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Abstract: The aerospace engineering educational system aims to create future professionals
able to solve problems of high complexity, with time constraints and which solutions matches
prescribed level of performance. In our past work, we introduced the innovative concept of the
Professional Readiness Level (PRL) as a unique parameter to quantify how close the students
are to the aerospace industry. In this paper we propose a dynamic model, of the PRL, capable
to capture, in simple but effective way, the student behaviour we, as professors, observed in our
educative experience.
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1. INTRODUCTION

The description and the analysis of the educational pro-
cess through a NonLinear Differential System (NDS) con-
stitutes a new way of thinking compared to traditional
methods. The approaches that can be found in literature,
indeed, are based more on the analysis of the educational
results than on their modelling by means of Ordinary
Differential Equations (ODEs). These ODE-based NDS
allow us to formally derive how the students’ abilities are
expected to evolve over time and to investigate how to
control the system by means of an education optimizing
learning activity.

The educational process seen as a dynamic system has
been implemented lagging behind other disciplines. Psy-
chology, econometrics, theoretical biology have a long his-
tory in shaping their time-dependent processes of interest
by means of ODEs. In the field of psychology, for exam-
ple, there are interesting works as Abraham and Gilgen
(1995); Guastello et al. (2008); Sulis et al. (1996), but
there is much less literature on dynamic modelling in the
education field. Noteworthy is the book by Koopmans and
Stamovlasis (2016), where an Introduction to Education
as a Complex Dynamical System can be found. Another
approach using ODEs can be found in Makanda and Syp-
kens (2017), in which a mathematical model usually used
to represent the spread of an epidemic disease is exploited.

Unlike the works mentioned above, the approach proposed
in our manuscript is focused on the dynamics of a single
student subject to teaching actions. It is worth observing
that this model has been developed having in mind the
Automatic Control Education for Aerospace Engineering
(ACEAE). For this reason, Castaldi and Mimmo (2019)
proposed a new transversal education classification, partic-
ularly suitable for ACEAE and based on the Professional
Readiness Level (PRL). In this paper we provide, for
the first time, the mathematical description of the PRL
dynamics. In this work the PRL is exploited to describe

the behavior of the individual student or the group of
students and is defined as a composition of three factors:
the Educational Level (EL), the Deadlines Meeting Level
(DML) and the Practice Level (PL). The rest of this
paper is organized as follows: this section ends with the
introduction of the mathematical background necessary
to understand the remaining of the work, the Section 2
describes the new taxonomy which defines the state of the
students and the teaching control actions, the Section 3
presents the model of the dynamics of a single student
belonging to a class whereas the section 4 proposes some
simulations relative to a single student and, in conclusion,
the final comments are addressed in Section 5.

1.1 Notation

This paper exploits a saturation function defined as sat :
R 7→ [0, 1] with

sat(s) :=

{
0 s < 0
s s ∈ [0, 1]
1 s > 1

(1)

Moreover, the absolute value function is represented by the
operator | · | : Rn 7→ Rn which is intended to be applied
component-wise if n > 1. The function sign(·) : R 7→ {0, 1}
is defines as

sign(s) :=

{
1 s > 0
0 s ≤ 0

Finally, the open ball centred at x ∈ Rn and with radius
ρ > 0, namely Bρ(x) ∈ Rn, is defined.

2. THE PROFESSIONAL READINESS LEVELS
TAXONOMY

The involvement of students in practical activities can
happen in different ways such as term papers, internship or
master theses. In presence of funded projects, the practical
activities are oriented to the solution of a specific problem
and are always associated with quite hard constraints in

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 17379



terms of expected performance and deadlines. On the other
hand, in absence of funded projects, the practical activities
are mostly related to:

• the assessment of the students’ capacity of translation
of the theoretical knowledge into the solution of
practical control problems;
• the improvement of the facilities of the laboratory

(hopefully part of a long-term planning);
• the application of the last scientific research results;

The topics are then classified in levels of difficulty-
complexity in a scale compose by seven different degrees:

(0) Class. No problem to be solved. The student receive
the base knowledge to deal with the following points;

(1) Bachelor term papers. Solve an academic “ideal”
problem without time of performance constraints;

(2) Master term papers. Solve an academic “ideal”
problem without time constraints but guaranteeing
the prescribed level of performance;

(3) Bachelor internship. Investigate a real system of
low complexity and learn how to manage it. No
deadlines are foreseen;

(4) Master internship. Investigate a real system of high
complexity and learn how to manage it. No deadlines
are foreseen;

(5) Bachelor thesis. Implement the theoretical knowl-
edge to real but not complex systems making the con-
trol system working in the laboratory. Time deadlines
are given;

(6) Master thesis. Implement the theoretical knowledge
to real, complex systems making the control system
working in the laboratory and assessing the obtained
performances. Time deadlines are given.

Students able to solve a problem rates at sixth level
show a good propensity and aptitude to demanding works
to demonstrating a good Level of Professional Readiness
(PRL). At the opposite, students able to solve only prob-
lems rated at the first complexity level are good students
but not yet ready for being engineers.

The PRL can be seen as a composition of three factors
which are the Educational Level (EL), the Deadlines
Meeting Level (DML) and the Practice Level (PL). The
ELs describe the level of understanding (consciousness)
that the student have on the taught topics (either a specific
topic or the set of topics). The ELs can be classified in six
levels, as suggested by Krathwohl (2002), ranging from the
bare capacity of memorizing to the ability to create. This
work introduces a floor level (0-EL) for those students who
approach to a given topic for the first time:

(0) Fresh Memory: no information available;
(1) Remember: be able to recognize or remember facts,

terms, basic concepts, or answers without necessarily
understanding what they mean;

(2) Understand: be able to organize, compare, trans-
late, interpret, give descriptions, and state the main
ideas;

(3) Apply: be able to use prior knowledge to solve
problems, identify connections and relationships and
how they apply in new situations;

(4) Analyse: be able to break information into compo-
nent parts, determine how the parts relate to one

another, identify motives or causes, make inferences,
and find evidence to support generalizations;

(5) Evaluate: be able to present and defend opinions by
making judgments about information, the validity of
ideas, or quality of work based on a set of criteria

(6) Create: be able to build a structure or pattern from
diverse elements and to put parts together to form a
whole;

This work introduces two further evaluation scales to
assess the capacity of meeting deadlines and to work in
practical context. The DMLs are then classified in four
levels:

(0) No time limits: no time limits by which the assigned
task must be accomplished;

(1) Homework: soft deadline that is identified by the
time needed by the student to conclude that task. In
general, a delay in the accomplishment of the task
does not imply any consequence (maybe a delayed
exam);

(2) Thesis/Journal: medium-hardness deadline which
could be postponed only if strictly necessary;

(3) Project/Conference: hard-deadline which could be
postponed only in exceptional cases.

Finally, the students’ ability to deal with practical prob-
lems which implies their ability in translating the theoret-
ical concepts in practice is classified in the following five
PLs:

(0) Conceptual: solution not given or given only with
conceptual paradigms without solid formalisms;

(1) Theory: symbolic formulations, solutions given in
terms of existence;

(2) Academic: simple examples (not necessarily realis-
tic, maybe linear), solution not necessarily feasible
(too strong assumptions);

(3) Realistic: quasi-real complex examples (realistic,
non linear), solution feasible but not necessarily im-
plementable (does not take into account for the plant
limitation such as the band of actuators and sensors);

(4) Practice: real systems (really smart approxima-
tions), solution implementable with few practical
modifications.

The above mentioned taxonomy represents a high-level
classification in which the bounds between two adjacent
categories are barely identifiable. Indeed, the students
pass, with continuity over time, from one level to the
next by experimenting intermediate values between the
origin and the destination level. For this reason, this paper
models the students levels as continuous time functions.
Furthermore, to uniform the domains and to make the
levels independent of the full scale (represented by the
number of levels in that category), this paper normalize
both the educational actions and the student levels to
belong in the compact real domain [0, 1]. Mathematically,
given the time span [t0, t] with t > t0 ≥ 0, the student
levels are collected into the continuous time function

x : [t0, t] 7→ [0, 1]3 (2)

where x(τ) = col
(
EL(τ), DML(τ), PL(τ)

)
represents the

vector of the student’s normalized levels at time τ . The
variable x is called state of the student.
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In analogy, also the normalized educative control action is
captured by the continuous time variable

u : [t0, t] 7→ [0, 1]3. (3)

The control action is modelled as a three dimensional
vector because each educational activity influences all the
components of x and, in particular, this work assumes
a uniform impact so that the variable u assumes the
following form

u(τ) :=

[
1
1
1

]
ū(τ) (4)

with ū : [t0, t] 7→ [0, 1] corresponding to the normalized
educational action.

Finally, the normalized PRL is defined as function of
x which, in first instance, can be modelled as a linear
combination of the student normalized levels. Formally,
the normalized PRL is described by:

y : [0, 1]3 7→ [0, 1] (5)

where y = Cx with ‖C‖1 = 1. Moreover, given the i-th
entry of C as Ci, then Ci > 0 for i = 1, 2, 3.

3. PRL DYNAMICS

The PRL of a student varies over time and is influenced
by several factors, principally related to the nature of the
student. As example, students have their own inertia in
learning or forgetting concepts, they react in different ways
to the same educational stimuli, they can be more or less
efficient in self-learning activities or they can influence
each other with personal preferences.

Given a set of n students, possibly interacting each other,
and m educational actions with n,m ∈ Z, this paper
models the PRL dynamics of the i-th student as

ẋi = αi(xi, υi) (υi(xi, u)− xi)

+

n∑
j=1

βijµi(xj − xi)(xj − xi)

yi = Cxi

(6)

with initial conditions xi(t0) = x0i and where u =
col(u1(τ), . . . , um(τ)) for τ ∈ [t0, t]

υi(xi, u) = sat

(
m∑
k=1

ηi(uk(τ)− xi)uk(τ) + δi(xi)

)
. (7)

The remainder of this section describes the terms appear-
ing in the equations (6) and (7).

3.1 Student Activity αi(xi, υi)

The student ability to keep its state, i.e. its levels of educa-
tion, deadline meeting and practice, is captured by means
of the function αi(xi, υi). The function is representative of
both the natural susceptibility to new information and to
the inevitable forgetting ratio. We observed that, student
characterized by lower values of the state (closer to 0)
demonstrate higher inertia to learn new concepts whereas
they show a more rapid forgetting of their knowledge.
At the opposite, higher state values (closer to 1) are
normally associated smart students able to rapidly catch
new teachings and capable to keep their state for longer
times. As example, focusing on the EL only, a student

with an EL close to zero is just able to remember but,
since the concepts are not well understood are subject to
a rapid forgetting process. Instead, a student who deeply
understood the theory and is able to criticize or to create,
usually learn more rapidly while remembering the concepts
for a longer time. For any fixed υi, the function αi(xi, υi) is
continuous and monotonically increasing (w.r.t. xi) in case
of learning whereas is monotonically decreasing in case of
memorizing. The function image is bounded from below
by 0 which, in case of learning, means that the subject
does not learn whereas, in case of memorizing, means
that the student does not forget. To make the formulation
as generic as possible, the function α(xi, υi) is designed
to assign, to each entry of the state xi, an independent
dynamics. Thus, the function αi(xi, υi) depends on the
state xi and on the task which is to learn or to remember.
This paper classifies the task by means of the sign of the
term υi(xi, t). Indeed, the latter term has the meaning of
the educational action and is equal to zero if and only if
the student does not learn by means of neither external,
uk(τ), nor self–actions, δi(xi).

With these concepts in hand, this paper denotes with A
the set of sufficiently continuous functions which verify the
following properties:

A :=

{
f : [0, 1]× {0, 1} 7→ R>0,

∂f

∂s
(s, w) :=

{
≤ 0 w = 0
≥ 0 w = 1

, ∀ s ∈ [0, 1]

}
.

(8)

Finally, the student inertia αi(xi, υi) results to be the
vectorial composition of three function ai1 , ai2 and ai3 ∈ A
as follows:

αi(xi, υi) := diag


 ai1(x

(1)
i , w

(1)
i )

ai2(x
(2)
i , w

(3)
i )

ai3(x
(2)
i , w

(3)
i )


 (9)

where w
(j)
i = sign(υ

(j)
i − x

(j)
i ).

3.2 Efficiency of the Educative Action ηi(uk(τ)− xi)

The educational action uk(τ) is adopted by the students
in different ways and in function of several factors such as
the personal feeling and the way the education is given. In
particular, the students are more likely to recognize better
educative actions which are close to their current level. As
example, the level of the notions given in a class increase
gradually since the beginning of the course because, at
the beginning, the students are not supposed to be able
to catch the deep meaning of argument too far from their
current basic knowledge. This attitude is also verified when
a student with high values of state (close to 1) is subject to
teaching actions of low level. Indeed, if the teaching action
is too basic for the current student state it is felt as a
lack of new relevant information (condition of no-learning).
Roughly speaking, the efficiency of the education action,
η(uk(τ) − xi), capture the scepticism vs. belief concepts:
too radical ideas create more concerns than information
whereas the slightly different ideas are more likely to be
understood and then appreciated.
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In agreement with the standard concept of efficiency,
this paper defines H as the set of sufficiently continuous
functions which posses the following properties:

H :=

{
f : [0, 1] 7→ [0, 1],

f(0) = 1, f(1) = 0,
∂f

∂s
(s) ≤ 0

}
.

(10)

Thanks to this definition, the education efficiency ηi(xi −
ui) is given by the vectorial composition of three functions
belonging to H, namely hi1 , hi2 and hi3 :

ηi(xi − ui) := diag


 hi1(|x(1)i − u

(1)
i |)

hi2(|x(2)i − u
(2)
i |)

hi3(|x(3)i − u
(3)
i |)


 . (11)

3.3 Self-Learning Ability δi(xi)

The self-learning capacity is one of the inherent abilities
which can be correlated to the student state. Usually,
students described by states close to 0 do not posses a
sufficient level of knowledge and spirit of criticism to learn
autonomously. Indeed, the self-learning action is a complex
task requiring the capacity to identify the right references,
to understand and criticism them possibly without the
support of teachers. For this reason, the self-learning
ability can be thought as a continuous monotonically
increasing function of the student state.

Furthermore, students which have a sufficiently strong
self-learning ability are able to auto-sustain and improve
their status. This phenomenon is particularly suitable to
describe the Ph.D. students which, after a training phase,
are able to become and make progresses as researchers.
More in detail, in absence of academic educative actions
(uk(τ) = 0, k = 1, . . . ,m) and without any interaction
with other subjects (n = 1 or βij = 0, for i, j ∈ {1, . . . , n}),
the dynamics of the state is described by

ẋi = αi(xi, υi) (δi(xi)− xi) . (12)

Thus, the self-learning ability δi(xi) is said to be poor, if
δi(xi) − xi < 0, sufficient if δi(xi) − xi = 0 and rich if
δi(xi) − xi > 0. We observed that there exists a direct
correlation between the self-learning ability and the state
and, in particular, the self-learning abilities are sufficient
and rich for high values of the state.

This paper defines by D the set of sufficiently continuous
functions which verify the following properties:

D :=

{
f : [0, 1] 7→ [0, 1],

f(0) = 0, f(1) = 1,
∂f

∂s
(s) ≥ 0,

∃ s? : (f(s)− s?) (s− s?) > 0 ∀s ∈ (0, 1), s 6= s?

}
.

(13)
Given three functions, namely di1 , di2 and di3 ∈ D,
the self-learning ability δi(xi) is defined as the following
vectorial composition

δi(xi) :=

 di1(x
(1)
i )

di2(x
(2)
i )

di3(x
(3)
i )

 . (14)

4. SIMULATION EXPERIMENTS

4.1 Simulator set-up

The simulation reported in this section have been obtained
by means of a particular choice of the functions αi, δi, and
ηi. These functions have been designed to posses features
as continuity (at least C0), monotonicity, non linearity
and boundedness. This paper adopts the so called error
function to build a function, namely f , which, based on
its parameters, can belong to each of the classes A and H.
In detail, the function f : [0, 1] 7→ [0, 1] is defined as

f(s) := bo + goerf((s− ba)/gs), s ∈ [0, 1] (15)

where bo = go = 1/2, ba and gs are tunable real parameters
and erf(·) is the error function. The terms ai and hi
are defined as vectorial composition of functions f whose
parameters gs and ba are stochastic variable, realizations of
random processes characterized by a uniform probability
in the set [0, 1] for ba and [−1, 1] for gs, see Figures 1 and
2.
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0.4

0.6

0.8

1

(a) ba ∈ [0, 1] and gs ∈ [0, 1]

0 0.5 1
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0.2

0.4

0.6

0.8

1

(b) ba ∈ [0, 1] and gs ∈ [−1, 0]

Fig. 1. Function ai with ba and gs randomly generated.

In Figure 1a are depicted 5 samples of the function aij
obtained by a random generation of the parameters ba and
gs. If each aij represents the first entry of the function αi
of each student (i.e. by imposing j = 1), this figure depicts
the learning ability (or equivalently the inverse of the
learning inertia) of five students where among them, the
student 5 behaves much better than the student 3 whereas
the student 1 is characterized by a quasi-instantaneous
change of mindset (probably he/her discovered the way to
study better). Anyway, at the beginning the student 5 is
barely dynamic and the educative actions take effects in a
time much longer than for the rest of the students.

Figure 1b shows the typical evolution of the function aij
when relative to the student ability to memorize (or the
easiness of forgetting). The student who better behaves,
in the mean, could be considered the number 1 whereas,
at the beginning, the numbers 2, 4 and 5 are scarcely able
to remember the acquired informations. Furthermore, the
student 4 is who shows the best ability to not forget high-
level notions.

With respect to the Figure 2, first the plots are considered
as representative of the function hi. Furthermore, each
hi is thought as first entry of the function ηi of the i-
th student. Thus, the student 4 is highly influenced by the
educative actions, for a good range of differences between
the current state of the student and the level of educational
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Fig. 2. Functions hi with ba ∈ [0, 1] and gs ∈ [−1, 0]
randomly generated.

action. As consequence, for the student 4 it is possible
to provide teaching actions which may substantially differ
from his/her state to make the student learning rapidly.
In comparison, the student 2 shows a steep decrease in
efficiency so that, if stimulated by the same educative
actions given to the student 4, improves much less.

Furthermore, the function di is defined as a vector compo-
sition of three functions g defined for s ∈ [0, 1] as:

g(s) :=
erf((s− ba)/gs)− erf((−ba)/gs)

erf((1− ba)/gs)− erf((−ba)/gs)
. (16)

The parameters gs and ba are set as gs = 1/2 and ba ∈
[0.55, 0.65]. Figure 3 depicts five samples of the function

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fig. 3. Function di with gs = 1/3 and ba ∈ [0.55, 0.65]
randomly generated.

di which, for simplicity of analysis, are associated to the
first entry of the δi of five different students. The lower is
the value of the ba the higher is the self-learning ability
thus, the student 1 performs better than the second and
so on. This picture reports also the function s to make
graphically appreciable the difference between di(s) and s.
It is worth observing that, for di(s)− s < 0, the students
are unable to self-improve theyr state. In this context, the
student 1 performs better because becomes self-sufficient
before the remaining part of the students.

4.2 Simulation results

Single Student With Constant Education Actions. The
simulation proposed in this section describes the be-
haviour, over time, of a single student subject to a teach-
ing action. The simulated student is described by the

parameters listed in the Table 1 in which the columns
Bloom, Deadline and Practice indicate the values of
the parameters respectively associated to the first, sec-
ond and third functions of α, η and δ. The entries
of the function αi(x) have been magnified respectively
by (3.3279, 2.8517, 2.2867) (randomly generated) whereas
the simulation time, fixed to 20 seconds, has been normal-
ized to 1. The educative actions are set to be constant and
equal to 1 to simulate an inefficient system in which too
complex notions are provided to a freshmen whose initial
state is equal to x(0) = (0.0146, 0.0759, 0.0407).

Function Param. Bloom Deadline Practice

Learning Act. gs 0.7339 0.7422 0.5539
Learning Act. bs 0.5405 0.6140 0.5637

Forgett. Act. −gs 0.5665 0.7477 0.6398
Forgett. Act. bs 0.7120 0.5815 0.5588

Self Learning bs 0.6056 0.5970 0.5765

Efficiency −gs 0.7265 0.1377 0.5890
Efficiency bs 0.6854 0.9406 0.7909

Table 1. Parameters of the student n.1

(a) Learning Activity:
αi(x(t), υ(t)) for υ(t) > 0.

(b) Efficiency: η(u(t)− x(t)).

Fig. 4. Student Learning Activity and Efficiency over time:
case of constant teaching.

(a) Student State: x(t) (b) Student PRL: PRL(t)

Fig. 5. Student State and PRL over time: case of constant
teaching.

The combination of a poor learning ability and an inef-
ficient teaching action leads to a slow and unsatisfactory
increment of the practice level. Indeed, as shown in Figures
4a-4b, the student does not react, as he does for the case
of the EL and DML, to the teaching stimulus. The next
paragraph shows that a gradual educative action can lead
to better results because of a more efficient teaching. In
particular, the final PRL reached in Figure 5b is overcome
by that reached in Figure 8b.
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Single Student With Linearly Time Varying Education
Actions. Taking the same student of the previous sim-
ulation case and assuming a teaching law which increases
linearly from 0 to 1 over the time span, the student
evolution is depicted in Figures 6-8.

(a) Learning Activity:
αi(x(t), υ(t)) for υ(t) −
x(t) > 0.

(b) Forgetting Activity:
αi(x(t), υ(t)) for υ(t) −
x(t) ≤ 0.

Fig. 6. Student Activity over time: case of linearly time
varying teaching.

(a) Efficiency: ηi(u(t)− x(t)) (b) Self Learning: δi(x(t))

Fig. 7. Student Efficiency and Self Learning over time: case
of linearly time varying teaching.

(a) Student State: x(t) (b) Student PRL: PRL(t)

Fig. 8. Student Efficiency and Self Learning over time: case
of linearly time varying teaching.

The parameters describing the student are listed in Table
1. Thanks to the teaching action the student improves
both his capacity of learning and his ability to memorize.
Indeed, as depicted in Figure 6a and 6b the student
shows an improvement of the entries of the function
α(x(t), υ(t)) for υ(t) − x(t) > 0 and, simultaneously
a decrease of the functions composing α(x(t), υ(t)) for
υ(t) − x(t) =≤ 0. With reference to the Figures 6-8,
the teaching actions, which are equally distributed on the
three element of the state, have three different effects
due to the different attitudes of the student. Since the
student shows difficulties in learning and memorize how to

deal with practical activities, the teaching actions, even if
provided with a good efficiency, result in a slow increment
of the third entry of the state, i.e. x(3)(t), over time. For
this reason, the PRL shows two increasing phases, the first
relative to the improvement of the EL and DML and the
second due to the improvement of the PL. Moreover, at
time t ≈ 0.5, the self learning ability of the student is
sufficiently high to make the student self improving his
states x(1)(t) and x(2)(t). Indeed, in Figure 8a, after time
t ≈ 0.5 the educational level, EL, and the deadline meeting
level, DML, increase with a higher rate.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

This paper presented a new mathematical model which
describes the dynamics of a student subject to educative
actions in the context of Aerospace Engineering. After the
introduction of a suitable taxonomy, this work details each
single term appearing into the proposed model. Finally, the
correctness of the model is confirmed by the simulation
results which offer also a first sight on the design of
effective educative actions. Future works will investigate
the model of the group as a whole and will propose new
verification criteria to measure the state of the students,
as defined in the present manuscript.
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