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Abstract: This paper studies interval estimation for discrete-time linear systems with unknown
but bounded disturbance and measurement noise. Inspired by the well-known parity space
approach in the field of fault diagnosis, we propose a fast interval estimation method with
fixed-time convergence property. A singular value decomposition-based parameter optimization
algorithm is used to attenuate the effect of uncertainties on the estimation error. Comparison
study illustrates the superiority of the proposed method over existing technique.
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1. INTRODUCTION

Interval estimation is important in some applications such
as model-predictive control and fault diagnosis (Bravo et
al., 2006; Xu et al., 2013; Zhang & Yang , 2017). Although
many state estimation methods have been proposed in
the literature, most results on state estimation focus on
point estimation. In practice, the accuracy of estimation is
affected by the uncertainties such as unknown disturbance
and measurement noise. Consequently, many robust meth-
ods have been proposed to attenuate the effect of uncer-
tainties (Kalman , 1960; Xie & Souza , 1993; Zhang , 2002;
Hammouri et al. , 2002). Among these methods, Kalman
filtering and H∞ observer design are two commonly used
robust estimation techniques. In Kalman filtering, the un-
certainties are assumed to be Gaussian noise, which may
not be the case in practice. In the H∞ design methods,
it is assumed that the uncertainties are energy-bounded.
However, most uncertainties are peak-bounded rather than
energy-bounded. Compared with the Gaussian noise as-
sumption in Kalman filtering and the energy-bounded as-
sumption inH∞ observer design, a more practical assump-
tion is to consider that the uncertainties are unknown but
bounded. Based on this assumption, interval estimation
has been proposed and has received much attention in the
past two decades (Gouze et al., 2000; Räıssi et al., 2012;
Thabet et al., 2014; Wang et al., 2018).

Interval observer is a frequently used interval estima-
tion method. An interval observer usually contains two
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traditional observers, one is the upper-bound observer
and the other is the lower-bound observer. The interval
observer is designed by constructing a stable and coop-
erative error dynamic system. Nevertheless, the design
condition of interval observers is restrictive and limits the
application scope of this technique. To relax the design
condition of interval observers, interval observer design
methods based on coordinate transformations have been
proposed (Räıssi et al., 2012; Thabet et al., 2014). The
coordinate transformations-based methods not only relax
design constraints but also broaden the application scope.
However, as pointed in Tang, Wang, Wang, Räıssi, &
Shen (2019), the coordinate transformations may cause
large conservatisms. Recently, Wang et al. have proposed
a direct design method based on a new interval observer
structure (Wang et al., 2018). Compared with the basic
interval observer, the interval observer presented in Wang
et al. (2018) has more degrees of design freedom, which
can be optimized by robust design method to improve the
estimation accuracy. Using the T-N-L observer structure
proposed in Wang et al. (2018), Tang et al. have proposed
a two-step interval estimation method based on zonotopic
analysis (Tang, Wang, & Shen , 2019), which can obtain
even better results than the interval observer presented in
Wang et al. (2018).

Many state estimation methods usually consider the sta-
bility and robustness. Apart from stability and robust-
ness, the property of fixed-time convergence is desired in
some applications. Therefore, the fixed-time observer has
attracted some attention (Engel & Kreisselmeier , 2002;
Lopez-Ramirez et al. , 2016; Menard et al. , 2017; Rios &
Teel , 2018). However, most existing results on fixed-time
observers are studied in the continuous-time domain. To
the best of our knowledge, only Zhang et al. (2019) and
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Dinh et al. (2019) have considered fixed-time observer
design for discrete-time systems. Zhang et al. (2019) pro-
poses a fixed-time unknown input observer design method
for discrete-time singular systems. Zhang et al. (2019) only
considers disturbance that can be decoupled. In practice,
however, most of disturbances and measurement noise
cannot be decoupled. Dinh et al. (2019) studies fixed-
time interval estimation for discrete-time systems with
undecoupled disturbances. Note that the performance of
the method proposed in Dinh et al. (2019) depends on
the observer gain. Unfortunately, Dinh et al. (2019) does
not provide a principle on how to optimize the parameter
matrices.

In this paper, we propose a new fixed-time interval esti-
mation method. The proposed method is inspired by the
parity space approach, which is well-known in the field
of fault diagnosis (Ding , 2008). The main advantage of
the proposed method is that the effect of the uncertainties
can be attenuated by parameter optimization. To the best
of our knowledge, this is the first fixed-time estimation
method that can attenuate the effect of uncertainties.

Notation. In this paper, Rn and Rm×n stand for n and
m × n dimensional real Euclidean space, respectively, I
and 0 represent the identity matrix and zero matrix with
appropriate dimensions, respectively, and tr(·) and ∥ · ∥F
are the trace operator and the Frobenius norm, respec-
tively. For a matrix M , MT denotes the transpose of M .
If M is of full column rank, we use M† to denote its gen-
eralized inverse (MTM)−1MT and use M⊥ to represent
its orthogonal complement I − MM†. In addition, the
comparison operators ≥ and ≤ on vectors and matrices
should be understood element-wise.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following system{
xk+1 = Axk +Buk +D1dk
yk = Cxk +D2dk

(1)

where xk ∈ Rnx is the state vector, uk ∈ Rnu denotes
the known input, yk ∈ Rny is the measurement, and
dk ∈ Rnd a vector concentrates the process disturbance
and measurement noise.

The aim of this paper is to estimate the intervals of xk. In
the following, it is assumed that (C,A) is observable and
A is invertible. In addition, dk is assumed to be unknown
but bounded as follows:

d ≤ dk ≤ d̄ (2)

Without loss of generality, we can assume that d = −d̄. If
this is not the case, we can rewrite dk as

dk =
d̄+ d

2
+ d̃k

and treat
d̄+ d

2
as a known input. Consequently, the d̃k is

an unknown input satisfying

− d̄− d

2
≤ d̃k ≤ d̄− d

2
.

Remark 1. If A is not invertible, we can rewrite the system
in (1) as follows

{
xk+1 = (A− LC)xk +Buk +D1dk + Lyk − LD2dk
yk = Cxk +D2dk

which is equivalent to the original system in (1) . It is not
difficult to find a matrix L such that A− LC is invertible
and (C,A−LC) is observable. By letting A′ = A−LC, we
can obtain a system with invertible A′. Therefore, it is not
restrictive to assume that A is invertible. In this paper, we
only consider the case that A is invertible.

The following definitions and lemma will be used in this
paper.

Definition 1. The Minkowski sum of two sets X and Y is

X ⊕ Y = {x+ y : x ∈ X , y ∈ Y}.

Definition 2. Given a set X ⊂ Rn, its linear image
associated with a matrix L ∈ Rm×n is defined as

LX = {Lx : x ∈ X}.

Definition 3. An m-order zonotope Z in the n-dimensional
space is defined as

Z = p⊕HBm = {p+Hz : z ∈ Bm}
where p ∈ Rn is the center of Z, H ∈ Rn×m is the shape
matrix of Z, and Bm = [−1, 1]m is a hypercube. In this
paper, Z is also denoted as ⟨p,H⟩ for simplicity.

With Definition 3, (2) can be reformulated as follows:

dk ∈ Zd = ⟨0,Wd⟩ (3)

where
Wd = diag

(
d̄
)
.

Lemma 1 (Wang et al., 2015). Given two matrices Y ∈
Rb×c and Z ∈ Ra×c, if the matrix Y is of full column
rank, then the general solution of X Y = Z is

X = Z Y † + S Y ⊥

where S ∈ Ra×b is a freely chosen matrix.

3. MAIN RESULTS

3.1 The proposed estimator

Since A is invertible, the system in (1) is equivalent to the
following backward propagation equation:{

xk−1 = A−1xk −A−1Buk−1 −A−1D1dk−1

yk = Cxk +D2dk
(4)

For simplicity, we denote

Ã = A−1, B̃ = −A−1B, D̃1 = −A−1D1 (5)

and

yk =

 yk
...

yk−s

 , uk =

 uk

...
uk−s


Herein, s ≥ nx − 1 is a integer related to the convergence
time.

Based on (4), it is not difficult to express yk as follows:

yk = Mxxk +Muuk +Mddk (6)

where

Mx =


C

CÃ
...

CÃs

 , dk =

 dk
...

dk−s

 ,
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Mu =


0 0 0 · · · 0

0 CB̃ 0 · · · 0

0 CÃB̃ CB̃ · · · 0
...

...
...

. . .
...

0 CÃs−1B̃ CÃs−2B̃ · · · CB̃



Md =


D2 0 0 · · · 0

0 CD̃1 +D2 0 · · · 0

0 CÃD̃1 CD̃1 +D2 · · · 0
...

...
...

. . .
...

0 CÃs−1D̃1 CÃs−2D̃1 · · · CD̃1 +D2


Based on (6), we propose the following estimator for
system (1):

x̂k = T (yk −Muuk), k > s (7)

where T ∈ Rnx×(s+1)ny is a matrix satisfying

TMx = I (8)

Remark 2. The proposed method is inspired by the parity
space approach in the field of fault diagnosis, but the
unknown state is eliminated in the parity space approach
while the state is reconstructed in the proposed method.

The following lemma is proposed to analyse the solvability
of (8).

Lemma 2. The equation in (8) is solvable if (C,A) is
observable and A is invertible.

Proof. Denote the observability matrix of (C,A) as

OCA =


C
CA
...

CAnx−1

 .

Since (C,A) is observable, we have

rankOCA = nx

Note that

OCAA
−(nx−1) =


CA−(nx−1)

CA−(nx−2)

...
C


Using the Sylvester’s inequality (Koenig , 2006)

rankM + rankN − p ≤ rank(MN) ≤ min{rankM, rankN}
where M ∈ Rm×p and N ∈ Rp×n, we have

rank


CA−(nx−1)

CA−(nx−2)

...
C

 = nx

Since s ≥ nx − 1, we have

rankMx = rank


CA−(nx−1)

CA−(nx−2)

...
C

 = nx

It is known from Lemma 1 that (8) is solvable, and the
general solution is

T = M†
x + SM⊥

x

where S is a freely chosen matrix. 2

Remark 3. When k ≥ s, we have

x̂k = T (yk −Muuk) = xk + TMddk. (9)

If there is no disturbance in (1), we have

xk = x̂k

which implies that (7) is a fixed-time convergence estima-
tor in the disturbance-free situation. If the disturbance dk
is considered, the x̂k will not exactly converge to xk, but
the estimator still has a fixed-time convergence property.

Based on (9), it is easy to obtain that

xk ∈ Xk = ⟨x̂k,H⟩ (10)

where H ∈ Rsnx×(s+1)nd is

H = −TMd

Wd · · · 0
...

. . .
...

0 · · · Wd

 .

Based on (10), we can estimate the intervals of xk as
follows:

x̂k −



∑
j=1

|H1j |

...∑
j=1

|Hnxj |

 ≤ xk ≤ x̂k +



∑
j=1

|H1j |

...∑
j=1

|Hnxj |

 (11)

Herein, Hij , i = 1, · · · , nx denotes the element of H in the
ith row, jth column.

3.2 Optimal Design

In this subsection, the matrix T is designed to attenuate
the effect of disturbance on estimation error. To this end,
we denote the following estimation error

ek = x̂k − xk = TMddk.

To attenuate the effect of dk on ek, the matrix T is
designed by minimizing the Frobenius norm of TMd,
i.e. T is obtained by solving the following constrained
optimization problem

min
T

∥TMd∥F
s.t. TMx = I

(12)

The following theorem is proposed to design T .

Theorem 1. The matrix T minimizing ∥TMd∥F while sat-
isfying TMx = I is given by

T = M†
x −M†

xMdV
T
1 (S1)

−1UT
1 M⊥

x (13)

where U1, S1 and V1 are the matrices associated with the
non-zero singular values of M⊥

x Md. More specifically, the
singular value decomposition of M⊥

x Md is

M⊥
x Md = USV

and matrices U ∈ R(s+1)ny×(s+1)ny , S ∈ R(s+1)ny×(s+1)nd

and V ∈ R(s+1)nd×(s+1)nd are rewritten as

U = [U1 U2] , S =

[
S1 0
0 0

]
, V =

[
V1

V2

]
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where U1 ∈ R(s+1)ny×r, S1 ∈ Rr×r and V1 ∈ Rr×(s+1)nd .
Herein, r is used to denote the rank of S, which equals to
the number of non-zero singular values in S.

Proof. From Lemma 2, it is known that TMx = I is
solvable, and the generalized solution of T is

T = M†
x +XM⊥

x (14)

Substituting (14) into (12), the problem in (12) is con-
verted as follows:

min
X

∥(M†
x +XM⊥

x )Md∥F (15)

Note that

min
X

∥(M†
x +XM⊥

x )Md∥F
= min

X
tr{(M†

x +XM⊥
x )MdM

T
d (M†

x +XM⊥
x )T }

= min
X

tr{M†
xMdM

T
d M†T

x +M†
xMdM

T
d M⊥T

x XT

+XM⊥
x MdM

T
d M†T

x +XM⊥
x MdM

T
d M⊥T

x XT }

(16)

This is non-trivial problem since M⊥
x MdM

T
d M⊥T

x may be
a singular matrix.

To solve the optimization problem in (16), M⊥
x Md is

decomposed as

M⊥
x Md = USV = [U1 U2]

[
S1 0
0 0

] [
V1

V2

]
.

It follows that
M⊥

x Md = U1S1V1 (17)

Substituting (17) into (16) gives

min
X

∥(M†
x +XM⊥

x )Md∥F
= min

X
tr{M†

xMdM
T
d M†T

x +M†
xMdV

T
1 ST

1 U
T
1 XT

+XU1S1V1M
T
d M†T

x +XU1S1S
T
1 U1X

T }
(18)

Note that V1V
T
1 = I is used here.

By letting
Y = XU1 (19)

the optimization problem in (18) becomes

min
X

∥(M†
x +XM⊥

x )Md∥F
= min

X
tr{M†

xMdM
T
d M†T

x +M†
xMdV

T
1 ST

1 Y
T

+Y S1V1M
T
d M†T

x + Y S1S
T
1 Y

T }
(20)

Denote

J = tr{M†
xMdM

T
d M†T

x +M†
xMdV

T
1 ST

1 Y
T

+Y S1V1M
T
d M†T

x + Y S1S
T
1 Y

T }
and let

∂J

∂Y
= 0

we have
2M†

xMdV
T
1 ST

1 + 2Y S1S
T
1 = 0 (21)

The solution to (21) is

Y = −M†
xMdV

T
1 (S1)

−1.

Using (19) gives

X = Y U†
1 = Y UT

1 .

Substituting X into (14), we obtain (13). 2

Remark 4. Although we only consider linear time-invariant
systems in this paper, the proposed method can be easily
extended to linear time-varying systems.

4. SIMULATIONS

In this section, a numerical example from Dinh et al.
(2019) is used to illustrate the performance of the proposed
method. The system has the form of (1) with the following
parameters:

A =

[
5/4 1
−3/8 1/8

]
, B =

[
1/4 0
0 1/8

]
, C = [1 0] ,

D1 =

[
1/9 0
1/9 0

]
, D2 = [0 1/9] ,

x0 =

[
2.3
1

]
, uk =

[
1
1

]
, dk =

[
sin(k)
sin(k2)

]
.

Let s = 2, we have

Mx =

[
1 0

0.2353 −1.8824
−1.2734 −4.8720

]
,

Mu =

[
0 0 0 0 0 0
0 0 −0.0588 0.2353 0 0
0 0 0.3183 0.6090 −0.0588 0.2353

]
,

Md =

[
0 0.1111 0 0 0 0
0 0 0.1830 0.1111 0 0
0 0 0.6828 0 0.1830 0.1111

]
.

It follows that

M†
x =

[
0.6848 0.4334 −0.1674
−0.1446 −0.1605 −0.1432

]
,

M⊥
x =

[
0.3152 −0.4334 0.1674
−0.4334 0.5959 −0.2302
0.1674 −0.2302 0.0890

]
.

Using the singular value decomposition of M⊥
x Md, we

obtain

U1 =

[−0.5614
0.7719
−0.2982

]
, S1 = 0.1386,

V1 = [0 −0.45 −0.45 0.6187 −0.3937 −0.2391] .

Then we have

T =

[
0.7975 0.2784 −0.1076
0.1290 −0.5367 0.0021

]
.

Using the proposed method, we get the interval estimation
results in Fig. 1 and Fig. 2. The interval estimation results
obtained by the method proposed in Dinh et al. (2019)
are also depicted for comparison. In Fig. 1 and Fig. 2,
the red solid lines are used to denote the upper and lower
bounds estimated by the proposed method while the blue
dashed lines are used to represent the interval estimations
obtained by the method in Dinh et al. (2019). It can be
seen that the proposed method provides more accurate
interval estimations than the one in Dinh et al. (2019).
We obtain more accurate results because the gain matrix T
can be optimized while the method in Dinh et al. (2019)
did not have an explicit way to optimize the parameter
matrix.

5. CONCLUSION

In this paper, we propose a fixed-time interval estimation
method for discrete-time linear systems. Based on the
backward propagation equation of the estimated system,
an estimator combined with interval analysis is used to
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Fig. 1. The first component of xk and the interval estima-
tion results
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Fig. 2. The second component of xk and the interval
estimation results

provide interval estimation with fixed-time convergence.
Moreover, the proposed method uses parameter optimiza-
tion to attenuate the effect of uncertainties so as to achieve
accurate estimations. Simulation results show the effective-
ness of the proposed method.
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