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Abstract: In industrial processes, soft sensor techniques are often utilized to predict the hard-to-measure 
quality variables. However, the labeled data which are obtained from the offline lab analysis can be quite 
rare. In the present work, a new divergence-based semi-supervised learning method is developed to 
exploit the unlabeled samples together with labeled ones for soft sensor application, namely adversarial 
tri-regression. First, the adversarial samples are generated based on the consideration of maximum 
disturbance, and through training on the combination of the adversarial samples and the original labeled 
samples, three regressors are initialized with divergence. Second, for each regressor, an unlabeled sample 
is labeled when the other two regressors agree on the labeling of this sample, which actually provides that 
regressor with some unknown information based on the divergence. As the three regressors label more 
and more samples for each other, the final regression model obtained by averaging the three base 
regressors presents increasingly more accurate prediction. The proposed method tackles a practical soft 
sensor problem for the industrial production process of cigarette. 

Keywords: Adversarial samples, Divergence-based regressor, Robust modeling, Tri-training strategy, 
Semi-supervised learning, Soft sensor. 

 
1. INTRODUCTION 

Intelligent process monitoring (Song et al. 2019) and 
advanced control strategies in modern industry process 
highly depend on the accurate and reliable measurements. 
However, low reliability of measuring devices and 
inadequacy of measurement techniques impose massive 
constrains on the online monitoring of quality variables 
(Zhao et al. 2014). As a result, these important performance 
indicators are normally determined by offline laboratory 
analysis, which requires high-cost maintenance and suffer 
from low sampling rate (Shardt et al. 2015). In practice, an 
accurate and reliable online measurement for various quality 
variables is desired. 

Soft sensor, a data-driven virtual sensing technique, predicts 
hard-to-measure quality variables based on other easy-to-
measure process variables to offer economical alternatives to 
these expensive physical measuring sensors (Zhao et al. 
2010). Qin et al. (2019) proposed a slow feature analysis 
based soft sensor approach to capture the process dynamics. 
Liu (2014) developed a sparse partial least squares method to 
simultaneously select the important variables and find the 
correlation between the variables and targets for soft sensor 
application. These conventional methods are conducted under 
the classic supervised learning paradigm, which requires 
massive labeled samples. However, many processes may 
only provide a limited number of labeled data due to the 
restrictions on time, cost, and other resources. In this 
situation, additional information or data resources may be 
needed to ensure the soft sensor performance (Shao et al. 
2016). 

Recently, several soft sensor methods which utilize the 
unlabeled data have been proposed under the semi-supervised 
paradigm. Distinguished from both supervised and 
unsupervised learning methods, semi-supervised learning 
improves the predictive performance using both the labeled 
and unlabeled data (Mohamed et al. 2006). Yan et al. (2016) 
proposed a semi-supervised Gaussian regression based on the 
Laplace graph regularization item, which is limited to the 
Gaussian process. Shang et al. (2014) analyzed the benefits of 
deep neural networks and conducted the semi-supervised soft 
sensor task using deep learning technique. But the pretraining 
by unlabeled data can be tedious. Besides, the classic 
divergence based semi-supervised method, known as Coreg 
(Zhou et al. 2005a), is also applied in soft sensor task, which 
trains two K-neighbor nearest regressors and makes them 
label the unlabeled samples for each other. However, the 
model requires that the two base regressors should be set by 
different distance metrics to make them different from each 
other, which requires tedious and time-consuming trial and 
error. 

Actually, the initial difference between based learners 
(classifiers or regressors) is necessary and important to 
launch an effective mutually labeling process for the 
divergence based semi-supervised methods (Wang et al. 2007, 
Nigam et al. 2000). Blum et al. (1998) utilized two sufficient 
and redundant views to make the classifiers different for the 
classification of web pages. Since the two sufficient and 
redundant views are usually unavailable for other tasks, the 
diversity between learners is also achieved through the 
bootstrap random sampling method (Zhou et al. 2005a) or a 
fairly reasonable variable split (Blum et al. 1998). However, 
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it should be noted that the semi-supervised algorithms are 
usually applied for the cases where limited labeled data are 
offered, the data or variable sampling methods may make the 
available samples even less for each base learner. In some 
variant algorithms, different learning algorithms or initial 
parameters (Zhou et al. 2005b) are also utilized to make 
differences, which require for the tedious and time-
consuming cross-validation. More effective method should 
be developed to build different base learners for the 
divergence based semi-supervised soft sensor.  

Besides, another issue considered by soft sensor is the ability 
of resisting noises. The measurement noises and process 
noises commonly exist in factories (Khatibisepehr et al. 
2008). Popular methods usually adopt extra filtering and 
smoothing algorithms as a preprocessing step before the 
model construction and prediction, including Kalman 
filtering, slow feature extraction, box plot method, linearly 
weighted moving average, Bayesian methods, etc. 
(Khatibisepehr et al. 2008, Paulsson et al. 2014) Although 
results show that these extra filtering algorithms do provide 
some anti-noise capabilities, the filtering algorithms may also 
remove some important information hidden in the 
measurements, which affects the quality prediction. It is 
better to build a model which can natively resist noises. 

In this paper, a divergence-based semi-supervised learning 
method, termed adversarial tri-regression (ATR), is 
developed to exploit unlabeled samples together with labeled 
samples for soft sensor application. Specifically, adversarial 
tri-regression initializes three base regressors with divergence 
based on the combination training of the original labeled 
samples and the generated adversarial samples. Next, 
unlabeled samples are selected and labeled to augment the 
training set for the third regressor when the other two 
regressors agree on the labeling of these samples, which 
actually offers some unknown information for the third 
regressor through the divergence. The final soft sensor model 
is obtained by averaging the three base regressors to achieve 
the prediction from multiple views. Besides, since the 
generation of adversarial samples is supervised by labels and 
based on the consideration of maximum disturbance, hence, 
the adversarial tri-regression model presents the local 
smoothing characteristic to resist noises.  

The contributions of this paper are summarized as below: 
(1) Adversarial samples are generated to offer an 
effective way to make divergence among base regressors and 
make the model robust to the process noises. 
(2) Unlabeled samples can be efficiently labeled and 
selected to augment the training set for soft sensor task by the 
mutually labeling process of three base regressors. 

The rest of this paper is organized as follows. In the next 
section, the adversarial tri-regression method, and its 
application in soft sensors are developed. In Section II, 
experiments based on a real industrial process are reported. 
Last, we draw the conclusion. 

2. METHODOLOGY 

In this section, the meaning of adversarial samples and the 

principle of making divergence are presented first, followed 
by the developing of adversarial tri-regression method for 
soft sensor modeling.  

2.1 Make Divergence with Adversarial Samples 
Adversarial tri-regression is designed as a divergence-based 
semi-supervised learning method to exploit the unlabeled 
data, in which the divergence among base learners is 
important and helpful for the performance improvement. 
Distinguished from the conventional methods (Nigam et al. 
2000, Bdelgayed et al. 2018, Zhou et al. 2005b, Zhou et al. 
2005a), in this article, the novel adversarial samples are 
generated and utilized to make divergence among base 
regressors without imposing other restrictions and make the 
model more robust to the process noises.  

1) The Meaning of Adversarial Samples 

Adversarial samples  (  is the number of variables 
or measurements and  is the number of samples.) are 
generated for a regressor  based on the labeled training 
set , where  is the labeled data and  is 
the label vector. Generally, a regressor  can be trained on 
the labeled data  to obtain the parameter  and make 
the output  of  as close to  as possible, which 
can be formulated as  

                    (1) 

where  is a function which measures the distance between 
 and . For example,  can be the normal Euclidean 

distance  

                            (2) 

For the well-trained regressor , the adversarial samples 
 are generated to cause maximum error by adding 

limited perturbations  to the original samples  
under the supervised style. The adversarial samples  
proposed by Goodfellow et al. (2015) and Szegedy et al. 
(2014) are designed as below 

                                 (3) 
and 

                (4) 

const.                                (5) 

where  is the  norm of , and  is a given parameter 

to control the intensity of the adversarial perturbation . 

The equation (3) shows that the adversarial samples  are 
linearly produced by adding the generated adversarial 
perturbations  to . In equation (4), the labels  of 

 are utilized to supervise the generation process and 
requires that the adversarial perturbations  should cause 
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maximum error between the output  of  and the 
true label  under the limited noise intensity. While the 
well-learned parameter  minimize the loss of  on , the 
generated  aims to maximize the error with only a 
limited disturbance. Hence,  can be aggressive to the 
well trained regressor .  

As for the solution, the adversarial samples  is designed 
as a linear sum of the original samples  and the 
adversarial perturbations . Intuitively, it is difficult to 
obtain a closed-form solution for the exact  from (4) and 
(5). However, based on the linear characteristic, an 
approximating for  is always available. When the  in (5) 
is adopted as infinite-norm, a very simple approximation for 
the adversarial perturbation can be obtained 

                                (6) 
where  is used to judge the symbol of every item of , 
and  is the derivative of  and can be denoted by 

                         (7) 

From the solution in (6) and (7), it is observed that the 
adversarial samples  are actually generated by searching 
for the maximum perturbation direction under the supervision 
of the label .  

2) How Adversarial Samples Make Effects 

As mentioned above, adversarial samples  make  
have the largest loss. However, if we retrain the regressor  
with the combination of the original training samples  and 
the adversarial samples  to minimize the distance 
between the output  of  and , a 
very different parameter  and regressor  can be 
obtained, which is formulated as  

     (8) 

Comparing the updated regressor  and the initial 
regressor , two main issues can be observed. First, there 
is significant divergence between  and , since the 
supervised training in (4) makes  have a weaker 
prediction ability for , while the combination training in 
(8) makes  learn the sample pairs  well. But 
it is worth mentioning that both of  and  learn 
from the original data and have a reasonable prediction 
ability for . Second, the combination training in (8) makes 

 and  share the same label . Since  are 
generated by modifying  with limited disturbances , 
the learning in (8) actually makes the trained regressor 

 smoother at each sample point surrounding , 
which means  output the similar predictions around 

each point. Considering that the adversarial samples are 
designed as the most aggressive noises using the supervised 
paradigm, the model smoothed by the combination training in 
(8) can be robust to the common noises and perturbation. 

2.2 Adversarial Tri-Regression for Soft Sensor 
Basically, adversarial tri-regression builds three regressors 
with divergence and labels the unlabeled samples for each 
other to utilize the information of unlabeled data. The 
implementation of adversarial tri-regression consists of two 
main steps. First, three different regressors are built based on 
the combination training of adversarial samples and the 
original labeled samples. Second, the three initialized 
regressors iteratively label the unlabeled samples for each 
other and use the expanded training datasets to update 
themselves. The final soft sensor model is obtained by 
averaging the three updated regressors. 

1) Build Three Regressors with Divergence  
The discussion in the first subsection points out that through 
the combination training on the original samples and the 
generated adversarial samples, a robust and different 
regressor can be obtained. To get three different regressors 

, the generation of adversarial samples and 
combination training are iteratively conducted three times. 
The training set of  is denoted as 

 . The adversarial samples 

 are obtained by  

,                       (10) 
where  

              (11) 

const.                               (12) 
and  

      (13) 

Here, is obtained by (3). After generating the 

adversarial samples ,  can be easily trained 

based on  , which makes , , and 

 different from each other and robust to the common 
noise. 

2) Exploit Unlabeled Samples with Three Regressors 
In practical industrial process, there are usually much more 
unlabeled samples  saved in the distributed control 
system.  is the number of variables and  is the number of 
unlabeled samples. Making good use of these unlabeled 
samples is of great importance to improve the performance of 
soft sensor. In the classic Coreg, an unlabeled sample with its 
pseudo label is added into the training set if the sample pair 
makes the updated regressor consistent with the original 
labeled data. However, retraining the model for each 
unlabeled sample can be extremely time-consuming. Hence, 
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the proposed adversarial tri-regression utilizes three 
regressors  to simplify the mutually labeling process. 

Specifically, adversarial tri-regression utilizes two regressors, 
 and  collaboratively label the unlabeled samples for the 

third regressor  (  and ) instead of the 
tedious confidence evaluation of Coreg. For the unlabeled 
samples ,  ( ) most confident predictions  can be 

selected from  if the distances 

between the predictions  and  are minimum. 

The samples which correspond to  are denoted as . 

Add the selected sample pairs  into the initial 
training set , and update the base regressor  based on the 
expanded  to learn more information from  and . 
Repeatedly, multiple rounds of labeling process can be 
conducted for the updated three regressors until reaching the 
given training rounds . The final regressor of adversarial 
tri-regression is determined by averaging the three regressors. 

Compared with the evaluation of Coreg, the collaborative 
labeling by three regressors allows to find a certain number 
of confident predictions at one time instead of retraining the 
regressors for each unlabeled sample, which is more efficient. 
The application of the proposed adversarial tri-regression on 
soft sensor modeling is summarized in Algorithm 1. 

3. CASE STUDY 

In this section, a soft sensor application is presented for the 
chemical cigarette manufacturing process of a tobacco 
corporation based on the proposed adversarial tri-regression 
method.  

3.1 Data Description and Experiment Setting 
Generally, the cigarette manufacturing process consists of 

three operation stages including leaf processing, silk 
processing, and blending and spicing. The silk processing 
which transfers the leaves into leaf-silk is the critical stage. 

During the transformation, the SIROX warming and 
dampening machine, and KLD drier machine, are 
instrumented to reduce the moisture content of leaf-silk from 
20% to 18% and from 18% to 12% using the heated barrel 
with saturated steam. Since the moisture content directly 
determines the flavor and style characteristic of cigarette, it is 
an important quality index in the cigarette production.  

Twenty process variables, including the flow rate, vapor 
pressure, and etc., are online measured as input variables to 
predict the three moisture content related quality variables. 
As a very limited number of labeled samples are available, 
only 100 labeled samples and 360 unlabeled samples are used 
to build the soft sensor model. 150 samples are set as the test 
data.  

The proposed adversarial tri-regression is compared with the 
classic semi-supervised Coreg method (Zhou et al. 2005a) 
and the semi-supervised deep believe network (SSDBN) 
(Shang et al. 2014). For the Coreg method, the distance 
metric parameters of the two k-neighbor regressors of Coreg 
are searched from 2 to 5, the number of neighbors is searched 
from 3 to 9, the maximum iteration is set as 120, and the pool 

size is set as the number of the unlabeled samples. SSDBN is 
proposed by Shang et al. and consists of two training stages. 
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Algorithm 1 Adversarial tri-regression for soft sensor application 
Preprocessing stage 
1 Collect process data and laboratory analysis data from factory 
2 Select key variables using theoretical analysis and experience  
3 Remove outliers and normalize data, obtain .  
Model training stage 
4 Select the regression algorithm  
5 Train three regressors  using   
6 For  do 
7    For  do 
8    select  unlabeled samples with pseudo labels to expand , 

9    update  using , 

10  remove newly labeled samples from , 
11  End 
12 End 
13 The final model  is obtained by averaging  
Model test stage  
14 Preprocess the test data as step 1 to step 3 
15 Apply the built soft sensor model  to the test data 
 
 

Θ={X L ,XU ,YL}

h
{h1,h2 ,h3} {Ψ1,Ψ2 ,Ψ3}

j = 1:T
i = 1:3
p Ψ i

hi Ψ i

XU

H {h1,h2 ,h3}

H

 
Fig. 1. The comparison of prediction results for the SIROX warmed 
moisture content in cigarette manufacturing process. 

Table 1. 
The structure of designed neural network  

Layer Symbol Operator Dimension 
0 Input Input data 20 
1 Layer1 Linear mapping 20x512 
1 Kernel1 ReLu 512 
2 Layer2 Linear mapping 512x256 
2 Kernel2 ReLu 256 
3 Layer3 Linear mapping 256x128 
3 Kernel3 ReLu 128 
4 Layer4 Linear mapping 128x1 
4 Kernel4 Sigmoid 1 
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The structure of the SSDBN is determined by trial and error, 
which is shown in Table 1. For the proposed adversarial tri-
regression, the rounds  is set as 5, the number of labeling 
samples for each regressor at each round  is set as 20, and 
the intensity of adversarial samples  is set as 0.2. The 
parameters are usually selected by cross validation and will 
be studied shortly. Here, the neural network shown in Table 1 
is utilized as the base learner of the proposed model and all of 
the base regressors have the same structures. The neural 
network is trained with the Adam optimizer, 20 rounds 
training are conducted, and the learning rate is set as 0.001. 

3.2 Results and Parameter Study 
The RMSE and training time are utilized to evaluate and 
compare the modeling performance. The results of SSDBN, 
Coreg, and adversarial tri-regression (ATR) on the three 
quality variables are comparatively presented in Figure 1 to 
Figure 3. It is observed that adversarial tri-regression usually 
has less RMSE than the Coreg method and SSDBN. 
Although the SSDBN takes less training time than the 
divergence-based semi-supervised methods, the training time 

of adversarial tri-regression has been reduced significantly 
than that of Coreg, since it avoids evaluating the labeling 
confidence one by one.  

Next, the parameter studies are conducted for the adversarial 
tri-regression method. The effects of the intensity of 
adversarial samples  and the training rounds  are 
explored on the three quality variables. For the intensity of 
adversarial samples , we adjust it from 0 to 1. Other 
parameters remain the same as the settings mentioned above. 
The variation of RMSE with the increasing of  is drawn in 
Figure 4. Usually, setting  as 0.2 to 0.6 is helpful to obtain a 
satisfactory result. As for the effects of the training rounds , 
it actually decides the number of unlabeled samples which 
are desired to be labeled. 10 rounds of training are conducted, 
and 10 unlabeled samples are labeled for each regressors at 
each round. The variation of RMSE is presented in Figure 5. 
In the first four rounds, the RMSE is reduced, and later, the 
performance is gradually steady. Generally, the number of 
proper training rounds can be 4 to 6 which are helpful to 
obtain a compromise between the performance and training 
time.  

3.3 Test for the De-Nosing Ability 
Last, the capability of resisting noises of adversarial tri-

regression is presented. Adversarial tri-regression is 
compared with SSDBN and Coreg. In this experiment, the 
input measurements are added with noises. The noises are 
generated based on Gaussian distribution. Both of the mean 
value of noises and variance are 0.2. For a better comparison, 
the moving average (MA) filter which can smoothen the 
input measurements is applied as the filtering algorithm 
before the training of SSDBN and Coreg. The moving 
window of the moving average filter is set as 3. The 
parameter settings of SSDBN, Coreg, and adversarial tri-
regression are the same as mentioned before. The results are 
comparatively presented in Table 2. As the table shows, the 
regular SSDBN and Coreg have little abilities to resist noises, 

T
p

ε

ε T

ε

ε
ε

T

 
Fig. 2. The comparison of prediction results for the KLD dried moisture 
content in cigarette manufacturing process. 

 
Fig. 4. The effects of the intensity of adversarial samples 

 
Fig. 3. The comparison of prediction results for the cooling moisture 
content in cigarette manufacturing process. 

 
Fig. 5. The effects of training rounds for labeling unlabeled data 
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and the added Gaussian noises usually make the RMSE 
larger (about 0.004 to 0.007). The extra moving average filter 
indeed helps the soft sensor to resist noise, the increase of 
RMSE is only around from 0.001 to 0.002. However, the 
utilization of extra filter affects the performance of the soft 
sensor itself, which means that the filter not only removes the 
noise but also removes some important information from the 
measurements. 

4. CONCLUSION 

This paper presents a new semi-supervised learning 
algorithm, i.e., adversarial tri-regression, for the industrial 
soft sensor development. Distinguished from the 
conventional divergence based semi-supervised learning 
algorithms, the proposed model generates the novel 
adversarial samples to make three base regressors different 
from each other and exploit the unlabeled samples to offer 
more process information. By generating the adversarial 
samples, all of the labeled samples can be available for the 
training of each base regressors instead of the subsets, and the 
trained regressors are robust to the process noises, which are 
important for the practical application. The accurate and 
robust performance of adversarial tri-regression is validated 
on a real industrial process.  
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Table 2. 
The prediction results on test data with noises of three quality variables 

Performance(RMSE) SSDBN  MA+SSDBN  Coreg  MA+Coreg  ATR 
SIROX warmed moisture 

content 

Clear 0.02579  0.04692  0.033201  0.04692  0.02549 
Noise 0.02989  0.04810  0.03415  0.04819  0.02574 
Error 0.00410  0.00118  0.00214  0.00127  0.00025 

KLD dried moisture content 
Clear 0.02536  0.05552  0.02767  0.06054  0.02257 
Noise 0.03297  0.05642  0.03003  0.06332  0.02613 
Error 0.00761  0.00090  0.00263  0.00278  0.00356 

Cooling moisture content 
Clear 0.02846  0.04081  0.03262  0.04102  0.02633 
Noise 0.03637  0.04021  0.03886  0.04601  0.02898 
Error 0.00791  0.00060  0.00664  0.00499  0.00265 

“Clear” denotes the input measurements are original clear data, “Noise” denotes the input measurements are combined with noises, “Error” denotes the error 
caused by the added noises. 
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