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Abstract: We design a predictor-based distributed feedback controller that guarantees expo-
nential stability for a class of reaction-diffusion PDEs with spatially-varying input delay. First,
an implicit backstepping transformation is introduced which contains the state of the target sys-
tem on both sides of the definition and then an additional backstepping transformation is derived
by a successive integration approach to arrive at a target system that is a distributed cascade
of a 2D transport PDE into a 1D reaction-diffusion PDE. The resulting delay-compensating
controller includes spatially-weighted state feedback and feedback of the earlier inputs in four
differential spatial regions. The inverse transformation is also derived, to prove L2 exponential
stability.

Keywords: Spatial varying delay, PDE backstepping, Distributed Actuation, Reaction-diffusion
PDE.

1. INTRODUCTION

Reaction-diffusion equations have been applied to model
the dynamics of numerous spatio-temporal systems, in-
cluding chemical reactions Aris (1965), lithium-ion bat-
teries Tang et al. (2017); Mahamud and Park (2011),
electric and magnetic fieldsBinns and Lawrenson (2013),
online social networks, and multi-agent systems Frihauf
and Krstic (2010); Meurer and Krstic (2011); Qi et al.
(2019, 2015). These systems are often subject to transport
phenomena which generate the presence of time delay
in their actuation path. In the last few decades, major
advances have been made in predictor-feedback control
techniques for stabilization of ODEs (Ordinary Differential
Equations) with various types of delays, including state-
dependent delays Bekiaris-Liberis and Krstic (2013), time-
varying delays Krstic (2010), time-varying input and state
delays Bekiaris-Liberis and Krstic (2012) and unknown
input delays Bresch-Pietri and Krstic (2010).

The stability analysis of PDEs (Partial Differential Equa-
tions) with delays are more complicated, so there are
fewer results for PDE systems with delay. An example
is Hashimoto and Krstic (2016), which considers the sta-
bilization of reaction diffusion PDEs with state delay in
the domain. Based on the Lyaponuv-Krasovskii functional
method and a linear operator inequality, sufficient delay-
dependent conditions of exponential stability are derived
for a class of PDE systems subject to unknown and time-
? The work was partially supported by National Natural Science
Foundation of China (61773112) and China Scholarship Council
(201806635015)
Email addresses: jieqi@dhu. edu.cn (Jie Qi), krstic@ucsd.edu

varying delay Fridman and Orlov (2009), whereas Solomon
and Fridman (2015) applies a similar method to obtain
interesting results for a semi-linear case with time-delay.
By use of an observer to predict the future state, Seli-
vanov and Fridman (2018) employ the estimated future
state by an observer for feedback to compensate the input
delay. Delays can be described as a transport PDE Krstic
and Smyshlyaev (2008). In this way, a unstable reaction-
diffusion system with actuator delay is represented by a
transport PDE cascade system in Krstic (2009), where a
backstepping approach is developed to stabilize it. A stabi-
lizing feedback boundary control to compensate a constant
input delay for reaction-diffusion PDE by decomposition of
the state space into a stable part and a finite-dimensional
unstable part has been developed in Prieur and Trelat
(2019). Our recent work Qi et al. (2018) applies the
backstepping technique to design a distributed in-domain
actuator for an unstable reaction-diffusion PDE which is
subject to a constant and arbitrarily large boundary input
delay.

Few research on control design for unstable PDEs with
spatially-varying delays. For multi-input finite-dimensional
systems with distinct input delays in each input chan-
nel, where the distributed delays are modeled by inte-
gration. Bekiaris-Liberis and Krstic (2011) introduce an
infinite-dimensional forwarding-backstepping transforma-
tion of the infinite-dimensional actuator states to compen-
sate the distinct distributed delays. Tsubakino et al. (2016)
consider distinct point delays a multi-input linear ODE
system with different input delays in each input channel
and propose a predictor-based state feedback controller for
it via the backstepping technique. These two references for
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ODE systems are the most related to our work on con-
trol design for the reaction-diffusion PDE with spatially-
varying delays.

In this paper, we design a distributed controller to stabilize
a reaction-diffusion system with a spatially-varying input
delay. Different delays arise at different spatial positions
for distributed actuation. Since the delays depend on the
spatial variables, a simple backstepping transformation
is not applicable for the system. This is since the re-
sulted predictor-control would contain feedback of future
states. Thus, the challenge in the study of stability under
spatially-varying input delay, compared to our work on
constant input delay Qi et al. (2018), is to construct a new
transformation which associates the original system with a
stable target system in the form of a distributed cascade of
2D transport PDE into a 1D reaction-diffusion PDE. An
intermediate implicit transformation contains the target
state on both sides, so an additional challenge is to find
the explicit form of the backstepping transformation which
maps the original state to the target state. A successive
integration approach is used to derive the kernel of the
explicit transformation and prove the boundedness of the
kernel. Also, the explicit form of the inverse transformation
is found. In addition to proving the norm equivalence
between the original system and the target one through
dealing with the singularity at one boundary of the kernel
function by use of the Parsevel’s theorem, the exponential
stability of the system in the original variables is estab-
lished. Finally, numerical simulation results are provided
to illustrate the theoretical result.

This paper is organized as follows. Section 2 presents
the control design for the system with spatial-varying
delay. The supportive simulation results are provided in
Section 3. The paper ends with concluding remarks and a
discussion of future work in Section 4.

2. CONTROL DESIGN

2.1 Problem description

Consider a reaction-diffusion PDE system given by

ut(x, t) = uxx(x, t) + λu(x, t) + U(x, t−D(x)), (1)

for x ∈ (0, 1), t > 0, with a delay of D(x) time units which
depends on x. We make the following two assumptions.

Assumption 1. D(x) is a continuous and invertible func-
tion on [0, 1], 0 < M1 ≤ D(x) ≤ M2 for any x ∈ [0, 1]
(without loss of generality assuming D(x) is increasing).
The inverse function of D(x) can be expressed as x =
D−1(s) on [0, 1].

The boundary conditions are

u(0, t) = 0, u(1, t) = 0. (2)

For D ≡ 0, this is a trivial problem, solvable by many
different feedback laws, the nominal one being

U(x, t) = −(λ+ c)u(x, t), c > 0, (3)

which stabilizes the system (1)–(3) to a zero equilibrium.
However, under the occurrence of delay, the system (1)
with the nominal feedback law (3) becomes unstable and
a delay compensator is needed to stabilize the system.

2.2 PDE representation in 2-D of the 1-D reaction
diffusion PDE with delay on distributed input

Introducing a transport equation which alteratively repre-
sents the input delay, (1)-(2) is rewritten as

ut(x, t) = uxx(x, t) + λu(x, t) + v(x, 0, t), (4)

u(t, 0) = u(t, 1) = 0, (5)

vt(x, s, t) = vs(x, s, t), s ∈ [0, D(x)) (6)

v(x,D(x), t) = U(x, t), (7)

u(x, 0) = u0(x) (8)

v(x, s, 0) = v0(x, s). (9)

where U(x, t) is the input without delay, (u, v) is the state,
and D(x) > 0 is a delay depending on x. The state of the
input delay dynamics (6)-(9) is

v(x, s, t) = U(x, s+ t−D(x)) (10)

as t ≥ D(x)− s.
We choose a stable target system as:

ut(x, t) = uxx(x, t)− cu(x, t) + z(x, 0, t), (11)

u(t, 0) = 0, u(t, 1) = 0, (12)

zt(x, s, t) = zs(x, s, t), s ∈ [0, D(x)) (13)

z(x,D(x), t) = 0, (14)

u(x, 0) = u0(x), (15)

z(x, s, 0) = z0(x, s). (16)

The solution of z(x, s, t) is

z(x, s, t) =

{
z0(x, s+ t) s+ t 6 D(x)

0 s+ t > D(x)
. (17)

2.3 Backstepping transformation in implicit form

We seek a backstepping transformation in the form

z(x, s, t) = v(x, s, t) + (c+ λ)

∫ 1

0

γ(x, s, y)u(y, t)dy

+ (c+ λ)

∫ 1

x

∫ s

0

γ(x, s− r, y)v(y, r, t)drdy

+ (c+ λ)

∫ x

0

∫ φ(y,s)

0

γ(x, s− r, y)z(y, r, t)drdy, (18)

where

φ(y, s) = min{D(y), s}. (19)

and kernel function γ(x, s, y) is defined on T = {[0, 1] ×
[0, D(x)] × [0, 1]}. The integration area (y, r) of the last
term of (18) is shown in Figure 1.

Fig. 1. The area of integration (y, r) for the last term of
(18).
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The transformation can be rewritten as

z(x, s, t) = v(x, s, t) + (c+ λ)

∫ 1

0

γ(x, s, y)u(y, t)dy

+ (c+ λ)

∫ 1

x

∫ s

0

γ(x, s− r, y)v(y, r, t)drdy

+ (c+ λ)

∫ D−1(s)

0

∫ D(y)

0

γ(x, s− r, y)z(y, r, t)drdy

+ (c+ λ)

∫ x

D−1(s)

∫ s

0

γ(x, s− r, y)z(y, r, t)drdy. (20)

Take the time and space derivative of z(x, s, t),

zt(x, s, t) = vs(x, s, t) + (c+ λ)γ(x, s, 1)ux(1, t)

− (c+ λ)γ(x, s, 0)ux(0, t)

+ (c+ λ)

∫ 1

0

(γyy + λγ)u(y, t)dy

+ (c+ λ)

∫ x

0

γ(x, s, y)v(y, 0, t)dy

+ (c+ λ)

∫ 1

x

γ(x, 0, y)v(y, s, t)dy

+ (c+ λ)

∫ 1

x

∫ s

0

γs(x, s− r, y)v(y, r, t)drdy

+ (c+ λ)

∫ D−1(s)

0

γ(x, s−D(y), y)z(y,D(y), t)dy

− (c+ λ)

∫ x

0

γ(x, s, y)z(y, 0, t)dy

+ (c+ λ)

∫ D−1(s)

0

∫ D(y)

0

γs(x, s− r, y)z(y, r, t)drdy

+ (c+ λ)

∫ x

D−1(s)

γ(x, 0, y)z(y, s, t)dy

+ (c+ λ)

∫ x

D−1(s)

∫ s

0

γs(x, s− r, y)z(y, r, t)drdy (21)

where we use integration by parts. And then we calculate

zs(x, s, t) = vs(x, s, t) + (c+ λ)

∫ 1

0

γs(x, s, y)u(y, t)dy

+ (c+ λ)

∫ 1

x

γ(x, 0, y)v(y, s, t)dy

+ (c+ λ)

∫ 1

x

∫ s

0

γs(x, s− r, y)v(y, r, t)drdy

+ (c+ λ)
d

ds
D−1(s)

∫ s

0

γ(x, s− r,D−1(s))z(D−1(s), r, t)dr

+ (c+ λ)

∫ D−1(s)

0

∫ D(y)

0

γs(x, s− r, y)z(y, r, t)drdy

− (c+ λ)
dD−1(s)

ds

∫ s

0

γ(x, s− r,D−1(s))z(D−1(s), r, t)dr

+ (c+ λ)

∫ x

D−1(s)

γ(x, 0, y)z(y, s, t)dy

+ (c+ λ)

∫ x

D−1(s)

∫ s

0

γs(x, s− r, y)z(y, r, t)drdy. (22)

From zt = zs (13) and also from substituting s = 0 into
transformation (18) and combining (4) and (11), we get

γs(x, s, y) = γyy(x, s, y) + λγ(x, s, y)

− (c+ λ)

∫ x

0

δ(ζ − y)γ(x, s, ζ)dζ,

x ∈ [0, 1], y ∈ (0, 1), 0 ≤ s ≤ D(x) (23)

γ(x, s, 0) = γ(x, s, 1) = 0, (24)

γ(x, 0, y) = δ(x− y). (25)

The kernel equation has a solution as follows

γ(x, s, y) =

{
2e−csΨ(x, s, y) 0 ≤ y ≤ x
2eλsΨ(x, s, y) x < y ≤ 1

, (26)

where

Ψ(x, s, y) =

∞∑
n=1

e−n
2π2s sin(nπy) sin(nπx). (27)

Note that γ(x, s, y) is bounded except at singular points
s = 0 although it is not continuous at x = y.

Remark 1. Denote

R[u(t)](x) , (c+ λ)

∫ 1

0

γ(x, s, y)u(y, t)dy,

P [v(t)](x, s) , (c+ λ)

∫ 1

x

∫ s

0

γ(x, s− r, y)·

v(y, r, t)drdy,

S[z(t)](x, s) , (c+ λ)

∫ x

0

∫ φ(y,s)

0

γ(x, s− r, y)·

z(y, r, t)drdy.

Transformation (18) has the structure of

z = v +R[u] + P [v] + S[z]. (28)

It is clear that (28) contains z on both sides, so it is an
implicit transformation. In this sense, it is necessary to
find a transformation from v and u to z through an inverse
operator (I − S)−1 as follows

z = (I − S)−1(v + P [v] +R[u]). (29)

We find (29) in the next subsection.

2.4 Explicit form of backstepping transformation and
controller

Apply the successive approximation to transformation (18)
in form of (28), which gives

zn+1 = v + P [v] +R[u] + S[zn]. (30)

By letting the initial guess

z0 = 0, (31)

then

z1 = v + P [v] +R[u], (32)

and

zn+1 = z1 + S[zn]. (33)

Begin with denoting the difference between two consecu-
tive forms as

∆zn = zn+1 − zn, (34)

and recall the initial state

∆z0 = z1, (35)

which gives the following iteration formula

∆zn = S[zn − zn−1] = Sn[∆z0] = Sn[z1]. (36)

If the limit as follows exists

lim
n→∞

zn = z, (37)
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which is equivalent to the following series converging,

z(x, s, t) =

∞∑
n=0

∆zn(x, s, t), (38)

then the inverse operator (I − S)−1 exists and z can be
written as z = (I − S)−1z1. Next, we employ successive
approximation on (36) so as to compute the series (38).
First, for notational convenience, we rewrite (26) as

γ(x, s, y) =

{
γ1(x, s, y) 0 ≤ y ≤ x
γ2(x, s, y) x < y ≤ 1

. (39)

From (36),

∆z1(x, s, t) =(c+ λ)

∫ x

0

∫ φ(y,s)

0

γ1(x, s− r, y)

· z1(y, r, t)drdy, (40)

and by exchanging the integration orders of drdy and
dr1dy1 and variables replacing with y ⇔ y1 and r ⇔ r1,
we rewrite ∆z2 as

∆z2 =

∫ x

0

∫ φ(y,s)

0

K2(x, s, y, r)z1(y, r, t)drdy (41)

where

K2(x, s, y, r) =(c+ λ)2
∫ x

y

∫ φ(y1,s)

r

γ1(x, s− r1, y1)

· γ1(y1, r1 − r, s)dr1dy1.
Continue iteration and exchanging the integration order,
we observe the pattern as

∆zn =

∫ x

0

∫ φ(y,s)

0

Kn(x, s, y, r)z1(y, r, t)drdy,

n = 2, 3, · · · (42)

where

K1 = (c+ λ)γ1(x, s− r, y), (43)

Kn = (c+ λ)n
∫ x

y

∫ φ(y1,s)

r

∫ y1

y

∫ φ(y2,r1)

r

· · ·∫ yn−2

y

∫ φ(yn−1,rn−2)

r

γ1(x, s− r1, y1)γ1(y1, r1 − r2, y2)

· · · γ1(yn−2, rn−2 − rn−1, yn−1)γ1(yn−1, rn−1 − r, y)

drn−1dyn−1 · · · dr1dy1 n = 2, 3, · · · (44)

The expression (44) also can be rewritten recursively as

Kn(x, s, y, r) =(c+ λ)n
∫ x

y

∫ φ(y1,s)

r

γ1(x, s− r1, y1)

·Gn−1(y1, r1)dr1dy1, (45)

Gn−1(y1, r1) =

∫ y1

y

∫ φ(y2,r1)

r

γ1(y1, r1 − r2, y2)

·Gn−2(y2, r2)dr2dy2, (46)

...

G2(yn−2, rn−2) =

∫ yn−2

y

∫ φ(yn−1,rn−2)

r

γ1(yn−2, rn−2 − rn−1, yn−1)

·G1(yn−1, rn−1)drn−1dyn−1, (47)

G1(yn−1, rn−1) =γ1(yn−1, rn−1 − r, y). (48)

Assembling all the ∆zn, we obtain

z(x, s, t) = z1(x, s, t)

+

∫ x

0

∫ φ(y,s)

0

Q(x, s, y, r)z1(y, r, t)drdy, (49)

where

Q(x, s, y, r) =

∞∑
n=1

Kn(x, s, y, r)

:= K1(x, s, y, r) +H(x, s, y, r), (50)

with

H(x, s, y, r) =

∞∑
n=2

Kn(x, s, y, r). (51)

The Q are defined in (50), using γ defined in (26), γ1, γ2
defined in (39), K1 defined in (43), Kn defined in (45)
which in turn are defined using Gn−1, · · · , G1 defined in
(46)-(48). According to (32), z1 only depends upon u and
v. Recalling (29), we rewrite (49) as

z = T [v +R[u] + P [v]], (52)

where

T [z] = (I − S)−1[z] (53)

= z + (c+ λ)

∫ x

0

∫ φ(y,s)

0

Q(x, s, y, r)z(y, r)drdy.

It is worth noting that the right-hand side of (49) does
not contain z since z1(x, s, t) only depends upon u(·, t)
and v(·, ·, t). Thus (49) is a mapping which transforms
the original system (4)-(9) to the target system (11)-(16)
though the transformations (v, u) 7→ (z1, u) and (z1, u) 7→
(z, u).

So far, we have computed the expression of the inverse
operator of (I − S)−1 in (49). We can apply successive
integration approach to prove the convergence of the series
(51). Due to limited space, we only give a sketch of the
proof. Substituting (26) into (47) with (48), we find

|G2(yn−2, rn−2)|

≤
(∫ rn−2

r

∫ 1

0

4e−2c(rn−2−rn−1)

· Ψ2(yn−1, rn−2 − rn−1, yn−2)dyn−1drn−1
) 1

2 ·(∫ rn−2

r

∫ 1

0

4e−2c(rn−1−r)

· Ψ2(y, rn−1 − r, yn−1)dyn−1drn−1
) 1

2

≤
∞∑
m=1

1

c+m2π2
≤ 1

6
, (54)

where we apply the Cauchy Schwarz inequality and Par-
seval’s theorem. In a similar way, we obtain

|G3(yn−3, rn−3)| ≤
(

1

6

) 3
2

(rn−3 − r)
1
2 (yn−3 − y)

1
2 (55)

and, in turn,

|G4(yn−3, rn−3)| ≤
(

1

6

)2
(rn−4 − r)(yn−4 − y)

2
(56)

Continuing with such calculations gives

|Gn−1(x, s)| ≤
(

1

6

)n−1
2 (r1 − r)

n−3
2 (y1 − y)

n−3
2

(n− 3)!
. (57)

Finally, we obtain
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|Kn(x, s)| ≤ (c+ λ)n
(

1

6

)n
2 (s− r)n−2

2 (x− y)
n−2
2

(n− 2)!
. (58)

Hence,

|H(x, s, y, r)| = (c+ λ)2

6
e

(c+λ)
√

(s−r)(x−y)
√

6 , (59)

which implies that the series of |H| converges.

Consequently, the transformation (29) is bounded. Sub-
stitute s = D(x) into transformation (49) with (32), and
combine (7), (14) and (10). Exchanging the integration
order, after a lengthy computation, the control is given as

U(x, t) = −(c+ λ)

(∫ 1

0

R(x,D(x), y)u(y, t)dy

+

∫ 1

x

∫ t−(D(x)−D(y))

t−D(y)

γ2(x,D(x)−D(y) + t− τ, y)U(y, τ)dτdy

+

∫ x

0

∫ t

t−D(y)

1

c+ λ
Q(x,D(x), y, τ +D(y)− t)U(y, τ)dτdy

+

∫ 1

0

∫ t−(D(y)−D(0))

t−D(y)

P1(x,D(x), y, τ +D(y)− t)U(η, τ))dτdη

+

∫ 1

0

∫ t−min{0,D(x)−D(y)}

t−(D(y)−D(0))

P2(x,D(x), y, τ +D(y)− t)U(η, τ)dτdη

)
(60)

where

R(x,D(x), y) = γ(x,D(x), y)

−
∫ x

0

∫ D(ζ)

0

Q(x,D(x), ζ, r)γ(ζ, r, y)dζdr, (61)

P1(x,D(x), y, r) =∫ min{y,x}

0

∫ D(ζ)

r

Q(x,D(x), ζ, ι)γ2(ζ, ι− r, y)dιdζ, (62)

P2(x,D(x), y, r) =∫ min{y,x}

D−1(r)

∫ D(ζ)

r

Q(x,D(x), ζ, ι)γ2(ζ, ι− r, y)dιdζ, (63)

which are defined, respectively, using γ defined in (26), γ1,
γ2 defined in (39) and Q defined in (50), which in turn
are defined using H defined in (51) and (45)-(48). The
controller (60) contains the feedback of the states (first
term) and feedback of the past control (last four terms)
which compensates the delay.

2.5 Inverse backstepping transformation

The proposed transformation (18) is invertible. To see this,
we postulate the inverse transformation which transforms
the target system back to the original system as follows

v(x, s, t) = z(x, s, t)− (c+ λ)

∫ 1

0

η(x, s, y)u(y, t)dy

− (c+ λ)

∫ 1

0

∫ φ(y,s)

0

η(x, s− r, y)z(y, r, t)drdy, (64)

where η(x, s, y) defined on [0, 1]× [0, D]× [0, 1] is a scalar
kernel function and φ(y, s) is defined in (19). From the
equivalence between the target and the original systems,
the kernel function satisfies

ηs(x, s, y) = ηyy(x, s, y)− cη(x, s, y), (65)

η(x, s, 0) = 0, η(x, s, 1) = 0, (66)

η(x, 0, y) = δ(x− y). (67)

The solution of the kernel equation (65)-(67) is expressed
as

η(x, s, y) =

∞∑
n=1

2e−(c+n
2π2)s sin(nπy) sin(nπx).

Remark 2. The kernel of the inverse transformation can
be expressed in an explicit equation which is the same as
the form with constant delay Qi et al. (2018). It is because
the boundary condition z(x,D(x), t) = 0 is used in the
derivation of the inverse kernel equation.

Since there exists the inverse transformation, the L2 norm
equivalence between the original system (4)-(8) and (11)-
(16) can be established. Furthermore, the target system
(11)-(16) is exponentially stable in L2 norm , which implies
that the original system (4)-(8) is also exponentially stable
in L2 norm and thus gives the following theorem:

Theorem 1. Consider the system consisting of the plant
(4)-(9) and the control law (60). Let H1

E [0, 1] = {f ∈
H1(0, 1), f(0) = f(1) = 0}. For any initial conditions u0 ∈
H1
E [0, 1], v0(x, s) ∈ L2([0, 1] × [0, D(x)]) are compatible

such that u0(0) = u0(1) = 0, v0(x,D) = U(x, 0), then the
system is exponentially stable, i.e.,

V1(t) ≤Me−αtV1(0), (68)

where M,α are positive constants.

3. SIMULATION

To illustrate the feasibility of the proposed control law for
the reaction-diffusion PDE system with spatially-varying
input delay, we provide an example for the PDE system
(4)-(9) with spatially-varying input delay. In the numerical
example, we set reaction coefficient λ = 10, delay function
is D(x) = x + 1. The initial conditions are chosen as
u0 = 2 cos(2πx), v0 = sin(πx) cos(πs), and then apply
the controller (60). We discrete the partial differential
equation by the finite difference method using the Crank-
Nicolson scheme. The step sizes for discretization of x,
t and s are denoted by ∆x, ∆t and ∆s, respectively. In

simulation let ∆t = 0.01, ∆x = 1
M , and ∆s(x) = D(x)

M
with M = 31. Applying the finite difference method,
the dynamics of the state u(x, t) is obtained which are
illustrated in Fig.2. It is shown that the state will converge
after about 5s.

Fore more clear illustration, the norm of u(x, t) and control
effort are shown in Fig.3 (a) and Fig.3 (b), respectively.
Since in-domain control applied, the value of the control
effort is not as large as that of the boundary control.

4. CONCLUSION

In this paper, we design a compensated distributed con-
troller which stabilizes a reaction-diffusion system subject
to spatially-varying input delay. First, we introduce an
implicit backstepping transformation which results in well-
posed kernel equation. Based the implicit transformation,
an explicit form of backstepping transformation with a
bounded kernel is derived by the successive approach.
The control is obtained by combining the transformation
and the boundary condition at s = D(x). The explicit
inverse transformation is obtained, which establishes the
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(a)

Fig. 2. The dynamics of the state u(x, t).

(a)

(b)

Fig. 3. (a) The 2-norm and∞-norm of the dynamical state
u(x, t), (b) The 2-norm and ∞-norm of the control
effort.

exponential stability of the system in the original variables.
The numerical simulations are presented to support the
theoretical statements. Further research includes trying to
design an observer for the system with sensor delays.
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