωi}Mi=1 and associated quadrature weights {αi}Mi=1, the
cost function is then approximated as:

JM =

M∑
i=1

αi

[
e
−
∫ Tf

0
r(x(τ),ωi)dτ

]
φ(ωi). (5)

By approximating the cost of (3) as a sum, the approxi-
mate problem is a “standard” control problem which we
solve using the pseudospectrol method described in (Gong
et al., 2007) and Gong et al. (2016). For further technical
details beyond the scope of this paper, we direct the reader
to these references.

3. SIMULATION SETUP

We approach each design problem as a parametric study
to be solved using Monte Carlo analysis. For a given
design parameter, each iteration solves the optimal search
problem from Section 2 using the same probability dis-
tribution, vehicle/sonar models, and simulation parame-
ters. After computing multiple optimal solutions over a
specified range of values, the design parameter value that
statistically produces the best objective is revealed. This
section describes the vehicle dynamics, sonar models, and
simulation parameters used to construct a notional MCM
mine hunting mission for subsequent analysis.

3.1 Vehicles

Fig. 1. A REMUS 100 autonomous underwater vehicle
(AUV) on a SeaFox unmanned surface vessel (USV).

SeaFox Unmanned Surface Vessel (USV) The Naval
Postgraduate School operates two SeaFox USVs (e.g.
‘Little USV, big applications’, 2004; Richman, 2008) for
autonomous vehicle research, including sonar-based path
planning for riverine navigation (Gadre et al., 2009; Yaki-
menko and Kragelund, 2011) and adaptive speed control
(Kragelund et al., 2013). To develop a model for these
vehicles, we assume that USVs conduct their search mis-
sions at constant velocity, without aggressive maneuvers,
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and therefore exhibit simple planar motion at the sea
surface (i.e., pitch, roll, and heave motions are zero). If
we further assume that sway motions are negligible (i.e.,
sideslip is zero) the equations of motion can be adequately
modeled by kinematics only. Using the state vector x(t) ≡
[x(t), y(t), ψ(t), r(t)]

T
and control input u(t), the state-

space equations of motion are

ẋ(t) = V cos(ψ(t))

ẏ(t) = V sin(ψ(t))

ψ̇(t) = r(t)

ṙ(t) =
1

T
(Ku(t)− r(t)) , (6)

where

x(t) = meters of northing in the navigational reference frame,

y(t) = meters of easting in the navigational reference frame,

ψ(t) = heading angle in radians measured clockwise from north,

r(t) = turn rate in radians per second,

u(t) = δr(t), rudder deflection angle in radians,

V = forward velocity in meters per second,

K = Nomoto gain constant with units in inverse seconds, and

T = Nomoto time constant with units in seconds.

Equation (6) implements a first-order approximation to
the well-known Nomoto steering model, “the most popular
model for ship autopilot design due to its simplicity
and accuracy” (e.g. Fossen, 2002, p. 309). The Nomoto
gain and time constants can be identified from sea trial
maneuvers as described in Journee (1970), Clarke (2003),
and Sonnenburg et al. (2010). Table 1 lists the values of V ,
K, and T used in our Nomoto model of the SeaFox USV.

REMUS 100 Autonomous Underwater Vehicle (AUV)
The REMUS 100 AUV is a small, rapidly deployable
unmanned underwater vehicle for collecting environmental
data in the ocean (von Alt et al., 1994). Underwater
vehicles can move in all three dimensions, and six degrees
of freedom (DOF) are required to describe this motion
completely. An example of a full 6-DOF model for simulat-
ing the nonlinear dynamics of a REMUS 100 is presented
in Sgarioto (2007). In practice, however, these equations of
motion are often decoupled into the horizontal and vertical
planes to develop separate controllers for steering and div-
ing, respectively. Since MCM missions typically conduct
constant-velocity sonar surveys at a fixed altitude above
the seafloor, we will likewise consider only two-dimensional
planar motion.

In general, hydrodynamic forces and moments are nonlin-
ear functions of vehicle control inputs, state variables, and
their time derivatives. Linearization, however, can accu-
rately approximate these effects around a desired steady-
state flight condition. First, nonlinear terms are replaced
by the product of a constant hydrodynamic coefficient and
a control or state variable denoted by its corresponding
subscript. Next, assumptions of negligible pitch, roll, and
heave motion are used to derive decoupled lateral steering
dynamics for the REMUS 100 (Sgarioto, 2007, p. 38).
Finally, assuming negligible sideslip motion (i.e., sway
velocity is zero), the turn rate equation can be rearranged
into a first order Nomoto steering model similar to (6):

(Izz −Nṙ) ṙ(t) = Nrr(t) +Nδr δr(t)

ṙ(t) =
Nr

(Izz −Nṙ)
r(t) +

Nδr
(Izz −Nṙ)

δr(t)

ṙ(t) =
1

T
[Ku(t)− r(t)] , (7)

where

r(t) = turn rate in radians per second,

u(t) = δr(t), rudder deflection angle in radians,

K = −Nδr/Nr, the Nomoto gain constant,

T = (Nṙ − Izz) /Nr, the Nomoto time constant,

Izz = yaw moment of inertia about the vehicle’s z-axis,

Nṙ = hydro. coeff. for yaw moment due to angular acceleration,

Nr = hydro. coeff. for yaw moment due to turn rate, and

Nδr = hydro. coeff. for yaw moment due to rudder deflection.

Using the yaw moment of inertia and hydrodynamic coeffi-
cients provided by Sgarioto (2007), we calculate values for
the parameters listed in Table 1. A full derivation of this
Nomoto steering model can be found in Kragelund (2017).

Table 1. Design parameters for vehicle models

Design Parameter SeaFox USV REMUS 100 AUV

Nomoto Gain Constant, K 0.5 1/s 2.0 1/s

Nomoto Time Constant, T 5.0 s 1.0 s

Velocity, V 2.5 m/s 1.5 m/s

3.2 Sonars

For our mine hunting simulations, we modeled three differ-
ent forward-looking sonar (FLS) systems, each represent-
ing one of two basic design types illustrated in Fig. 2:

(1) A long-range, low-resolution detection sonar designed
with a cylindrical transducer array for wide horizontal
field of view (HFOV ) and operating at 200 kHz.

(2) Two short range, high-resolution, blazed array imag-
ing sonars operating at 450 kHz and 900 kHz.

Fig. 2. A cylindrical array FLS mounted on a SeaFox USV
(left) and a blazed array FLS mounted on a REMUS
100 AUV (right).

Several different parameters influence a sonar design’s
detection rate (Kragelund et al., 2016). Figure of merit
(FOM), for example, quantifies the achievable noise-
limited detection range based on positive signal excess.
The operating frequency directly impacts the attenuation
coefficient, which determines propagation losses due to
absorption. Frequency also plays a role in computing a
sonar array’s directivity index and the ambient noise level
a sonar must contend with. Other parameters, such as the
scan update rate, contribute directly to the instantaneous
detection rate, the main driver of our objective function.
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Finally, geometric dependencies based on sonar field of
view or mounting angle can make all the difference be-
tween an effective search operation, and one in which the
residual risk of not detecting the target is too great. All
of these influences enter the signal excess equations and
impact the sonar’s instantaneous detection rate described
in Section 2. A full derivation of the sonar models used in
our simulations can be found in Kragelund (2017).

The proposed Monte Carlo approach requires certain
choices to be made regarding which values to assign for
parameters being held constant in a given parameter
study. In most cases, e.g., for FOM, scan update rate,
and vertical field of view (VFOV ), we choose the median
parameter value from among the three forward-looking
sonar systems. Moreover, we ensure a fair comparison
among different sonar designs by setting their horizontal
field of view (HFOV ) to 90 degrees, the minimum value
out of our three models. An exception to this policy is
made for vertical mounting angle (VDE), the subject of
our first parametric study described in Section 4.1. Initial
simulation results determined that VDE had a significant
impact on a sonar’s detection performance, particularly
when searching for bottom mines with a USV. As a result,
the optimal VDE value for each sonar model was used for
all subsequent design problems.

Before conducting a parametric study, it is important
to assess the relative impact of parameters that may be
coupled with the parameter of interest, due to problem
geometry, sonar frequency, etc. Figure of merit, for exam-
ple, is tightly-coupled with vertical mounting angle since
these two parameters describe a trigonometric relationship
between a vehicle-mounted sonar and a target on the
seabed. However, extensive simulation analysis determined
that setting FOM to the median value of 66 dB had only a
minor impact on the result of the VDE parametric study.
Specifically, upon decreasing the FOM of the 200 kHz
sonar from its nominal value of 72 dB to the median value
of 66 dB, the optimal VDE value decreased from −5.4 to
−6.1 degrees, a difference of only −0.7 degrees. Similarly,
after increasing the FOM of the 900 kHz forward-looking
sonar from its nominal value of 64 dB to the median value
of 66 dB, the optimal VDE value increased from −13.1 de-
grees to −12.4 degrees, a difference of only +0.7 degrees.

With this justification, we have elected to analyze vertical
mounting angle first, and use the optimal VDE values
determined from these simulations for all subsequent pa-
rameter studies.

3.3 Simulation Parameters

We consider the MCM problem of searching for mines
in a 2 km × 2 km square search region when time is
limited. The vehicle start location is randomly sampled
from a uniform distribution of initial positions located just
outside of this search region. Our optimal search problem
for this mine hunting scenario also assumes that:

• Targets are bottom mines with known target strength.
• Seafloor is flat.
• Water depth is constant and 20 meters deep.
• Search effort is confined to a rectangular area.
• Available mission time is fixed.

Since our mine hunting scenario concerns bottom mines,
each simulation must also specify the search vehicle’s al-
titude above the seafloor. Under our flat bottom and con-
stant depth assumptions, water depth is used as the vehicle
altitude for simulations with surface vessels. Table 2 lists
the sonar design and simulation parameter values used for
our parametric studies. Note that all parameters are scaled
by canonical distance (DU) and time (TU) units prior to
computing numerical solutions, as described in Kragelund
et al. (2016). The bold array notation indicates the range
of values for the independent variable in each parametric
study. An additional consideration for these simulations,
since we generate numerical solutions, is the choice of
discretization level. We discuss specific ramifications of
time discretization in the Appendix.

Table 2. Simulation parameters

Symbol Definition Value

Tf Mission duration [min] 30

Nsims Number of simulation runs 10

Nv Number of vehicles [1:1:5]

Nt Number of time nodes [20:5:60]

Nω Number of parameter nodes 25× 25

LS Lawnmower lane spacing [m] [75:25:800]

DU Canonical distance [m] 100

TU Canonical time [s] 100

f Sonar operating frequency [kHz] {200, 450, 900}
FOM Figure of merit [dB] 66 (median)

λ Poisson scan rate [scans/s] 0.5 (median)

σ Signal excess PD uncertainty [dB] 9 dB

HFOV Horizontal field of view [deg] 90 (minimum)

VFOV Vertical field of view [deg] 10 (median)

VDE Vertical mounting angle [deg] [-25:5:-5]

4. DESIGN PROBLEMS

In this section we present three design applications for
our approach. Each example solves multiple optimal search
problems over a range of parameters in Table 2 for random
starting locations outside the search area. Monte Carlo
analysis over these solutions is then used to select a design
value for the parameter of interest in each scenario.

4.1 Sonar Design Criteria: Vertical Mounting Angle

Monte Carlo analyses of optimal search solutions can help
sonar developers identify promising equipment configu-
rations which yield large performance benefits. In this
example, we investigate the optimal vertical mounting
angle for a FLS attached to the bow of a USV hunting for
mines on the seabed in 20 meters of water. As discussed
in Section 3.2, VDE is a particularly important design
parameter for detecting bottom mines, as it determines the
ability of a sonar’s beams to cover the seabed from a given
operating altitude. While some sophisticated systems can
electronically steer their sonar beams in the vertical plane,
lower-cost systems typically transmit at a single, fixed
angle. These sonars are therefore hard-mounted with a
fixed orientation designed to optimize the sonar imagery
collected from a given vehicle platform. A custom FLS
system for the NPS REMUS 100 AUV, for example, was
designed with multiple blazed arrays mounted at a perma-
nent vertical angle of VDE = −10 degrees (Fig. 3). This
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critical design decision was based on operators’ anecdotal
experience, without the potential benefit of inverse design
analysis.

Fig. 3. Blazed array FLS system for a REMUS 100 AUV
designed with vertical mounting angle of −10 degrees.

Ten simulations with each forward-looking sonar model
were conducted for the VDE values listed in Table 2. Fig. 4
plots the mean and standard deviation (depicted with
lines and error bars, respectively) of the final objective
values from the optimal search trajectories corresponding
to each specified mounting angle. Each objective value was
calculated for a state trajectory x(t) with 500 discrete
time nodes, obtained by propagating the optimal control
trajectory u(t) through the vehicle equations of motion as
described in the Appendix.

Not surprisingly, longer-range sonars (i.e., with higher
FOM) perform better at small mounting angles, while
shorter-range, high-resolution sonars require steeper an-
gles to effectively reach the bottom. From this analysis,
we can determine that the optimal mounting angles for
detecting bottom mines from a USV in 20 meters of water
with our 200 kHz, 450 kHz, or 900 kHz sonar models are
−6 degrees, −7 degrees, and −12 degrees, respectively.
Even so, the 900 kHz FLS is poorly suited for detecting
mines on the seabed in this scenario.

Additional simulations were conducted to determine the
best mounting angles for different FLS deployed from
a REMUS 100 AUV operating at 3 meters above the
seafloor. Monte Carlo analysis determined that the opti-
mal mounting angles for using the 450 kHz and 900 kHz

Fig. 4. Optimal single-USV search performance over ten
Monte Carlo simulations for each of three sonar mod-
els, showing final objective function value vs. VDE .

sonar models at this survey altitude are −3 degrees and
−5 degrees, respectively. (The 200 kHz FLS was exempted
from this analysis since the REMUS 100 AUV is too small
to deploy a sonar of this size.) These results suggest that
the 10-degree down angle chosen for the FLS housing
design in Fig. 3 was sub-optimal for an AUV operating
at 3 meters altitude.

4.2 Multi-Vehicle Team Composition

Inverse design problems can also be solved to conduct
operational analysis and inform mission planning. When
mission time is limited, for example, it may not be possible
to achieve a desired risk threshold with a single search
vehicle. If other assets are available, a mission planner
can simply increase the number of searchers operating
in an area. While this solution is straightforward, it
may be sub-optimal. Worse yet, this approach can pull
needed assets out of another area, slowing the overall
search operation. Pre-mission operational analysis can
help identify the vehicle and sensor characteristics that
produce the best system configuration for a given scenario.
The generalized optimal control (GenOC) framework of
Section 2.1 can serve as a valuable tool to support these
kinds of trade studies. Moreover, the ability to incorporate
realistic vehicle and sonar models to optimize mission-
specific search objectives can produce more information
than planning tools based solely on coverage rates.

In this section, we demonstrate GenOC’s ability to analyze
the mission effectiveness of different autonomous vehicle
teams conducting a mine detection survey. This analysis
compares the search performance for a team of identical
SeaFox USVs, all of which are equipped with one of three
different FLS models, with VDE set to the optimal value
determined in Section 4.1. All other parameter values are
listed in Table 2, with sonar-specific parameters set to their
nominal design values. Ten simulations were conducted
for each sonar model using Nv = {1, 2, 3, 4, 5} search
vehicles. Fig. 5 plots the mean and standard deviation
(depicted with lines and error bars, respectively) of the
final objective values for the 500-node, control-propagated,
optimal search trajectories computed for each vehicle
team. This analysis leads to the following observations:

• A team of two USVs equipped with the 450 kHz
blazed array FLS outperforms a single USV equipped
with the 200 kHz cylindrical array FLS. This repre-
sents pontentially substantial cost savings, particu-
larly if lower-cost, commercial off-the-shelf sonar can
replace an expensive, experimental sonar system.

• Two 200 kHz FLS-equipped searchers are required to
achieve a desired PND ≤ 5% threshold in the time
available, but three 450 kHz FLS-equipped searchers
achieve the same search performance. Again, a three-
vehicle team using commercially-available sonar may
be significantly less expensive to operate than a
two-vehicle team using larger, more capable sonar
systems.

• The 900 kHz sonar performs poorly when mounted
on a USV operating in waters this deep. This high-
resolution sonar should only be employed by AUVs
conducting follow-up missions to investigate previ-
ously detected targets.
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Fig. 5. Optimal multi-vehicle search performance over
ten Monte Carlo simulations for each of three sonar
models, showing final objective function value vs. Nv,
the number of vehicles in a team. Each data point
represents a set of optimal vehicle trajectories.

This type of Monte Carlo analysis provides additional
operational benefits, since each data point plotted in
Fig. 5 corresponds to a set of pre-computed optimal
trajectories ready for execution by autonomous search
vehicles. Example trajectories associated with the 1- and
2-USV (200 kHz sonar), and 3-USV (450 kHz sonar) team
configurations are highlighted in Fig. 5.

4.3 Optimal Lawnmower Pattern Lane Spacing

Numerous simulations (see Fig. 6) have verified that opti-
mal control trajectories outperform exhaustive, determin-
istic search patterns with constant track spacing, particu-
larly under time or resource constraints (Kragelund, 2017).
Despite these results, most mission planners still prefer
to execute lawnmower search patterns for two practical
reasons. First, straight and level motion along parallel
track lines produces better sidescan or synthetic aperture
sonar imagery. Second, these missions are easy to program
with a set of navigation waypoints for the autonomous
vehicle to follow. Even in these cases, however, optimal tra-
jectories can establish performance benchmarks for more
conventional mission planning methods.

Specifically, for a given sonar and mission duration, we find
it is usually possible to select a constant lawnmower track
spacing that approaches the optimal search performance
benchmark computed using a generalized optimal control
(GenOC) framework. For example, Fig. 7a and Fig. 7b
illustrate 50-minute (time-limited) search performance for
lawnmower patterns with track spacing of 675 meters and
550 meters, respectively. The 675-meter track spacing is
sub-optimal for the given scenario, leaving gaps in sonar
coverage, while the 550-meter track spacing does not.

In this manner, near-optimal lawnmower search perfor-
mance for a range of track spacing values can be plotted as

Fig. 6. Search performance comparison between optimal
trajectories and exhaustive search patterns.

(a)

(b)

Fig. 7. Lawnmower search results for a single USV with
forward-looking sonar when mission time is limited to
Tf = 3000 seconds: a) 675-meter track spacing leaves
coverage gaps; b) 550-meter track spacing achieves
near-optimal time-limited search performance.

a function of mission duration, as illustrated in Fig. 8. To
generate this plot, 30 lawnmower search patterns with lane
spacing LS = {75, 100, 125, ..., 800} meters were executed
for different final times of Tf = {50, 100, ..., 4000} seconds.
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Fig. 8. Comparing the search performance vs. mission time
of optimal trajectories and lawnmower patterns with
near-optimal track spacing.

The upper plot indicates track spacing values correspond-
ing to the best lawnmower search performance in the lower
plot (red), as compared with the GenOC trajectory (blue).
This type of analysis can also be used as a mission planning
tool to recommend the best lawnmower track spacing for
a given vehicle, sensor, and mission profile.

5. DISCUSSION

The diverse capabilities of autonomous vehicle platforms
provide many new options for search applications. They
also provide many new opportunities for operational plan-
ners to improve performance, through actions such as
context-specific sensor choices, improved vehicle/sensor
pairing and efficient composition of heterogeneous vehicle
teams. The goal of this paper has been to demonstrate
the usefulness of the optimal search framework and com-
putational optimal control for analyzing some of these
operational tradeoffs. Search region, time limits, vehicle
dynamics and sensor characteristics all combine to de-
termine the effectiveness of search trajectories and path
plans. By utilizing the methods described in this paper,
all of these features can be taken into consideration as
part of operational decision-making.
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Appendix A. DISCRETIZATION LEVEL

A feature of the computational methods of Section 2.2 is
that the final objective value for optimal solutions com-
puted with an increasing number of discrete time nodes is
guaranteed to converge. There are trade-offs, however, as-
sociated with utilizing high numbers of nodes. Not only are
high-node solutions more computationally expensive, but
they are also more likely to fail feasibility requirements for
the search vehicles. Therefore, it is important to determine
the number of time nodes which provides an accurate value
for PND(Tf ) yet still produces feasible vehicle trajectories.
We accomplish this through a Monte Carlo analysis of
several simulations conducted for an array of different time
nodes.

We adopt feasibility criteria similar to the one proposed
by Hurni (2009) to reject infeasible solutions:

F =

√√√√ Nt∑
i=1

[
(xi − xi)2 + (yi − yi)

2
]
, (A.1)

where [xi, yi] is the location of solution node i, and
[xi, yi] is the location along the control-propagated state
trajectory, interpolated at time ti. This trajectory is com-
puted by propagating the solution’s control trajectory
through the vehicle model equations (6) or (7). We declare
feasibility if F < Fmax, where Fmax ∈ [2, 3] provides good
rejection criteria for these problems.

Monte Carlo analysis was utilized to assess the impact
of time discretization on optimal search trajectories com-
puted for a 30-minute, single-USV mission employing one

Fig. A.1. Optimal single-USV search performance over ten
Monte Carlo simulations for each of three sonar mod-
els, showing final objective function value vs. number
of time nodes used during numerical optimization.

Fig. A.2. Fraction of optimal single-USV search trajecto-
ries that meet feasibility criteria, out of ten Monte
Carlo simulations for each of three sonar models.

of three forward-looking sonar models. Ten simulations
with each sonar were conducted for a given number of
discrete time nodes Nt = {20, 25, 30, ..., 60}. In each simu-
lation, sonar model parameters were set to nominal design
values and the USV began its mission from a random
starting location outside of the desired search area.

Fig. A.1 plots simulation statistics for the final objective
value, the probability of failing to detect any targets
after following the optimal search trajectory computed
using the specified time discretization. The mean and
standard deviation for this metric are illustrated by lines
and error bars, respectively. Dotted lines represent J(Nt),
the objective function value computed for Nt time nodes
using the Sparse Nonlinear OPTimizer (SNOPT) software
package (Gill et al., 2005). Solid lines represent J(500),
the objective value for a 500-node control-propagated
trajectory computed from the solver’s Nt-node solution.
Both lines converge for higher-node solutions. Fig. A.2
shows the fraction of these search trajectories which meet
our feasibility criteria.

Together, Fig. A.1 and Fig. A.2 illustrate the trade-off
between accuracy and feasibility of higher-node solutions.
In this problem, all 30-node solutions produced feasible
search trajectories for all three sonar models, but their
objective values have not converged to the values of their
control-propagated trajectories. Alternatively, while 55-
and 60-node solutions match the performance of their
control-propagated trajectories, these higher-node solu-
tions produce much fewer feasible trajectories. On the
basis of these results, we used 50 time nodes for numerical
optimization in order to solve the design problems pre-
sented in Section 4.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15628


