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Abstract: This work proposes three methods that incorporate a priori process knowledge
into recurrent neural network (RNN) modeling of nonlinear processes to improve prediction
accuracy and provide insights on the structure of neural network models. Specifically, we discuss
a hybrid modeling method that integrates first-principles models and RNNs together, a partially-
connected RNN modeling method that designs the RNN structure based on a priori structural
process knowledge, and a weight-constrained RNN modeling method that introduces weight
constraints in the optimization problem of RNN model training, respectively. The proposed
RNN modeling methods are applied in the context of economic model predictive control of a
chemical process example to demonstrate their improved approximation performance compared
to a fully-connected RNN model that is developed as a black box model.
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1. INTRODUCTION

Machine learning has been widely adopted in many appli-
cations in chemical engineering processes in which neural
networks have played a key role in modeling nonlinear
systems (Venkatasubramanian [2019], Qin and Chiang
[2019]). As recurrent neural networks (RNN) are able
to capture temporal dynamic behavior, they have been
utilized to model nonlinear dynamic systems and have
been incorporated in the design of model-based predictive
controllers that optimize process performance based on
RNN prediction results (Wu et al. [2019b,a]). It is noted
that neural network modeling is generally treated as a
black-box modeling where no physical knowledge is intro-
duced. While the ‘black-box’ characteristics make it easy
to implement, interpretability and optimality of neural
network modeling remain questionable.

On the other hand, chemical processes have been studied
for a long time by researchers and engineers, where first-
principles knowledge is obtained based on their predefined
and well-known structure. For example, a chemical plant
is designed in a sequence of intricate operation units
that perform reactions, separations, among many others
operations in which raw materials are fed in the first unit
and products are obtained in the last unit in its simplest
structure. Additionally, it is also very common that some
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processes are highly coupled among units through reflux of
unreacted material that is recycled to upstream units to
maximize the production (Luyben et al. [1997], Turton
et al. [2008]). However, the structural information of
chemical plants is not utilized at any point during the
training process of fully-connected neural network models
that treat the plant as a black box.

While the fully-connected neural networks are developed
based on the assumption that all the inputs affect all
the neural network neurons, followed by all the outputs,
in realistic chemical processes, it is possible that only a
portion of inputs affect a portion of outputs. In order to
make better use of such a priori process knowledge, many
researchers have started to incorporate physical knowledge
of systems in the neural network formulation (e.g., Lu et al.
[2017], Shi et al. [2019], Ba et al. [2019], Long et al. [2017],
Kellman et al. [2019], Karpatne et al. [2017]). Recently, a
neural network has been specialized by including partial
physical knowledge in its structure in Lu et al. [2017].
In this paper, the nodes of the first layer represent the
variables with physical meaning and the connection with
the inputs are based on the impact between them. It was
demonstrated that the resulting neural networks were able
to improve the performance when compared with a fully-
connected network.

Motivated by the above considerations, in this work,
we propose a hybrid model, a partially-connected RNN
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model, and a weight-constrained RNN model to incorpo-
rate the physical knowledge into RNN modeling and train-
ing. The partially-connected RNN model and the weight-
constrained RNN model are applied in the context of
economic model predictive control (EMPC) of a chemical
process example to demonstrate their benefits over the
fully-connected RNN model.

2. PRELIMINARIES

2.1 Notation
The Euclidean norm of a vector is denoted by the operator
|·| and the weighted Euclidean norm of a vector is denoted
by the operator |·|Q where Q is a positive definite matrix.

xT denotes the transpose of x. The notation LfV (x)

denotes the standard Lie derivative LfV (x) := ∂V (x)
∂x f(x).

Set subtraction is denoted by ”\”, i.e., A\B := {x ∈
Rn | x ∈ A, x /∈ B}.

2.2 Class of Systems
The class of continuous-time nonlinear systems considered
is described by the following state-space form:

ẋ = F (x, u) := f(x) + g(x)u, x(t0) = x0 (1)

where x ∈ Rn is the state vector, and u ∈ Rm is the
manipulated input vector. The control action constraint
is defined by u ∈ U := {umin ≤ u ≤ umax} ⊂ Rm,
where umin and umax represent the minimum and the
maximum value vectors of inputs allowed, respectively.
f(·) and g(·) are sufficiently smooth vector and matrix
functions of dimensions n × 1 and n × m, respectively.
Without loss of generality, the initial time t0 is taken to
be zero (t0 = 0), and it is assumed that f(0) = 0, and
thus, the origin is a steady-state of the system of Eq. 1.

2.3 Stabilizability Assumptions via Lyapunov-based Control

We assume that there exists a positive definite Control
Lyapunov function (CLF) V for the nonlinear system of
Eq. 1 that satisfies the small control property (i.e., for
every ε > 0, ∃ δ > 0, s.t. ∀ x ∈ Bδ(0), there exists u
that satisfies |u| < ε and LfV (x) + LgV (x)u < 0, Sontag
[1989]) and the following condition:

LfV (x) < 0,∀x ∈ {z ∈ Rn\{0} | LgV (z) = 0} (2)

The CLF assumption implies that there exists a stabilizing
feedback control law Φ(x) ∈ U for the system of Eq. 1 that
renders the origin of the closed-loop system asymptotically
stable for all x in a neighborhood of the origin in the sense
that LfV (x) + LgV (x)u < 0 holds for u = Φ(x) ∈ U .
An example of a feedback control law can be found in Lin
and Sontag [1991]. Based on the CLF assumption, we can
first characterize a region where the time-derivative of V is
rendered negative under the controller Φ(x) ∈ U as φu =

{x ∈ Rn | V̇ (x) = LfV + LgV u < −kV (x), u = Φ(x) ∈
U} ∪ {0}, where k is a positive real number. Then, we
define the closed-loop stability region Ωρ for the nonlinear
system of Eq. 1 as a level set of the Lyapunov function
embedded in φu: Ωρ := {x ∈ φu | V (x) ≤ ρ} ⊂ φu, where
ρ > 0.

2.4 Recurrent Neural Network Model

The following recurrent neural network (RNN) model is
developed to approximate the nonlinear system of the
Eq. 1 within the stability region Ωρ:

˙̂x = Fnn(x̂, u) := Ax̂+ ΘT y (3)

where x̂ ∈ Rn is the RNN state vector and u ∈ Rm is the
manipulated input vector. y = [y1, ..., yn, yn+1, ..., ym+n] =
[σ(x̂1), ..., σ(x̂n), u1, ..., um] ∈ Rn+m is a vector of both
the network state x̂ and the input u, where σ(·) is the
nonlinear activation function (e.g., a sigmoid function
σ(x) = 1/(1 + e−x)). A is a diagonal coefficient matrix,
i.e., A = diag{−a1, ...,−an} ∈ Rn×n with ai > 0, and
Θ = [θ1, ..., θn] ∈ R(m+n)×n with θi = bi[wi1, ..., wi(m+n)],
i = 1, ..., n, where ai and bi are constants. wij is the
weight connecting the jth input to the ith neuron where
i = 1, ..., n and j = 1, ..., (m + n). The development of
RNN models for the nonlinear system of Eq. 1 follows the
data collection, training and testing processes. Although
an RNN model is able to approximate any complex non-
linear systems according to the universal approximation
theorem (Sontag [1992], Kosmatopoulos et al. [1995]), how
to obtain the optimal weight for RNN modeling of a
nonlinear system remains challenging due to algorithmic
learnability, complexity of neural network structure, and
availability of computing power. In this work, we propose
several approaches to optimizing neural network structure
by incorporating physical knowledge into neural network
design.

3. DOMAIN ADAPTED RNN

In this section, we introduce three different methods to
integrate domain knowledge into neural network modeling
and training. Specifically, instead of treating the RNN
system of Eq. 3 like a black box model and training
it using all the inputs and outputs available (termed
the fully-connected model throughout the manuscript),
we incorporate the process knowledge of the nonlinear
system of Eq. 1 into RNN structure. The first method is
to develop a hybrid model that integrates first-principles
models with RNN models. The second method is to
develop a partially-connected RNN structure using a priori
knowledge of process input-output relationship. Lastly, a
weight-constrained RNN model is developed by imposing
constraints on the neural network weights based on the
input-output relationship of the nonlinear system of Eq. 1.

3.1 Hybrid Model

While first-principles modeling has been studied and ap-
plied to chemical processes for over a century and has
achieved good performances, it becomes difficult to obtain
a 100% accurate first-principles model for large-scale sys-
tems due to inherent complexity. Therefore, in this work,
we first propose a hybrid modeling method that introduces
physical knowledge (e.g., first-principles knowledge based
on physical laws such as mass and energy balances) into
neural network modeling by combining a first-principles
model and an RNN model together. Specifically, the hybrid
model is developed using an RNN function f̃nn(x, u) to
approximate the gap between the first-principles model
and the actual nonlinear process as follows:

ẋ = f̃(x) + g̃(x)u+ f̃nn(x, u) (4)

where ẋ = f̃(x)+ g̃(x)u is the first-principles model that is
developed based on general physical laws and assumptions,
and therefore, may not be able to fully capture the
dynamics of the actual nonlinear processes of Eq. 1 due
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to mismatch between ẋ = f̃(x) + g̃(x)u and ẋ = f(x) +

g(x)u. The RNN function f̃nn(x, u) in Eq. 4 is utilized to
bridge the gap between the first-principles knowledge and
the real process data. It is demonstrated that the hybrid
model of Eq. 4 has the following advantages compared
with a fully-connected RNN model. First, the RNN in
the hybrid model is only used to approximate the residual
between first-principles models and real process data, and
therefore, may take less computing power and training
time to learn. Additionally, when it comes to the operating
region with no data available, the hybrid model can still be
considered a reliable model due to its intrinsically physical
knowledge, while the pure RNN model may be completely
dysfunctional. In Zhang et al. [2019], a hybrid neural
network model was developed for a chemical process where
the linear part of the hybrid model is developed based
on first-principles knowledge and the nonlinear term of
reaction rate is provided by a neural network model using
experiment/simulation data.

3.2 Partially-connected RNN Structure

We consider a case where the unit operations in the
upstream stage of the production process affect those in
the downstream stage in a chemical process, while the
impact is ignorable in the opposite direction. To represent
this relationship in mathematical form, we write the state
vector and the input vector for the nonlinear system of
Eq. 1 in the form of x = [x1, x2] ∈ Rn and u =
[u1, u2] ∈ Rm, and assume that the state vector x1 is
affected by u1 only, and x2 is affected by both u1 and
u2. In Fig. 1, the fully-connected RNN model (left) is
‘decoupled’ to a partially-connected RNN (right), from
which it is demonstrated that input-output relationship of
the partially-connected RNN is consistent with the above
assumption. It is shown that the input vector u1 is fed
into the first RNN hidden layer and generates the output
vector prediction of x1. Then, the second input vector u1

is combined with x1 and then fed into the second RNN
hidden layer, and generates the predicted output of x2.
The training process of a partially-connected RNN follows
the same process for a fully-connected RNN model.
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Fig. 1. A partially-connected recurrent neural network
structure based on process structural knowledge,
where u = [u1, u2] and x = [x1, x2].

As the RNN structure is modified to infuse a priori knowl-
edge on process structure into RNN modeling of the non-
linear system of Eq. 1, the training performance of RNN
is expected to improve in terms of less computation time

and higher prediction accuracy. Additionally, compared to
a fully-connected model that takes all available inputs and
outputs, less training data or fewer hidden neurons may be
needed by the partially-connected RNN model to obtain a
comparable performance.

3.3 Weight-constrained RNN

Under the assumption that a portion of the input vector
u2 in the nonlinear system of Eq. 1 does not affect the
output vector x1, we develop a weight-constrained RNN
model shown in Fig. 2 to eliminate the impact of process
input u2 on the state x1. Specifically, to fully remove the
connection between u2 and x1, another set of neurons
rh+1, ..., r2h are added in the hidden layer as shown in
Fig. 2. It is demonstrated that u2 is disconnected from
the neurons r1, ..., rh that contribute to the output vector
x1 to eliminate the impact of u2 on x1. As a result, to
maintain the impact of inputs on the other output vector
x2, the new set of neurons rh+1, ..., r2h are utilized in the
hidden layer to connect both the inputs u1 and u2 to the
output x2. It is noted that compared to a fully-connected
RNN model, the number of neurons and the number of
weights in the weight-constrained RNN shown in Fig. 2 are
increased to separate the connections to multiple output
vectors.
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Fig. 2. A recurrent neural network structure, where the
connection between u2 and x1 is fully removed from
the blue neurons, and the connection between u2 and
x2 is rebuilt using the gray neurons in the hidden
layer.

Based on the RNN model of Eq. 3, the output vector x and
the hidden neuron ri, i = 1, ..., 2h in Fig. 2 are derived as
follows:

ẋ1 =

h∑
i=1

w
(2)
i ṙi, ẋ2 =

2h∑
i=1

w
(2)
i ṙi (5)

ṙi = −airi + θiy, i = 1, ..., 2h (6)

where θi = bi[w
(1)
1i , ..., w

(1)
(2h)i, ..., w

(1)
(2h+m)i]and y = [σ(r1), ...,

σ(r2h), u1, u2]T . ai and bi are constants, w
(1)
ji is the weight

connecting the jth input, j = 1, ..., 2h+m to ith neuron,
i = 1, ..., 2h, and y is the input vector consisting of the
hidden states r and the manipulated inputs u. w(1), w(2)

represent the weight vectors before and after the hidden
layer. Specifically, to train the weight-constrained RNN
model with the structure of Fig. 2, we first develop a fully
connected RNN model and then let the weights between
u2 and ri, i = 1, ..., h, and the weights between ri, i = h+
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1, ..., 2h and x1 (denoted by w̃) be zero or constrained
by a sufficiently small bound. Such constraints on the
RNN weights need to be well-defined before training. It
should be noted that since there exist three types of
weight matrices in an RNN model: 1) the weight matrix
connecting the input layer and the hidden layer, 2) the
weight matrix feeding the past neuron information into the
current network (i.e., the feedback loop in ri, i = 1, ..., 2h),
and 3) the weight matrix connecting the hidden layer to
the output layer, the constraints need to be implemented
in all the three weight matrices such that u2 and x1 can
be fully disconnected.

In this work, we train the above weight-constrained RNN
model in Keras, an open-source neural network library
in Python, and implement weight constraints in the con-
straints.py source file. To develop an RNN model that
obtains the optimal weights subject to the weight con-
straints, the RNN optimizer (e.g., adaptive learning rate
optimization algorithm) needs to be modified to minimize
loss function while accounting for the weight constraints
in the optimization problem. Alternatively, the weight
constraints can be implemented at the end of each training
epoch such that the weights that meet the constraints
remain unchanged and those exceeding the constraints
will be bounded to the saturation value. The saturated
weights will then be utilized as the initial condition for
the optimization problem for the next training epoch, and
the above process is repeated until the stopping criteria of
the training process are satisfied.

In addition to the constraints on RNN weights, penalty
components on weight parameters can be employed in
the loss function of the RNN optimization problem to
introduce a priori weight knowledge into the training
process. For example, regularization techniques (e.g., L1
and L2 regularization) can be utilized in the training
process to obtain a less complex RNN model and reduce
over-fitting. Specifically, the following loss function is
developed to account for the weights w̃ that should be
bounded in a weight-constrained RNN model:

L =

Nd∑
i=1

(xi − x̂i)2 + λ

h∑
i=1

|w̃| (7)

where xi and x̂i are the actual and predicted outputs,
respectively, Nd is the number of training data samples,
and λ > 0 is the weight for the regularization term.

3.4 RNN Training Process and Stability

The RNN models in this work are developed using Keras
library. Specifically, the hybrid model and the weight-
constrained model are developed following the construc-
tion method for a fully-connected model, where the train-
ing dataset is preprocessed to represent the gap between
the first-principles model and real process data, and the
weight constraints are added into the constraints and
optimizer files before training, respectively. To develop
a partially-connected RNN model, an RNN layer is first
developed to connect u1 and x1. Subsequently, x1 and u2

are concatenated and followed by a second RNN layer to
ultimately obtain x2. It is noted that instead of using
the full input and output vectors u and x, the input
vectors u1, u2 and the output vectors x1, x2 need to be
specified and fed into the partially-connected RNN model

separately. Additionally, all the three RNN models are
trained with a constraint on the modeling error (denoted
by |ν| = |F (x, u, 0) − Fnn(x, u)|) such that the obtained
RNN model can represent the actual process well and
can be utilized in a model-based predictive controller that
stabilizes the system at its steady-state with guaranteed
stability. Detailed proof for closed-loop stability under
machine-learning-based predictive controller can be found
in Wu and Christofides [2019].

Remark 1. Consider the nonlinear system of Eq. 1 with
x = [x1, x2] ∈ Rn and u = [u1, u2] ∈ Rn, where x1

and x2, u1 and u2 are of the same dimension, respectively
(i.e., x1, x2 ∈ R

n
2 , u1, u2 ∈ R

m
2 ). Under the assumption

of the input-output relationship in this section, the total
number of weights for a partially-connected RNN model
with two hidden layers, where each hidden layer has h
neurons, is calculated to be 3

2nh + mh + 2h2, while the
total number of weights for a fully-connected RNN model
with the same two hidden layers is mh+3h2 +nh (the bias
term is ignored in the comparison as it can be considered a
constant input node). Since in most cases, the number of
neurons is much greater than the number of inputs and
states to achieve a desired approximation performance,
the number of weights for a decoupled RNN model is
significantly reduced due to the incorporation of process
structural knowledge ( 3

2nh+mh+ 2h2 << nh+mh+ 3h2

when h >> m,n). However, it is noted that the number of
weights in a weight-constrained model with the structure
of Fig. 2 is increased compared to the fully-connected RNN
model due to the new set of hidden neurons that are used
to rebuild the connection between u2 and x2.

Remark 2. It is noted that all the RNN models in this
section are developed for the nominal system of Eq. 1
without disturbances. However, in the presence of time-
varying disturbances, the RNN model that is trained for
the nominal system may be dysfunctional in a model-
based predictive controller due to a considerable model
mismatch. To that end, online update of RNN models can
be employed to capture the nonlinear dynamics subject to
disturbances using the most recent process measurement
data. The interested readers may refer to Wu et al.
[2019a], Wu and Christofides [2020] for the details of
implementation of online RNN update.

4. RNN-BASED PREDICTIVE CONTROL

The Lyapunov-based economic model predictive control
(LEMPC) using the RNN model of Eq. 3 is utilized to
optimize process economic performance while maintaining
the closed-loop state of the nonlinear system of Eq. 1
in the stability region Ωρ. The LEMPC is formulated by
the following optimization problem: (Wu and Christofides
[2019])

J = max
u∈S(∆)

∫ tk+N

tk

le(x̃(t), u(t))dt (8a)

s.t. ˙̃x(t) = Fnn(x̃(t), u(t)) (8b)

u(t) ∈ U, ∀ t ∈ [tk, tk+N ) (8c)

x̃(tk) = x(tk) (8d)

V (x̃(t)) ≤ ρe, ∀ t ∈ [tk, tk+N ), if x(tk) ∈ Ωρe (8e)

V̇ (x(tk), u) ≤ V̇ (x(tk),Φnn(x(tk)),

if x(tk) ∈ Ωρ\Ωρe (8f)
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where x̃ is the predicted state trajectory, S(∆) is the
set of piecewise constant functions with period ∆, N is
the number of sampling periods in the prediction horizon,

and V̇ (x, u)represents ∂V (x)
∂x (Fnn(x, u)). The optimization

problem of Eq. 8 maximizes the objective function of
Eq. 8a that integrates le(x̃(t), u(t)) over the prediction
horizon subject to the constraints of Eqs. 8b-8f. Specifi-
cally, the constraint of Eq. 8b is the RNN model of Eq. 3
used for prediction. Eq. 8c defines the input constraints
applied over the entire prediction horizon. Eq. 8d defines
the initial condition x̃(tk) of Eq. 8b as the state mea-
surement at t = tk. The constraint of Eq. 8e maintains
the predicted closed-loop states in Ωρe if x(tk) ∈ Ωρ\Ωρe ,
where Ωρe , 0 < ρe < ρ, is a level set of Lyapunov function
that guarantees the boundedness of state in the closed-
loop stability region Ωρ accounting for the model mismatch
between the RNN model of Eq. 8b and the nonlinear
process of Eq. 1. On the other hand, if x(tk) leaves Ωρe ,
the contractive constraint of Eq. 8f will be activated to
drive the state towards the origin within the next sampling
period. It is demonstrated that the closed-loop state of the
nonlinear system of Eq. 1 is bounded in the stability region
Ωρ for all times under the LEMPC of Eq. 8. The detailed
proof of closed-loop stability under LEMPC is given in Wu
et al. [2019b].

5. APPLICATION TO A CHEMICAL PROCESS
EXAMPLE

A chemical process example is utilized to demonstrate the
application of the proposed RNN modeling with the incor-
poration of structural process knowledge. Specifically, two
well-mixed, non-isothermal continuous stirred tank reac-
tors (CSTR) are considered where an irreversible second-
order exothermic reaction takes place in each reactor as
shown in Fig. 3. The reaction transforms a reactant A to a
product B (A→ B). Each of the two reactors are fed with
reactant material A with the inlet concentration CAj0,
the inlet temperature Tj0 and feed volumetric flow rate
of the reactor Fj0, j = 1, 2, where j = 1 denotes the first
CSTR and j = 2 denotes the second CSTR. Each CSTR
is equipped with a heating jacket that supplies/removes
heat at a rate Qj , j = 1, 2. The CSTR dynamic models
are described by the following material and energy balance
equations:

dCA1

dt
=
F10

V1
(CA10 − CA1)− k0e

−E
RT1 C2

A1 (9a)

dT1

dt
=
F10

V1
(T10 − T1) +

−∆H

ρLCp
k0e

−E
RT1 C2

A1 +
Q1

ρLCpV1

(9b)

dCB1

dt
=− F10

V1
CB1 + k0e

−E
RT1 C2

A1
(9c)

dCA2

dt
=
F20

V2
CA20 +

F10

V2
CA1 −

F10 + F20

V2
CA2

− k0e
−E
RT2 C2

A2 (9d)

dT2

dt
=
F20

V2
T20 +

F10

V2
T1 −

F10 + F20

V2
T2

+
−∆H

ρLCp
k0e

−E
RT2 C2

A2 +
Q2

ρLCpV2
(9e)

dCB2

dt
=
F10

V2
CB1 −

F10 + F20

V2
CB2 + k0e

−E
RT2 C2

A2 (9f)

where CAj , Vj , Tj and Qj , j = 1, 2 are the concentration
of reactant A, the volume of the reacting liquid, the
temperature, and the heat input rate in the first and
the second reactor, respectively. The reacting liquid has
a constant density of ρL and a heat capacity of Cp for
both reactors. ∆H, k0, E, and R represent the enthalpy of
reaction, pre-exponential constant, activation energy, and
ideal gas constant, respectively, and are the same for both
reactors. Process parameter values are listed in Table 1.

Table 1. Parameter values of the CSTR.

T10 = 300 K T20 = 300 K

F10 = 5 m3/hr F20 = 5 m3/hr

V1 = 1 m3 V2 = 1 m3

T1s = 402 K T2s = 402 K

CA1s = 1.95 kmol/m3 CA2s = 1.95 kmol/m3

CA10s = 4 kmol/m3 CA20s = 4 kmol/m3

Q1s = 0.0 kJ/hr Q2s = 0.0 kJ/hr

k0 = 8.46 × 106 m3/kmol hr ∆H = −1.15 × 104 kJ/kmol

Cp = 0.231 kJ/kg K R = 8.314 kJ/kmol K

ρL = 1000 kg/m3 E = 5 × 104 kJ/kmol

Fig. 3. Process flow diagram of two CSTRs in series.

The manipulated inputs for both CSTRs are the inlet
concentration of species A and the heat input rate, which
are represented by the deviation variables ∆CAj0 = CAj0−
CAj0s

, ∆Qj = Qj − Qjs , j = 1, 2, respectively. The
manipulated inputs are bounded as follows: |∆CAj0| ≤
3.5 kmol/m3 and |∆Qj | ≤ 5 × 105 kJ/hr, j = 1, 2.
The states and the inputs of the closed-loop system are
xT = [CA1 − CA1s T1 − T1s CA2 − CA2s T2 − T2s ] and
uT = [∆CA10 ∆Q1 ∆CA20 ∆Q2], respectively, where
CA1s , CA2s , T1s and T2s are the steady-state values of
concentration of A and temperature in the first and second
reactors, such that the equilibrium point of the system is
at the origin of the state-space.

The control objective of LEMPC is to maximize the profit
of both CSTR systems described in Eq. 9 by manipulating
the inlet concentration ∆CA10 and CA20 and the heat
inputs rate ∆Q1 and ∆Q2, and meanwhile maintain the
closed-loop state trajectories in the stability region Ωρ for
all times under LEMPC. The objective function of the
LEMPC optimizes the production rate of B as follows:

le(x̃, u) = k0e
−E/RT1C2

A1 + k0e
−E/RT2C2

A2 (10)

The explicit Euler method with an integration time step of
hc = 10−4 hr is used to numerically simulate the dynamic
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model of Eq. 9. The nonlinear optimization problem of
the LEMPC of Eq. 8 is solved using the python module of
the IPOPT software package Wächter and Biegler [2006],
named PyIpopt with the sampling period ∆ = 10−2 hr.
Two control Lyapunov functions V1(x) = xTP1x, and
V2(x) = xTP2x are designed for two CSTRs, respectively,
with the following positive definite P matrices:

P1 = P2 =

[
1060 22
22 0.52

]
(11)

The closed-loop stability regions for the two CSTRs are
characterized with ρ = 380 and ρe = 260. Following the
general RNN development process in Wu et al. [2019b],
a fully-connected RNN model, a partially-connected RNN
model, and a weight-constrained RNN model are devel-
oped for the CSTR process of Eq. 9 using the same dataset
with the same neural network parameters as follows: 2
hidden layers with 30 neurons in each layer, tanh as the
activation function, and Adam as the optimizer.

Open-loop simulations are first carried out to demon-
strate the open-loop prediction performances of the fully-
connected RNN model, the partially-connected RNN
model, and the weight-constrained RNN model, respec-
tively. The mean square errors between the first-principles
state trajectories (i.e., the state trajectories using the first-
principles model of Eq. 9) and the above three models,
respectively, are reported in Table 2, where P-RNN, W-
RNN and F-RNN represent the partially-connected RNN
model, the weight-constrained RNN model, and the fully-
connected RNN model, respectively. From Table 2, it is
demonstrated that the partially-connected RNN model
and the weight-constrained RNN model outperform the
fully-connected model in that the open-loop approxima-
tions of CA1, CA2, T1 and T2 are significantly improved.

Table 2. MSE comparison of open-loop pre-
diction results with the first-principles model

results.

P-RNN W-RNN F-RNN

CA1 (kmol/m3) 1.0 × 10−4 5.6 × 10−6 0.9 × 10−4

T1 (K) 0.14 0.018 0.15

CA2 (kmol/m3) 8.2 × 10−7 2.0 × 10−6 2.6 × 10−6

T2 (K) 5.4 × 10−4 0.0076 0.049

After demonstrating that all the three RNN models
achieve desired prediction accuracy for the CSTR process
of Eq. 9 in the stability region, closed-loop simulations
are performed under the LEMPC of Eq. 8 using the first-
principles model of Eq. 9 and the three RNN models,
respectively. In Fig. 4, it is demonstrated that the state
trajectories for both CSTRs are bounded in the stability
region Ωρ for all times under LEMPC. Fig. 5 shows the
evolution the Lyapunov function values of V1 and V2 under
LEMPC using the first-principles model of Eq. 9 and three
different RNN models, respectively. Specifically, due to a
relatively large model mismatch for the fully-connected
RNN model as reported in Table 2, the contractive con-
straint of Eq. 8f is activated frequently under the LEMPC
using a fully-connected RNN model because the actual
process state does not stay in Ωρe under the constraint
of Eq. 8e. As a result, it is observed in Fig. 5 that the
V profiles under the fully-connected model show larger
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EMPC with partially-connected RNN

EMPC with weight-constrained RNN
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Fig. 4. The state-space profiles for the closed-loop sim-
ulation for CSTR 1 (top) and CSTR 2 (bottom)
under the EMPC using the fully-connected model,
the partially-connected RNN model, the weight-
constrained RNN model, and the first-principles
model of Eq. 9, respectively, for an initial condition
(0, 0, 0, 0).

oscillation compared to those under the other two RNN
models and under the first-principles model.

Additionally, we compare the accumulated economic prof-

its LE =
∫ tp

0
Le(x, u)dt within the operation period tp =

0.32 hr for the closed-loop CSTRs under the steady-state
operation (i.e., the CSTRs are operated at their steady-
states for all times), and the LEMPC using the first-
principles model of Eq. 9 and the three RNN models,
respectively. The result is shown in Fig. 6, from which
it is demonstrated that the closed-loop operation un-
der LEMPC achieves higher economic profits than the
steady-state operation. Specifically, the LEMPC using the
first-principles model achieves the highest economic ben-
efits since the closed-loop state trajectory reaches and
stays at the boundary of Ωρe smoothly based on accu-
rate predictions. Moreover, it is demonstrated that the
LEMPC using the partially-connected RNN model and
the weight-constrained RNN model economically outper-
form that under the fully-connected RNN model due to
better prediction accuracy in the stability region. There-
fore, through both open-loop and closed-loop simulations,
we demonstrate that the domain-knowledge-based RNN
models achieve desired approximation performance for the
CSTR process of Eq. 9 and provide reliable state predic-
tions for model-based predictive controllers.

6. CONCLUSION
In this work, we developed three modeling approaches that
incorporates a priori process knowledge into RNN models.
Specifically, a hybrid model that combines a first-principles
model and an RNN model was first developed. Then, a
partially-connected RNN model and a weight-constrained
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Fig. 5. The Lyapunov function value with time for the
closed-loop CSTR 1 (top) and CSTR 2 (bottom)
under the EMPC using the fully-connected model,
the partially-connected RNN model, the weight-
constrained RNN model, and the first-principles
model of Eq. 9, respectively, for an initial condition
(0, 0, 0, 0).
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Fig. 6. Accumulated economic profits for the closed-loop
CSTR 1 (top) and CSTR 2 (bottom) under the
steady-state operation and under the EMPC using
the first-principles model of Eq. 9, the fully-connected
model, the partially-connected RNN model, and the
weight-constrained RNN model, respectively, for an
initial condition (0, 0, 0, 0).

RNN model were developed based on an assumption on
process input-output relationship. The partially-connected
and the weight-constrained RNN models were then applied
to a chemical process example, from which it was demon-
strated that the open-loop and closed-loop prediction per-
formances under the LEMPC using the above two RNN
models outperformed that under the fully-connected RNN
model in terms of higher prediction accuracy, smoother
state trajectories, and better economic benefits.
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